[7f9fb8]: / mne / viz / topomap.py

Download this file

4132 lines (3698 with data), 131.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
"""Functions to plot M/EEG data e.g. topographies."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import copy
import itertools
import warnings
from functools import partial
from numbers import Integral
import numpy as np
from scipy.interpolate import (
CloughTocher2DInterpolator,
LinearNDInterpolator,
NearestNDInterpolator,
)
from scipy.sparse import csr_array
from scipy.spatial import Delaunay, Voronoi
from scipy.spatial.distance import pdist, squareform
from .._fiff.meas_info import Info, _simplify_info
from .._fiff.pick import (
_MEG_CH_TYPES_SPLIT,
_pick_data_channels,
_picks_by_type,
_picks_to_idx,
pick_channels,
pick_info,
pick_types,
)
from ..baseline import rescale
from ..defaults import (
_BORDER_DEFAULT,
_EXTRAPOLATE_DEFAULT,
_INTERPOLATION_DEFAULT,
_handle_default,
)
from ..transforms import apply_trans, invert_transform
from ..utils import (
_check_option,
_check_sphere,
_clean_names,
_is_numeric,
_time_mask,
_validate_type,
check_version,
fill_doc,
legacy,
logger,
verbose,
warn,
)
from ..utils.spectrum import _split_psd_kwargs
from .ui_events import TimeChange, publish, subscribe
from .utils import (
DraggableColorbar,
_check_delayed_ssp,
_check_time_unit,
_check_type_projs,
_draw_proj_checkbox,
_format_units_psd,
_get_cmap,
_get_plot_ch_type,
_prepare_sensor_names,
_prepare_trellis,
_process_times,
_set_3d_axes_equal,
_setup_cmap,
_setup_vmin_vmax,
_validate_if_list_of_axes,
figure_nobar,
plot_sensors,
plt_show,
)
_fnirs_types = ("hbo", "hbr", "fnirs_cw_amplitude", "fnirs_od")
# 3.8+ uses a single Collection artist rather than .collections
# https://github.com/matplotlib/matplotlib/pull/25247
def _cont_collections(cont):
return (cont,) if check_version("matplotlib", "3.8") else tuple(cont.collections)
def _adjust_meg_sphere(sphere, info, ch_type):
sphere = _check_sphere(sphere, info)
assert ch_type is not None
if ch_type in ("mag", "grad", "planar1", "planar2"):
# move sphere X/Y (head coords) to device X/Y space
if info["dev_head_t"] is not None:
head_dev_t = invert_transform(info["dev_head_t"])
sphere[:3] = apply_trans(head_dev_t, sphere[:3])
# Set the sphere Z=0 because all this really affects is flattening.
# We could make the head size change as a function of depth in
# the helmet like:
#
# sphere[2] /= -5
#
# but let's just assume some orthographic rather than parallel
# projection for explicitness / simplicity.
sphere[2] = 0.0
clip_origin = (0.0, 0.0)
else:
clip_origin = sphere[:2].copy()
return sphere, clip_origin
def _prepare_topomap_plot(inst, ch_type, sphere=None):
"""Prepare topo plot."""
from ..channels.layout import _find_topomap_coords, _pair_grad_sensors, find_layout
info = copy.deepcopy(inst if isinstance(inst, Info) else inst.info)
sphere, clip_origin = _adjust_meg_sphere(sphere, info, ch_type)
clean_ch_names = _clean_names(info["ch_names"])
for ii, this_ch in enumerate(info["chs"]):
this_ch["ch_name"] = clean_ch_names[ii]
for comp in info["comps"]:
comp["data"]["col_names"] = _clean_names(comp["data"]["col_names"])
info._update_redundant()
info["bads"] = _clean_names(info["bads"])
info._check_consistency()
# special case for merging grad channels
layout = find_layout(info)
if (
ch_type == "grad"
and layout is not None
and (
layout.kind.startswith("Vectorview")
or layout.kind.startswith("Neuromag_122")
)
):
picks, _ = _pair_grad_sensors(info, layout)
pos = _find_topomap_coords(info, picks[::2], sphere=sphere)
merge_channels = True
elif ch_type in _fnirs_types:
# fNIRS data commonly has overlapping channels, so deal with separately
picks, pos, merge_channels, overlapping_channels = _average_fnirs_overlaps(
info, ch_type, sphere
)
else:
merge_channels = False
if ch_type == "eeg":
picks = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude="bads")
elif ch_type == "csd":
picks = pick_types(info, meg=False, csd=True, ref_meg=False, exclude="bads")
elif ch_type == "dbs":
picks = pick_types(info, meg=False, dbs=True, ref_meg=False, exclude="bads")
elif ch_type == "seeg":
picks = pick_types(
info, meg=False, seeg=True, ref_meg=False, exclude="bads"
)
else:
picks = pick_types(info, meg=ch_type, ref_meg=False, exclude="bads")
if len(picks) == 0:
raise ValueError(f"No channels of type {ch_type!r}")
pos = _find_topomap_coords(info, picks, sphere=sphere)
ch_names = [info["ch_names"][k] for k in picks]
if ch_type in _fnirs_types:
# Remove the chroma label type for cleaner labeling.
ch_names = [k[:-4] for k in ch_names]
if merge_channels:
if ch_type == "grad":
# change names so that vectorview combined grads appear as MEG014x
# instead of MEG0142 or MEG0143 which are the 2 planar grads.
ch_names = [ch_names[k][:-1] + "x" for k in range(0, len(ch_names), 2)]
else:
assert ch_type in _fnirs_types
# Modify the nirs channel names to indicate they are to be merged
# New names will have the form S1_D1xS2_D2
# More than two channels can overlap and be merged
for set_ in overlapping_channels:
idx = ch_names.index(set_[0][:-4])
new_name = "x".join(s[:-4] for s in set_)
ch_names[idx] = new_name
pos = np.array(pos)[:, :2] # 2D plot, otherwise interpolation bugs
return picks, pos, merge_channels, ch_names, ch_type, sphere, clip_origin
def _average_fnirs_overlaps(info, ch_type, sphere):
from ..channels.layout import _find_topomap_coords
picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type, exclude="bads")
chs = [info["chs"][i] for i in picks]
locs3d = np.array([ch["loc"][:3] for ch in chs])
dist = pdist(locs3d)
# Store the sets of channels to be merged
overlapping_channels = list()
# Channels to be excluded from picks, as will be removed after merging
channels_to_exclude = list()
if len(locs3d) > 1 and np.min(dist) < 1e-10:
overlapping_mask = np.triu(squareform(dist < 1e-10))
for chan_idx in range(overlapping_mask.shape[0]):
already_overlapped = list(
itertools.chain.from_iterable(overlapping_channels)
)
if overlapping_mask[chan_idx].any() and (
chs[chan_idx]["ch_name"] not in already_overlapped
):
# Determine the set of channels to be combined. Ensure the
# first listed channel is the one to be replaced with merge
overlapping_set = [
chs[i]["ch_name"] for i in np.where(overlapping_mask[chan_idx])[0]
]
overlapping_set = np.insert(
overlapping_set, 0, (chs[chan_idx]["ch_name"])
)
overlapping_channels.append(overlapping_set)
channels_to_exclude.append(overlapping_set[1:])
exclude = list(itertools.chain.from_iterable(channels_to_exclude))
[exclude.append(bad) for bad in info["bads"]]
picks = pick_types(
info, meg=False, ref_meg=False, fnirs=ch_type, exclude=exclude
)
pos = _find_topomap_coords(info, picks, sphere=sphere)
picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type)
# Overload the merge_channels variable as this is returned to calling
# function and indicates that merging of data is required
merge_channels = overlapping_channels
else:
picks = pick_types(
info, meg=False, ref_meg=False, fnirs=ch_type, exclude="bads"
)
merge_channels = False
pos = _find_topomap_coords(info, picks, sphere=sphere)
return picks, pos, merge_channels, overlapping_channels
def _plot_update_evoked_topomap(params, bools):
"""Update topomaps."""
from ..channels.layout import _merge_ch_data
projs = [
proj for ii, proj in enumerate(params["projs"]) if ii in np.where(bools)[0]
]
params["proj_bools"] = bools
new_evoked = params["evoked"].copy()
with new_evoked.info._unlock():
new_evoked.info["projs"] = []
new_evoked.add_proj(projs)
new_evoked.apply_proj()
data = new_evoked.data[:, params["time_idx"]] * params["scale"]
if params["merge_channels"]:
data, _ = _merge_ch_data(data, "grad", [])
interp = params["interp"]
new_contours = list()
use_contours = params["contours_"]
if not len(use_contours):
use_contours = [None] * len(params["axes"])
assert len(use_contours) == len(params["images"])
assert len(params["axes"]) == len(params["images"])
assert len(data.T) == len(params["images"])
for cont, ax, im, d in zip(use_contours, params["axes"], params["images"], data.T):
Zi = interp.set_values(d)()
im.set_data(Zi)
if cont is None:
continue
# must be removed and re-added
cont_collections = _cont_collections(cont)
for col in cont_collections:
col.remove()
col = cont_collections[0]
lw = col.get_linewidth()
visible = col.get_visible()
patch_ = col.get_clip_path()
color = col.get_edgecolors()
cont = ax.contour(
interp.Xi, interp.Yi, Zi, params["contours"], colors=color, linewidths=lw
)
cont_collections = _cont_collections(cont)
for col in cont_collections:
col.set_visible(visible)
col.set_clip_path(patch_)
new_contours.append(cont)
params["contours_"] = new_contours
params["fig"].canvas.draw()
def _add_colorbar(
ax,
im,
cmap,
*,
title=None,
format_=None,
kind=None,
ch_type=None,
):
"""Add a colorbar to an axis."""
cbar = ax.figure.colorbar(im, format=format_, shrink=0.6)
if cmap is not None and cmap[1]:
ax.CB = DraggableColorbar(cbar, im, kind, ch_type)
cax = cbar.ax
if title is not None:
cax.set_title(title, y=1.05, fontsize=10)
return cbar, cax
def _eliminate_zeros(proj):
"""Remove grad or mag data if only contains 0s (gh 5641)."""
GRAD_ENDING = ("2", "3")
MAG_ENDING = "1"
proj = copy.deepcopy(proj)
proj["data"]["data"] = np.atleast_2d(proj["data"]["data"])
for ending in (GRAD_ENDING, MAG_ENDING):
names = proj["data"]["col_names"]
idx = [i for i, name in enumerate(names) if name.endswith(ending)]
# if all 0, remove the 0s an their labels
if not proj["data"]["data"][0][idx].any():
new_col_names = np.delete(np.array(names), idx).tolist()
new_data = np.delete(np.array(proj["data"]["data"][0]), idx)
proj["data"]["col_names"] = new_col_names
proj["data"]["data"] = np.array([new_data])
proj["data"]["ncol"] = len(proj["data"]["col_names"])
return proj
@fill_doc
def plot_projs_topomap(
projs,
info,
*,
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.1f",
units=None,
axes=None,
show=True,
):
"""Plot topographic maps of SSP projections.
Parameters
----------
projs : list of Projection
The projections.
%(info_not_none)s Must be associated with the channels in the projectors.
.. versionchanged:: 0.20
The positional argument ``layout`` was replaced by ``info``.
%(sensors_topomap)s
%(show_names_topomap)s
.. versionadded:: 1.2
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.20
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_proj)s
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
.. versionadded:: 1.2
%(units_topomap)s
.. versionadded:: 1.2
%(axes_plot_projs_topomap)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with a topomap subplot for each projector.
Notes
-----
.. versionadded:: 0.9.0
"""
fig = _plot_projs_topomap(
projs,
info,
sensors=sensors,
show_names=show_names,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
units=units,
axes=axes,
)
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
plt_show(show)
return fig
def _plot_projs_topomap(
projs,
info,
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.1f",
units=None,
axes=None,
):
import matplotlib.pyplot as plt
from ..channels.layout import _merge_ch_data
sphere = _check_sphere(sphere, info)
projs = _check_type_projs(projs)
_validate_type(info, "info", "info")
# Preprocess projs to deal with joint MEG projectors. If we duplicate these and
# split into mag and grad, they should work as expected
info_names = _clean_names(info["ch_names"], remove_whitespace=True)
use_projs = list()
for proj in projs:
proj = _eliminate_zeros(proj) # gh 5641, makes a copy
proj["data"]["col_names"] = _clean_names(
proj["data"]["col_names"],
remove_whitespace=True,
)
picks = pick_channels(info_names, proj["data"]["col_names"], ordered=True)
proj_types = info.get_channel_types(picks)
unique_types = sorted(set(proj_types))
for type_ in unique_types:
proj_picks = np.where([proj_type == type_ for proj_type in proj_types])[0]
use_projs.append(copy.deepcopy(proj))
use_projs[-1]["data"]["data"] = proj["data"]["data"][:, proj_picks]
use_projs[-1]["data"]["col_names"] = [
proj["data"]["col_names"][pick] for pick in proj_picks
]
projs = use_projs
datas, poss, spheres, outliness, ch_typess = [], [], [], [], []
for proj in projs:
# get ch_names, ch_types, data
data = proj["data"]["data"].ravel()
picks = pick_channels(info_names, proj["data"]["col_names"], ordered=True)
use_info = pick_info(info, picks)
these_ch_types = use_info.get_channel_types(unique=True)
assert len(these_ch_types) == 1 # should be guaranteed above
ch_type = these_ch_types[0]
(
data_picks,
pos,
merge_channels,
names,
_,
this_sphere,
clip_origin,
) = _prepare_topomap_plot(use_info, ch_type, sphere=sphere)
these_outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
data = data[data_picks]
if merge_channels:
data, _ = _merge_ch_data(data, "grad", [])
data = data.ravel()
# populate containers
datas.append(data)
poss.append(pos)
spheres.append(this_sphere)
outliness.append(these_outlines)
ch_typess.append(ch_type)
del data, pos, this_sphere, these_outlines, ch_type
del sphere
# setup axes
n_projs = len(projs)
if axes is None:
fig, axes, ncols, nrows = _prepare_trellis(
n_projs, ncols="auto", nrows="auto", size=size, sharex=True, sharey=True
)
elif isinstance(axes, plt.Axes):
axes = [axes]
_validate_if_list_of_axes(axes, n_projs)
# handle vmin/vmax
vlims = [None for _ in range(len(datas))]
if vlim == "joint":
for _ch_type in set(ch_typess):
idx = np.where(np.isin(ch_typess, _ch_type))[0]
these_data = np.concatenate(np.array(datas, dtype=object)[idx])
norm = all(these_data >= 0)
_vl = _setup_vmin_vmax(these_data, vmin=None, vmax=None, norm=norm)
for _idx in idx:
vlims[_idx] = _vl
# make sure we got a vlim for all projs
assert all([vl is not None for vl in vlims])
else:
vlims = [vlim] * len(datas)
# plot
for proj, ax, _data, _pos, _vlim, _sphere, _outlines, _ch_type in zip(
projs, axes, datas, poss, vlims, spheres, outliness, ch_typess
):
# ch_names
names = [info["ch_names"][k] for k in _picks_to_idx(info, _ch_type)]
names = _prepare_sensor_names(names, show_names)
# title
title = proj["desc"]
title = "\n".join(title[ii : ii + 22] for ii in range(0, len(title), 22))
ax.set_title(title, fontsize=10)
# plot
im, _ = plot_topomap(
_data,
_pos[:, :2],
vlim=_vlim,
cmap=cmap,
sensors=sensors,
names=names,
res=res,
axes=ax,
outlines=_outlines,
contours=contours,
cnorm=cnorm,
image_interp=image_interp,
show=False,
extrapolate=extrapolate,
sphere=_sphere,
border=border,
ch_type=_ch_type,
)
if colorbar:
_add_colorbar(
ax,
im,
cmap,
title=units,
format_=cbar_fmt,
kind="projs_topomap",
ch_type=_ch_type,
)
return ax.get_figure()
def _make_head_outlines(sphere, pos, outlines, clip_origin):
"""Check or create outlines for topoplot."""
assert isinstance(sphere, np.ndarray)
x, y, _, radius = sphere
del sphere
if outlines in ("head", None):
ll = np.linspace(0, 2 * np.pi, 101)
head_x = np.cos(ll) * radius + x
head_y = np.sin(ll) * radius + y
dx = np.exp(np.arccos(np.deg2rad(12)) * 1j)
dx, dy = dx.real, dx.imag
nose_x = np.array([-dx, 0, dx]) * radius + x
nose_y = np.array([dy, 1.15, dy]) * radius + y
ear_x = np.array(
[0.497, 0.510, 0.518, 0.5299, 0.5419, 0.54, 0.547, 0.532, 0.510, 0.489]
) * (radius * 2)
ear_y = (
np.array(
[
0.0555,
0.0775,
0.0783,
0.0746,
0.0555,
-0.0055,
-0.0932,
-0.1313,
-0.1384,
-0.1199,
]
)
* (radius * 2)
+ y
)
if outlines is not None:
# Define the outline of the head, ears and nose
outlines_dict = dict(
head=(head_x, head_y),
nose=(nose_x, nose_y),
ear_left=(-ear_x + x, ear_y),
ear_right=(ear_x + x, ear_y),
)
else:
outlines_dict = dict()
# Make the figure encompass slightly more than all points
# We probably want to ensure it always contains our most
# extremely positioned channels, so we do:
mask_scale = max(1.0, np.linalg.norm(pos, axis=1).max() * 1.01 / radius)
outlines_dict["mask_pos"] = (mask_scale * head_x, mask_scale * head_y)
clip_radius = radius * mask_scale
outlines_dict["clip_radius"] = (clip_radius,) * 2
outlines_dict["clip_origin"] = clip_origin
outlines = outlines_dict
elif isinstance(outlines, dict):
if "mask_pos" not in outlines:
raise ValueError("You must specify the coordinates of the image mask.")
else:
raise ValueError("Invalid value for `outlines`.")
return outlines
def _draw_outlines(ax, outlines):
"""Draw the outlines for a topomap."""
from matplotlib import rcParams
outlines_ = {k: v for k, v in outlines.items() if k not in ["patch"]}
for key, (x_coord, y_coord) in outlines_.items():
if "mask" in key or key in ("clip_radius", "clip_origin"):
continue
ax.plot(
x_coord,
y_coord,
color=rcParams["axes.edgecolor"],
linewidth=1,
clip_on=False,
)
return outlines_
def _get_extra_points(pos, extrapolate, origin, radii):
"""Get coordinates of additional interpolation points."""
radii = np.array(radii, float)
assert radii.shape == (2,)
x, y = origin
# auto should be gone by now
_check_option("extrapolate", extrapolate, ("head", "box", "local"))
# the old method of placement - large box
mask_pos = None
if extrapolate == "box":
extremes = np.array([pos.min(axis=0), pos.max(axis=0)])
diffs = extremes[1] - extremes[0]
extremes[0] -= diffs
extremes[1] += diffs
eidx = np.array(
list(itertools.product(*([[0] * (pos.shape[1] - 1) + [1]] * pos.shape[1])))
)
pidx = np.tile(np.arange(pos.shape[1])[np.newaxis], (len(eidx), 1))
outer_pts = extremes[eidx, pidx]
return outer_pts, mask_pos, Delaunay(np.concatenate((pos, outer_pts)))
# check if positions are colinear:
diffs = np.diff(pos, axis=0)
with np.errstate(divide="ignore"):
slopes = diffs[:, 1] / diffs[:, 0]
colinear = (slopes == slopes[0]).all() or np.isinf(slopes).all()
# compute median inter-electrode distance
if colinear or pos.shape[0] < 4:
dim = 1 if diffs[:, 1].sum() > diffs[:, 0].sum() else 0
sorting = np.argsort(pos[:, dim])
pos_sorted = pos[sorting, :]
diffs = np.diff(pos_sorted, axis=0)
distances = np.linalg.norm(diffs, axis=1)
distance = np.median(distances)
else:
tri = Delaunay(pos, incremental=True)
idx1, idx2, idx3 = tri.simplices.T
distances = np.concatenate(
[
np.linalg.norm(pos[i1, :] - pos[i2, :], axis=1)
for i1, i2 in zip([idx1, idx2], [idx2, idx3])
]
)
distance = np.median(distances)
if extrapolate == "local":
if colinear or pos.shape[0] < 4:
# special case for colinear points and when there is too
# little points for Delaunay (needs at least 3)
edge_points = sorting[[0, -1]]
line_len = np.diff(pos[edge_points, :], axis=0)
unit_vec = line_len / np.linalg.norm(line_len) * distance
unit_vec_par = unit_vec[:, ::-1] * [[-1, 1]]
edge_pos = pos[edge_points, :] + np.concatenate(
[-unit_vec, unit_vec], axis=0
)
new_pos = np.concatenate(
[pos + unit_vec_par, pos - unit_vec_par, edge_pos], axis=0
)
if pos.shape[0] == 3:
# there may be some new_pos points that are too close
# to the original points
new_pos_diff = pos[..., np.newaxis] - new_pos.T[np.newaxis, :]
new_pos_diff = np.linalg.norm(new_pos_diff, axis=1)
good_extra = (new_pos_diff > 0.5 * distance).all(axis=0)
new_pos = new_pos[good_extra]
tri = Delaunay(np.concatenate([pos, new_pos], axis=0))
return new_pos, new_pos, tri
# get the convex hull of data points from triangulation
hull_pos = pos[tri.convex_hull]
# extend the convex hull limits outwards a bit
channels_center = pos.mean(axis=0)
radial_dir = hull_pos - channels_center
unit_radial_dir = radial_dir / np.linalg.norm(
radial_dir, axis=-1, keepdims=True
)
hull_extended = hull_pos + unit_radial_dir * distance
mask_pos = hull_pos + unit_radial_dir * distance * 0.5
hull_diff = np.diff(hull_pos, axis=1)[:, 0]
hull_distances = np.linalg.norm(hull_diff, axis=-1)
del channels_center
# Construct a mask
mask_pos = np.unique(mask_pos.reshape(-1, 2), axis=0)
mask_center = np.mean(mask_pos, axis=0)
mask_pos -= mask_center
mask_pos = mask_pos[np.argsort(np.arctan2(mask_pos[:, 1], mask_pos[:, 0]))]
mask_pos += mask_center
# add points along hull edges so that the distance between points
# is around that of average distance between channels
add_points = list()
eps = np.finfo("float").eps
n_times_dist = np.round(0.25 * hull_distances / distance).astype("int")
for n in range(2, n_times_dist.max() + 1):
mask = n_times_dist == n
mult = np.arange(1 / n, 1 - eps, 1 / n)[:, np.newaxis, np.newaxis]
steps = hull_diff[mask][np.newaxis, ...] * mult
add_points.append(
(hull_extended[mask, 0][np.newaxis, ...] + steps).reshape((-1, 2))
)
# remove duplicates from hull_extended
hull_extended = np.unique(hull_extended.reshape((-1, 2)), axis=0)
new_pos = np.concatenate([hull_extended] + add_points)
else:
assert extrapolate == "head"
# return points on the head circle
angle = np.arcsin(min(distance / np.mean(radii), 1))
n_pnts = max(12, int(np.round(2 * np.pi / angle)))
points_l = np.linspace(0, 2 * np.pi, n_pnts, endpoint=False)
use_radii = radii * 1.1 + distance
points_x = np.cos(points_l) * use_radii[0] + x
points_y = np.sin(points_l) * use_radii[1] + y
new_pos = np.stack([points_x, points_y], axis=1)
if colinear or pos.shape[0] == 3:
tri = Delaunay(np.concatenate([pos, new_pos], axis=0))
return new_pos, mask_pos, tri
tri.add_points(new_pos)
return new_pos, mask_pos, tri
class _GridData:
"""Unstructured (x,y) data interpolator.
This class allows optimized interpolation by computing parameters
for a fixed set of true points, and allowing the values at those points
to be set independently.
"""
def __init__(self, pos, image_interp, extrapolate, origin, radii, border):
# in principle this works in N dimensions, not just 2
assert pos.ndim == 2 and pos.shape[1] == 2, pos.shape
_validate_type(border, ("numeric", str), "border")
# check that border, if string, is correct
if isinstance(border, str):
_check_option("border", border, ("mean",), extra="when a string")
# Adding points outside the extremes helps the interpolators
outer_pts, mask_pts, tri = _get_extra_points(pos, extrapolate, origin, radii)
self.n_extra = outer_pts.shape[0]
self.mask_pts = mask_pts
self.border = border
self.tri = tri
self.interp = {
"cubic": CloughTocher2DInterpolator,
"nearest": NearestNDInterpolator, # used only for anim
"linear": LinearNDInterpolator,
}[image_interp]
def set_values(self, v):
"""Set the values at interpolation points."""
# Rbf with thin-plate is what we used to use, but it's slower and
# looks about the same:
#
# zi = Rbf(x, y, v, function='multiquadric', smooth=0)(xi, yi)
#
# Eventually we could also do set_values with this class if we want,
# see scipy/interpolate/rbf.py, especially the self.nodes one-liner.
if isinstance(self.border, str):
# we've already checked that border = 'mean'
n_points = v.shape[0]
v_extra = np.zeros(self.n_extra)
indices, indptr = self.tri.vertex_neighbor_vertices
rng = range(n_points, n_points + self.n_extra)
used = np.zeros(len(rng), bool)
for idx, extra_idx in enumerate(rng):
ngb = indptr[indices[extra_idx] : indices[extra_idx + 1]]
ngb = ngb[ngb < n_points]
if len(ngb) > 0:
used[idx] = True
v_extra[idx] = v[ngb].mean()
if not used.all() and used.any():
# Eventually we might want to use the value of the nearest
# point or something, but this case should hopefully be
# rare so for now just use the average value of all extras
v_extra[~used] = np.mean(v_extra[used])
else:
v_extra = np.full(self.n_extra, self.border, dtype=float)
v = np.concatenate((v, v_extra))
self.interpolator = self.interp(self.tri, v)
return self
def set_locations(self, Xi, Yi):
"""Set locations for easier (delayed) calling."""
self.Xi = Xi
self.Yi = Yi
return self
def __call__(self, *args):
"""Evaluate the interpolator."""
if len(args) == 0:
args = [self.Xi, self.Yi]
return self.interpolator(*args)
def _topomap_plot_sensors(pos_x, pos_y, sensors, ax):
"""Plot sensors."""
if sensors is True:
ax.scatter(
pos_x,
pos_y,
s=0.25,
marker="o",
edgecolor=["k"] * len(pos_x),
facecolor="none",
)
else:
ax.plot(pos_x, pos_y, sensors)
def _get_pos_outlines(info, picks, sphere, to_sphere=True):
from ..channels.layout import _find_topomap_coords
picks = _picks_to_idx(info, picks, "all", exclude=(), allow_empty=False)
ch_type = _get_plot_ch_type(pick_info(_simplify_info(info), picks), None)
orig_sphere = sphere
sphere, clip_origin = _adjust_meg_sphere(sphere, info, ch_type)
logger.debug(
f"Generating pos outlines with sphere {sphere} from {orig_sphere} for {ch_type}"
)
pos = _find_topomap_coords(
info, picks, ignore_overlap=True, to_sphere=to_sphere, sphere=sphere
)
outlines = _make_head_outlines(sphere, pos, "head", clip_origin)
return pos, outlines
@fill_doc
def plot_topomap(
data,
pos,
*,
ch_type="eeg",
sensors=True,
names=None,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
axes=None,
show=True,
onselect=None,
):
"""Plot a topographic map as image.
Parameters
----------
data : array, shape (n_chan,)
The data values to plot.
%(pos_topomap)s
If an :class:`~mne.Info` object it must contain only one channel type
and exactly ``len(data)`` channels; the x/y coordinates will
be inferred from the montage in the :class:`~mne.Info` object.
%(ch_type_topomap)s
.. versionadded:: 0.21
%(sensors_topomap)s
%(names_topomap)s
%(mask_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.18
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap)s
.. versionadded:: 1.2
%(cnorm)s
.. versionadded:: 0.24
%(axes_plot_topomap)s
.. versionchanged:: 1.2
If ``axes=None``, a new :class:`~matplotlib.figure.Figure` is
created instead of plotting into the current axes.
%(show)s
onselect : callable | None
A function to be called when the user selects a set of channels by
click-dragging (uses a matplotlib
:class:`~matplotlib.widgets.RectangleSelector`). If ``None``
interactive channel selection is disabled. Defaults to ``None``.
Returns
-------
im : matplotlib.image.AxesImage
The interpolated data.
cn : matplotlib.contour.ContourSet
The fieldlines.
"""
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
if axes is None:
_, axes = plt.subplots(figsize=(size, size), layout="constrained")
sphere = _check_sphere(sphere, pos if isinstance(pos, Info) else None)
_validate_type(cnorm, (Normalize, None), "cnorm")
if cnorm is not None and (vlim[0] is not None or vlim[1] is not None):
warn(
f"Provided cnorm implicitly defines vmin={cnorm.vmin} and "
f"vmax={cnorm.vmax}; ignoring additional vlim/vmin/vmax params."
)
return _plot_topomap(
data,
pos,
vmin=vlim[0],
vmax=vlim[1],
cmap=cmap,
sensors=sensors,
res=res,
axes=axes,
names=names,
mask=mask,
mask_params=mask_params,
outlines=outlines,
contours=contours,
image_interp=image_interp,
show=show,
onselect=onselect,
extrapolate=extrapolate,
sphere=sphere,
border=border,
ch_type=ch_type,
cnorm=cnorm,
)[:2]
def _setup_interp(pos, res, image_interp, extrapolate, outlines, border):
if image_interp not in ("cubic", "linear", "nearest"):
raise RuntimeError(
"`image_interp` must be `cubic`, `linear` or `nearest`, got "
f"{image_interp}. Previously, `image_interp` controlled "
"the matplotlib image interpolation after an original cubic "
"interpolation but this was changed to control the first "
"interpolation instead for simplicity. To change the "
"matplotlib image interpolation, use "
"`im.set_interpolation(...)"
)
logger.debug(
f"Interpolation mode {image_interp}, "
f"extrapolation mode {extrapolate} to {border}"
)
xlim = (
np.inf,
-np.inf,
)
ylim = (
np.inf,
-np.inf,
)
mask_ = np.c_[outlines["mask_pos"]]
clip_radius = outlines["clip_radius"]
clip_origin = outlines.get("clip_origin", (0.0, 0.0))
xmin, xmax = (
np.min(np.r_[xlim[0], mask_[:, 0], clip_origin[0] - clip_radius[0]]),
np.max(np.r_[xlim[1], mask_[:, 0], clip_origin[0] + clip_radius[0]]),
)
ymin, ymax = (
np.min(np.r_[ylim[0], mask_[:, 1], clip_origin[1] - clip_radius[1]]),
np.max(np.r_[ylim[1], mask_[:, 1], clip_origin[1] + clip_radius[1]]),
)
xi = np.linspace(xmin, xmax, res)
yi = np.linspace(ymin, ymax, res)
Xi, Yi = np.meshgrid(xi, yi)
interp = _GridData(pos, image_interp, extrapolate, clip_origin, clip_radius, border)
extent = (xmin, xmax, ymin, ymax)
return extent, Xi, Yi, interp
_VORONOI_CIRCLE_RES = 100
def _voronoi_topomap(data, pos, outlines, ax, cmap, norm, extent, res):
"""Make a Voronoi diagram on a topomap."""
# we need an image axis object so first empty image to plot over
im = ax.imshow(
np.zeros((res, res)) * np.nan,
cmap=cmap,
origin="lower",
aspect="equal",
extent=extent,
norm=norm,
)
rx, ry = outlines["clip_radius"]
cx, cy = outlines.get("clip_origin", (0.0, 0.0))
# add points on the circle to make boundaries, expand out to
# ensure regions extend to the edge of the topomap
vor = Voronoi(
np.concatenate(
[
pos,
[
(
rx * 1.5 * np.cos(2 * np.pi / _VORONOI_CIRCLE_RES * t),
ry * 1.5 * np.sin(2 * np.pi / _VORONOI_CIRCLE_RES * t),
)
for t in range(_VORONOI_CIRCLE_RES)
],
]
)
)
for point_idx, region_idx in enumerate(vor.point_region[:-_VORONOI_CIRCLE_RES]):
if -1 in vor.regions[region_idx]:
continue
polygon = list()
for i in vor.regions[region_idx]:
x, y = vor.vertices[i]
if (x - cx) ** 2 / rx**2 + (y - cy) ** 2 / ry**2 < 1:
polygon.append((x, y))
else:
x *= rx / np.linalg.norm(vor.vertices[i])
y *= ry / np.linalg.norm(vor.vertices[i])
polygon.append((x, y))
ax.fill(*zip(*polygon), color=cmap(norm(data[point_idx])))
return im
def _get_patch(outlines, extrapolate, interp, ax):
from matplotlib import patches
clip_radius = outlines["clip_radius"]
clip_origin = outlines.get("clip_origin", (0.0, 0.0))
_use_default_outlines = any(k.startswith("head") for k in outlines)
patch_ = None
if "patch" in outlines:
patch_ = outlines["patch"]
patch_ = patch_() if callable(patch_) else patch_
patch_.set_clip_on(False)
ax.add_patch(patch_)
ax.set_transform(ax.transAxes)
ax.set_clip_path(patch_)
if _use_default_outlines:
if extrapolate == "local":
patch_ = patches.Polygon(
interp.mask_pts, clip_on=True, transform=ax.transData
)
else:
patch_ = patches.Ellipse(
clip_origin,
2 * clip_radius[0],
2 * clip_radius[1],
clip_on=True,
transform=ax.transData,
)
return patch_
def _plot_topomap(
data,
pos,
axes,
*,
ch_type="eeg",
sensors=True,
names=None,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
cmap=None,
vmin=None,
vmax=None,
cnorm=None,
show=True,
onselect=None,
):
from matplotlib.colors import Normalize
from matplotlib.widgets import RectangleSelector
from ..channels.layout import (
_find_topomap_coords,
_merge_ch_data,
_pair_grad_sensors,
)
data = np.asarray(data)
logger.debug(f"Plotting topomap for {ch_type} data shape {data.shape}")
if isinstance(pos, Info): # infer pos from Info object
picks = _pick_data_channels(pos, exclude=()) # pick only data channels
pos = pick_info(pos, picks)
# check if there is only 1 channel type, and n_chans matches the data
ch_type = pos.get_channel_types(picks=None, unique=True)
info_help = "Pick Info with e.g. mne.pick_info and mne.channel_indices_by_type."
if len(ch_type) > 1:
raise ValueError("Multiple channel types in Info structure. " + info_help)
elif len(pos["chs"]) != data.shape[0]:
raise ValueError(
f"Number of channels in the Info object ({len(pos['chs'])}) and the "
f"data array ({data.shape[0]}) do not match." + info_help
)
else:
ch_type = ch_type.pop()
if any(type_ in ch_type for type_ in ("planar", "grad")):
# deal with grad pairs
picks = _pair_grad_sensors(pos, topomap_coords=False)
pos = _find_topomap_coords(pos, picks=picks[::2], sphere=sphere)
data, _ = _merge_ch_data(data[picks], ch_type, [])
data = data.reshape(-1)
else:
picks = list(range(data.shape[0]))
pos = _find_topomap_coords(pos, picks=picks, sphere=sphere)
extrapolate = _check_extrapolate(extrapolate, ch_type)
if data.ndim > 1:
raise ValueError(
f"Data needs to be array of shape (n_sensors,); got shape {data.shape}."
)
# Give a helpful error message for common mistakes regarding the position
# matrix.
pos_help = (
"Electrode positions should be specified as a 2D array with "
"shape (n_channels, 2). Each row in this matrix contains the "
"(x, y) position of an electrode."
)
if pos.ndim != 2:
error = (
f"{pos.ndim}D array supplied as electrode positions, where a 2D array was "
"expected"
)
raise ValueError(error + " " + pos_help)
elif pos.shape[1] == 3:
error = (
"The supplied electrode positions matrix contains 3 columns. "
"Are you trying to specify XYZ coordinates? Perhaps the "
"mne.channels.create_eeg_layout function is useful for you."
)
raise ValueError(error + " " + pos_help)
# No error is raised in case of pos.shape[1] == 4. In this case, it is
# assumed the position matrix contains both (x, y) and (width, height)
# values, such as Layout.pos.
elif pos.shape[1] == 1 or pos.shape[1] > 4:
raise ValueError(pos_help)
pos = pos[:, :2]
if len(data) != len(pos):
raise ValueError(
"Data and pos need to be of same length. Got data of "
f"length {len(data)}, pos of length {len(pos)}"
)
norm = min(data) >= 0
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)
if cmap is None:
cmap = "Reds" if norm else "RdBu_r"
cmap = _get_cmap(cmap)
outlines = _make_head_outlines(sphere, pos, outlines, (0.0, 0.0))
assert isinstance(outlines, dict)
_prepare_topomap(pos, axes)
mask_params = _handle_default("mask_params", mask_params)
# find mask limits and setup interpolation
extent, Xi, Yi, interp = _setup_interp(
pos, res, image_interp, extrapolate, outlines, border
)
interp.set_values(data)
Zi = interp.set_locations(Xi, Yi)()
# plot outline
patch_ = _get_patch(outlines, extrapolate, interp, axes)
# get colormap normalization
if cnorm is None:
cnorm = Normalize(vmin=vmin, vmax=vmax)
# plot interpolated map
if image_interp == "nearest": # plot over with Voronoi, more accurate
im = _voronoi_topomap(
data,
pos=pos,
outlines=outlines,
ax=axes,
cmap=cmap,
norm=cnorm,
extent=extent,
res=res,
)
else:
im = axes.imshow(
Zi,
cmap=cmap,
origin="lower",
aspect="equal",
extent=extent,
interpolation="bilinear",
norm=cnorm,
)
# gh-1432 had a workaround for no contours here, but we'll remove it
# because mpl has probably fixed it
linewidth = mask_params["markeredgewidth"]
cont = True
if isinstance(contours, np.ndarray | list):
pass
elif contours == 0 or ((Zi == Zi[0, 0]) | np.isnan(Zi)).all():
cont = None # can't make contours for constant-valued functions
if cont:
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
cont = axes.contour(
Xi, Yi, Zi, contours, colors="k", linewidths=linewidth / 2.0
)
if patch_ is not None:
im.set_clip_path(patch_)
if cont is not None:
for col in _cont_collections(cont):
col.set_clip_path(patch_)
pos_x, pos_y = pos.T
mask = mask.astype(bool, copy=False) if mask is not None else None
if sensors is not False and mask is None:
_topomap_plot_sensors(pos_x, pos_y, sensors=sensors, ax=axes)
elif sensors and mask is not None:
idx = np.where(mask)[0]
axes.plot(pos_x[idx], pos_y[idx], **mask_params)
idx = np.where(~mask)[0]
_topomap_plot_sensors(pos_x[idx], pos_y[idx], sensors=sensors, ax=axes)
elif not sensors and mask is not None:
idx = np.where(mask)[0]
axes.plot(pos_x[idx], pos_y[idx], **mask_params)
if isinstance(outlines, dict):
_draw_outlines(axes, outlines)
if names is not None:
show_idx = np.arange(len(names)) if mask is None else np.where(mask)[0]
for ii, (_pos, _name) in enumerate(zip(pos, names)):
if ii not in show_idx:
continue
axes.text(
_pos[0],
_pos[1],
_name,
horizontalalignment="center",
verticalalignment="center",
size="x-small",
)
if onselect is not None:
lim = axes.dataLim
x0, y0, width, height = lim.x0, lim.y0, lim.width, lim.height
axes.RS = RectangleSelector(axes, onselect=onselect)
axes.set(xlim=[x0, x0 + width], ylim=[y0, y0 + height])
plt_show(show)
return im, cont, interp
def _plot_ica_topomap(
ica,
idx=0,
ch_type=None,
res=64,
vmin=None,
vmax=None,
cmap="RdBu_r",
colorbar=False,
title=None,
show=True,
outlines="head",
contours=6,
image_interp=_INTERPOLATION_DEFAULT,
axes=None,
sensors=True,
allow_ref_meg=False,
extrapolate=_EXTRAPOLATE_DEFAULT,
sphere=None,
border=_BORDER_DEFAULT,
):
"""Plot single ica map to axes."""
from matplotlib.axes import Axes
from ..channels.layout import _merge_ch_data
if ica.info is None:
raise RuntimeError(
"The ICA's measurement info is missing. Please "
"fit the ICA or add the corresponding info object."
)
sphere = _check_sphere(sphere, ica.info)
if not isinstance(axes, Axes):
raise ValueError(
f"axis has to be an instance of matplotlib Axes, got {type(axes)} instead."
)
ch_type = _get_plot_ch_type(ica, ch_type, allow_ref_meg=ica.allow_ref_meg)
if ch_type == "ref_meg":
logger.info("Cannot produce topographies for MEG reference channels.")
return
data = ica.get_components()[:, idx]
(
data_picks,
pos,
merge_channels,
names,
_,
sphere,
clip_origin,
) = _prepare_topomap_plot(ica, ch_type, sphere=sphere)
data = data[data_picks]
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
if merge_channels:
data, names = _merge_ch_data(data, ch_type, names)
topo_title = ica._ica_names[idx]
if len(set(ica.get_channel_types())) > 1:
topo_title += f" ({ch_type})"
axes.set_title(topo_title, fontsize=12)
vlim = _setup_vmin_vmax(data, vmin, vmax)
im = plot_topomap(
data.ravel(),
pos,
vlim=vlim,
res=res,
axes=axes,
cmap=cmap,
outlines=outlines,
contours=contours,
sensors=sensors,
image_interp=image_interp,
show=show,
extrapolate=extrapolate,
sphere=sphere,
border=border,
ch_type=ch_type,
)[0]
if colorbar:
cbar, cax = _add_colorbar(
axes,
im,
cmap,
title="AU",
format_="%3.2f",
kind="ica_topomap",
ch_type=ch_type,
)
cbar.ax.tick_params(labelsize=12)
cbar.set_ticks(vlim)
_hide_frame(axes)
@verbose
def plot_ica_components(
ica,
picks=None,
ch_type=None,
*,
inst=None,
plot_std=True,
reject="auto",
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap="RdBu_r",
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.2f",
axes=None,
title=None,
nrows="auto",
ncols="auto",
show=True,
image_args=None,
psd_args=None,
verbose=None,
):
"""Project mixing matrix on interpolated sensor topography.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
%(picks_ica)s
%(ch_type_topomap)s
inst : Raw | Epochs | None
To be able to see component properties after clicking on component
topomap you need to pass relevant data - instances of Raw or Epochs
(for example the data that ICA was trained on). This takes effect
only when running matplotlib in interactive mode.
plot_std : bool | float
Whether to plot standard deviation in ERP/ERF and spectrum plots.
Defaults to True, which plots one standard deviation above/below.
If set to float allows to control how many standard deviations are
plotted. For example 2.5 will plot 2.5 standard deviation above/below.
reject : ``'auto'`` | dict | None
Allows to specify rejection parameters used to drop epochs
(or segments if continuous signal is passed as inst).
If None, no rejection is applied. The default is 'auto',
which applies the rejection parameters used when fitting
the ICA object.
%(sensors_topomap)s
%(show_names_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 1.3
%(border_topomap)s
.. versionadded:: 1.3
%(res_topomap)s
%(size_topomap)s
.. versionadded:: 1.3
%(cmap_topomap)s
%(vlim_plot_topomap)s
.. versionadded:: 1.3
%(cnorm)s
.. versionadded:: 1.3
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
axes : Axes | array of Axes | None
The subplot(s) to plot to. Either a single Axes or an iterable of Axes
if more than one subplot is needed. The number of subplots must match
the number of selected components. If None, new figures will be created
with the number of subplots per figure controlled by ``nrows`` and
``ncols``.
title : str | None
The title of the generated figure. If ``None`` (default) and
``axes=None``, a default title of "ICA Components" will be used.
%(nrows_ncols_ica_components)s
.. versionadded:: 1.3
%(show)s
image_args : dict | None
Dictionary of arguments to pass to :func:`~mne.viz.plot_epochs_image`
in interactive mode. Ignored if ``inst`` is not supplied. If ``None``,
nothing is passed. Defaults to ``None``.
psd_args : dict | None
Dictionary of arguments to pass to :meth:`~mne.Epochs.compute_psd` in
interactive mode. Ignored if ``inst`` is not supplied. If ``None``,
nothing is passed. Defaults to ``None``.
%(verbose)s
Returns
-------
fig : instance of matplotlib.figure.Figure | list of matplotlib.figure.Figure
The figure object(s).
Notes
-----
When run in interactive mode, ``plot_ica_components`` allows to reject
components by clicking on their title label. The state of each component
is indicated by its label color (gray: rejected; black: retained). It is
also possible to open component properties by clicking on the component
topomap (this option is only available when the ``inst`` argument is
supplied).
""" # noqa E501
from matplotlib.pyplot import Axes
from ..channels.layout import _merge_ch_data
from ..epochs import BaseEpochs
from ..io import BaseRaw
if ica.info is None:
raise RuntimeError(
"The ICA's measurement info is missing. Please "
"fit the ICA or add the corresponding info object."
)
# for backward compat, nrow='auto' ncol='auto' should yield 4 rows 5 cols
# and create multiple figures if more than 20 components requested
if nrows == "auto" and ncols == "auto":
ncols = 5
max_subplots = 20
elif nrows == "auto" or ncols == "auto":
# user provided incomplete row/col spec; put all in one figure
max_subplots = ica.n_components_
else:
max_subplots = nrows * ncols
# handle ch_type=None
ch_type = _get_plot_ch_type(ica, ch_type)
figs = []
if picks is None:
cut_points = range(max_subplots, ica.n_components_, max_subplots)
pick_groups = np.split(range(ica.n_components_), cut_points)
else:
pick_groups = [_picks_to_idx(ica.n_components_, picks, picks_on="components")]
axes = axes.flatten() if isinstance(axes, np.ndarray) else axes
for k, picks in enumerate(pick_groups):
try: # either an iterable, 1D numpy array or others
_axes = axes[k * max_subplots : (k + 1) * max_subplots]
except TypeError: # None or Axes
_axes = axes
(
data_picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(ica, ch_type, sphere=sphere)
cmap = _setup_cmap(cmap, n_axes=len(picks))
names = _prepare_sensor_names(names, show_names)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
data = np.dot(
ica.mixing_matrix_[:, picks].T, ica.pca_components_[: ica.n_components_]
)
data = np.atleast_2d(data)
data = data[:, data_picks]
if title is None:
title = "ICA components"
user_passed_axes = _axes is not None
if not user_passed_axes:
fig, _axes, _, _ = _prepare_trellis(len(data), ncols=ncols, nrows=nrows)
fig.suptitle(title)
else:
_axes = [_axes] if isinstance(_axes, Axes) else _axes
fig = _axes[0].get_figure()
subplot_titles = list()
for ii, data_, ax in zip(picks, data, _axes):
kwargs = dict(color="gray") if ii in ica.exclude else dict()
comp_title = ica._ica_names[ii]
if len(set(ica.get_channel_types())) > 1:
comp_title += f" ({ch_type})"
subplot_titles.append(ax.set_title(comp_title, fontsize=12, **kwargs))
if merge_channels:
data_, names_ = _merge_ch_data(data_, ch_type, copy.copy(names))
# ↓↓↓ NOTE: we intentionally use the default norm=False here, so that
# ↓↓↓ we get vlims that are symmetric-about-zero, even if the data for
# ↓↓↓ a given component happens to be one-sided.
_vlim = _setup_vmin_vmax(data_, *vlim)
im = plot_topomap(
data_.flatten(),
pos,
ch_type=ch_type,
sensors=sensors,
names=names,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap[0],
vlim=_vlim,
cnorm=cnorm,
axes=ax,
show=False,
)[0]
im.axes.set_label(ica._ica_names[ii])
if colorbar:
cbar, cax = _add_colorbar(
ax,
im,
cmap,
title="AU",
format_=cbar_fmt,
kind="ica_comp_topomap",
ch_type=ch_type,
)
cbar.ax.tick_params(labelsize=12)
cbar.set_ticks(_vlim)
_hide_frame(ax)
del pos
fig.canvas.draw()
# add title selection interactivity
def onclick_title(event, ica=ica, titles=subplot_titles, fig=fig):
# check if any title was pressed
title_pressed = None
for title in titles:
if title.contains(event)[0]:
title_pressed = title
break
# title was pressed -> identify the IC
if title_pressed is not None:
label = title_pressed.get_text()
ic = int(label.split(" ")[0][-3:])
# add or remove IC from exclude depending on current state
if ic in ica.exclude:
ica.exclude.remove(ic)
title_pressed.set_color("k")
else:
ica.exclude.append(ic)
title_pressed.set_color("gray")
fig.canvas.draw()
fig.canvas.mpl_connect("button_press_event", onclick_title)
# add plot_properties interactivity only if inst was passed
if isinstance(inst, BaseRaw | BaseEpochs):
topomap_args = dict(
sensors=sensors,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
cmap=cmap[0],
vmin=vlim[0],
vmax=vlim[1],
)
def onclick_topo(event, ica=ica, inst=inst):
# check which component to plot
if event.inaxes is not None:
label = event.inaxes.get_label()
if label.startswith("ICA"):
ic = int(label.split(" ")[0][-3:])
ica.plot_properties(
inst,
picks=ic,
show=True,
plot_std=plot_std,
topomap_args=topomap_args,
image_args=image_args,
psd_args=psd_args,
reject=reject,
)
fig.canvas.mpl_connect("button_press_event", onclick_topo)
figs.append(fig)
plt_show(show)
return figs[0] if len(figs) == 1 else figs
@fill_doc
def plot_tfr_topomap(
tfr,
tmin=None,
tmax=None,
fmin=0.0,
fmax=np.inf,
*,
ch_type=None,
baseline=None,
mode="mean",
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=2,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="%1.1e",
units=None,
axes=None,
show=True,
):
"""Plot topographic maps of specific time-frequency intervals of TFR data.
Parameters
----------
tfr : AverageTFR
The AverageTFR object.
%(tmin_tmax_psd)s
%(fmin_fmax_psd)s
%(ch_type_topomap_psd)s
baseline : tuple or list of length 2
The time interval to apply rescaling / baseline correction. If None do
not apply it. If baseline is (a, b) the interval is between "a (s)" and
"b (s)". If a is None the beginning of the data is used and if b is
None then b is set to the end of the interval. If baseline is equal to
(None, None) the whole time interval is used.
mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio' | None
Perform baseline correction by
- subtracting the mean baseline power ('mean')
- dividing by the mean baseline power ('ratio')
- dividing by the mean baseline power and taking the log ('logratio')
- subtracting the mean baseline power followed by dividing by the
mean baseline power ('percent')
- subtracting the mean baseline power and dividing by the standard
deviation of the baseline power ('zscore')
- dividing by the mean baseline power, taking the log, and dividing
by the standard deviation of the baseline power ('zlogratio')
If None no baseline correction is applied.
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap)s
.. versionadded:: 1.2
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
%(units_topomap)s
%(axes_plot_topomap)s
%(show)s
Returns
-------
fig : matplotlib.figure.Figure
The figure containing the topography.
""" # noqa: E501
import matplotlib.pyplot as plt
from ..channels.layout import _merge_ch_data
ch_type = _get_plot_ch_type(tfr, ch_type)
picks, pos, merge_channels, names, _, sphere, clip_origin = _prepare_topomap_plot(
tfr, ch_type, sphere=sphere
)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
data = tfr.data[picks]
# merging grads before rescaling makes ERDs visible
if merge_channels:
data, names = _merge_ch_data(data, ch_type, names, method="mean")
data = rescale(data, tfr.times, baseline, mode, copy=True)
# handle unaggregated multitaper (complex or phase multitaper data)
if tfr.weights is not None: # assumes a taper dimension
logger.info("Aggregating multitaper estimates before plotting...")
weights = tfr.weights[np.newaxis, :, :, np.newaxis] # add channel & time dims
data = weights * data
if np.iscomplexobj(data): # complex coefficients → power
data *= data.conj()
data = data.real.sum(axis=1)
data *= 2 / (weights * weights.conj()).real.sum(axis=1)
else: # tapered phase data → weighted phase data
data = data.mean(axis=1)
# handle remaining complex amplitude → real power
if np.iscomplexobj(data):
data = np.sqrt((data * data.conj()).real)
# crop time
itmin, itmax = None, None
idx = np.where(_time_mask(tfr.times, tmin, tmax))[0]
if tmin is not None:
itmin = idx[0]
if tmax is not None:
itmax = idx[-1] + 1
# crop freqs
ifmin, ifmax = None, None
idx = np.where(_time_mask(tfr.freqs, fmin, fmax))[0]
ifmin = idx[0]
ifmax = idx[-1] + 1
data = data[:, ifmin:ifmax, itmin:itmax]
data = data.mean(axis=(1, 2))[:, np.newaxis]
norm = False if np.min(data) < 0 else True
vlim = _setup_vmin_vmax(data, *vlim, norm)
cmap = _setup_cmap(cmap, norm=norm)
axes = (
plt.subplots(figsize=(size, size), layout="constrained")[1]
if axes is None
else axes
)
fig = axes.figure
_hide_frame(axes)
locator = None
if not isinstance(contours, list | np.ndarray):
locator, contours = _set_contour_locator(*vlim, contours)
fig_wrapper = list()
selection_callback = partial(
_onselect,
tfr=tfr,
pos=pos,
ch_type=ch_type,
itmin=itmin,
itmax=itmax,
ifmin=ifmin,
ifmax=ifmax,
cmap=cmap[0],
fig=fig_wrapper,
)
if not isinstance(contours, list | np.ndarray):
_, contours = _set_contour_locator(*vlim, contours)
names = _prepare_sensor_names(names, show_names)
im, _ = plot_topomap(
data[:, 0],
pos,
ch_type=ch_type,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap[0],
vlim=vlim,
cnorm=cnorm,
axes=axes,
show=False,
onselect=selection_callback,
)
if colorbar:
from matplotlib import ticker
units = _handle_default("units", units)["misc"]
cbar, cax = _add_colorbar(
axes,
im,
cmap,
title=units,
format_=cbar_fmt,
kind="tfr_topomap",
ch_type=ch_type,
)
if locator is None:
locator = ticker.MaxNLocator(nbins=5)
cbar.locator = locator
cbar.update_ticks()
cbar.ax.tick_params(labelsize=12)
plt_show(show)
return fig
@fill_doc
def plot_evoked_topomap(
evoked,
times="auto",
*,
average=None,
ch_type=None,
scalings=None,
proj=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="%3.1f",
units=None,
axes=None,
time_unit="s",
time_format=None,
nrows=1,
ncols="auto",
show=True,
):
"""Plot topographic maps of specific time points of evoked data.
Parameters
----------
evoked : Evoked
The Evoked object.
times : float | array of float | "auto" | "peaks" | "interactive"
The time point(s) to plot. If "auto", the number of ``axes`` determines
the amount of time point(s). If ``axes`` is also None, at most 10
topographies will be shown with a regular time spacing between the
first and last time instant. If "peaks", finds time points
automatically by checking for local maxima in global field power. If
"interactive", the time can be set interactively at run-time by using a
slider.
%(average_plot_evoked_topomap)s
%(ch_type_topomap)s
%(scalings_topomap)s
%(proj_plot)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.18
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
.. versionadded:: 1.2
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
%(units_topomap_evoked)s
%(axes_evoked_plot_topomap)s
time_unit : str
The units for the time axis, can be "ms" or "s" (default).
.. versionadded:: 0.16
time_format : str | None
String format for topomap values. Defaults (None) to "%%01d ms" if
``time_unit='ms'``, "%%0.3f s" if ``time_unit='s'``, and
"%%g" otherwise. Can be an empty string to omit the time label.
%(nrows_ncols_topomap)s Ignored when times == 'interactive'.
.. versionadded:: 0.20
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
Notes
-----
When existing ``axes`` are provided and ``colorbar=True``, note that the
colorbar scale will only accurately reflect topomaps that are generated in
the same call as the colorbar. Note also that the colorbar will not be
resized automatically when ``axes`` are provided; use Matplotlib's
:meth:`axes.set_position() <matplotlib.axes.Axes.set_position>` method or
:ref:`gridspec <matplotlib:arranging_axes>` interface to adjust the colorbar
size yourself.
The defaults for ``contours`` and ``vlim`` are handled as follows:
* When neither ``vlim`` nor a list of ``contours`` is passed, MNE sets
``vlim`` at ± the maximum absolute value of the data and then chooses
contours within those bounds.
* When ``vlim`` but not a list of ``contours`` is passed, MNE chooses
contours to be within the ``vlim``.
* When a list of ``contours`` but not ``vlim`` is passed, MNE chooses
``vlim`` to encompass the ``contours`` and the maximum absolute value of the
data.
* When both a list of ``contours`` and ``vlim`` are passed, MNE uses them
as-is.
When ``time=="interactive"``, the figure will publish and subscribe to the
following UI events:
* :class:`~mne.viz.ui_events.TimeChange` whenever a new time is selected.
"""
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from matplotlib.widgets import Slider
from ..channels.layout import _merge_ch_data
from ..evoked import Evoked
_validate_type(evoked, Evoked, "evoked")
_validate_type(colorbar, bool, "colorbar")
evoked = evoked.copy() # make a copy, since we'll be picking
ch_type = _get_plot_ch_type(evoked, ch_type)
# time units / formatting
time_unit, _ = _check_time_unit(time_unit, evoked.times)
scaling_time = 1.0 if time_unit == "s" else 1e3
_validate_type(time_format, (None, str), "time_format")
if time_format is None:
time_format = "%0.3f s" if time_unit == "s" else "%01d ms"
del time_unit
# mask_params defaults
mask_params = _handle_default("mask_params", mask_params)
mask_params["markersize"] *= size / 2.0
mask_params["markeredgewidth"] *= size / 2.0
# setup various parameters, and prepare outlines
(
picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(evoked, ch_type, sphere=sphere)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
# check interactive
axes_given = axes is not None
interactive = isinstance(times, str) and times == "interactive"
if interactive and axes_given:
raise ValueError("User-provided axes not allowed when times='interactive'.")
# units, scalings
key = "grad" if ch_type.startswith("planar") else ch_type
default_scaling = _handle_default("scalings", None)[key]
scaling = _handle_default("scalings", scalings)[key]
# if non-default scaling, fall back to "AU" if unit wasn't given by user
key = "misc" if scaling != default_scaling else key
unit = _handle_default("units", units)[key]
# ch_names (required for NIRS)
ch_names = names
names = _prepare_sensor_names(names, show_names)
# apply projections before picking. NOTE: the `if proj is True`
# anti-pattern is needed here to exclude proj='interactive'
_check_option("proj", proj, (True, False, "interactive", "reconstruct"))
if proj is True and not evoked.proj:
evoked.apply_proj()
elif proj == "reconstruct":
evoked._reconstruct_proj()
data = evoked.data
# remove compensation matrices (safe: only plotting & already made copy)
with evoked.info._unlock():
evoked.info["comps"] = []
evoked = evoked._pick_drop_channels(picks, verbose=False)
# determine which times to plot
if isinstance(axes, plt.Axes):
axes = [axes]
n_peaks = len(axes) - int(colorbar) if axes_given else None
times = _process_times(evoked, times, n_peaks)
n_times = len(times)
space = 1 / (2.0 * evoked.info["sfreq"])
if max(times) > max(evoked.times) + space or min(times) < min(evoked.times) - space:
raise ValueError(
f"Times should be between {evoked.times[0]:0.3} and {evoked.times[-1]:0.3}."
)
# create axes
want_axes = n_times + int(colorbar)
if interactive:
height_ratios = [5, 1]
nrows = 2
ncols = n_times
width = size * want_axes
height = size + max(0, 0.1 * (4 - size))
fig = figure_nobar(figsize=(width * 1.5, height * 1.5))
gs = GridSpec(nrows, ncols, height_ratios=height_ratios, figure=fig)
axes = []
for ax_idx in range(n_times):
axes.append(plt.subplot(gs[0, ax_idx]))
elif axes is None:
fig, axes, ncols, nrows = _prepare_trellis(
n_times, ncols=ncols, nrows=nrows, size=size
)
else:
nrows, ncols = None, None # Deactivate ncols when axes were passed
fig = axes[0].get_figure()
# check: enough space for colorbar?
if len(axes) != want_axes:
cbar_err = " plus one for the colorbar" if colorbar else ""
raise RuntimeError(
f"You must provide {want_axes} axes (one for "
f"each time{cbar_err}), got {len(axes)}."
)
del want_axes
# find first index that's >= (to rounding error) to each time point
time_idx = [
np.where(
_time_mask(evoked.times, tmin=t, tmax=None, sfreq=evoked.info["sfreq"])
)[0][0]
for t in times
]
# do averaging if requested
avg_err = (
'"average" must be `None`, a positive number of seconds, or '
"an array-like object of the previous"
)
averaged_times = []
if average is None:
average = np.array([None] * n_times)
data = data[np.ix_(picks, time_idx)]
else:
if _is_numeric(average):
average = np.array([average] * n_times)
elif np.array(average).ndim == 0:
# It should be an array-like object
raise TypeError(f"{avg_err}; got type: {type(average)}.")
else:
average = np.array(average)
if len(average) != n_times:
raise ValueError(
f"You requested to plot topographic maps for {n_times} time "
f"points, but provided {len(average)} periods for "
f"averaging. The number of time points and averaging periods "
f"must be equal."
)
data_ = np.zeros((len(picks), len(time_idx)))
for average_idx, (this_average, this_time, this_time_idx) in enumerate(
zip(average, evoked.times[time_idx], time_idx)
):
if (_is_numeric(this_average) and this_average <= 0) or (
not _is_numeric(this_average) and this_average is not None
):
if len(average) == 1:
msg = f"{avg_err}; got {this_average}"
else:
msg = f"{avg_err}; got {this_average} in {average}"
raise ValueError(msg)
if this_average is None:
data_[:, average_idx] = data[picks][:, this_time_idx]
averaged_times.append([this_time])
else:
tmin_ = this_time - this_average / 2
tmax_ = this_time + this_average / 2
time_mask = (tmin_ < evoked.times) & (evoked.times < tmax_)
data_[:, average_idx] = data[picks][:, time_mask].mean(-1)
averaged_times.append(evoked.times[time_mask])
data = data_
# apply scalings and merge channels
data *= scaling
if merge_channels:
data, ch_names = _merge_ch_data(data, ch_type, ch_names)
if ch_type in _fnirs_types:
merge_channels = False
# apply mask if requested
if mask is not None:
mask = mask.astype(bool, copy=False)
if ch_type == "grad":
mask_ = (
mask[np.ix_(picks[::2], time_idx)] | mask[np.ix_(picks[1::2], time_idx)]
)
else: # mag, eeg, planar1, planar2
mask_ = mask[np.ix_(picks, time_idx)]
# set up colormap
_vlim = [
_setup_vmin_vmax(data[:, i], *vlim, norm=merge_channels) for i in range(n_times)
]
_vlim = [np.min(_vlim), np.max(_vlim)]
cmap = _setup_cmap(cmap, n_axes=n_times, norm=_vlim[0] >= 0)
# set up contours
if not isinstance(contours, list | np.ndarray):
_, contours = _set_contour_locator(*_vlim, contours)
else:
if vlim[0] is None and np.any(contours < _vlim[0]):
_vlim[0] = contours[0]
if vlim[1] is None and np.any(contours > _vlim[1]):
_vlim[1] = contours[-1]
# prepare for main loop over times
kwargs = dict(
sensors=sensors,
res=res,
names=names,
cmap=cmap[0],
cnorm=cnorm,
mask_params=mask_params,
outlines=outlines,
contours=contours,
image_interp=image_interp,
show=False,
extrapolate=extrapolate,
sphere=sphere,
border=border,
ch_type=ch_type,
)
images, contours_ = [], []
# loop over times
for average_idx, (time, this_average) in enumerate(zip(times, average)):
tp, cn, interp = _plot_topomap(
data[:, average_idx],
pos,
axes=axes[average_idx],
mask=mask_[:, average_idx] if mask is not None else None,
vmin=_vlim[0],
vmax=_vlim[1],
**kwargs,
)
images.append(tp)
if cn is not None:
contours_.append(cn)
if time_format != "":
if this_average is None:
axes_title = time_format % (time * scaling_time)
else:
tmin_ = averaged_times[average_idx][0]
tmax_ = averaged_times[average_idx][-1]
from_time = time_format % (tmin_ * scaling_time)
from_time = from_time.split(" ")[0] # Remove unit
to_time = time_format % (tmax_ * scaling_time)
axes_title = f"{from_time}{to_time}"
del from_time, to_time, tmin_, tmax_
axes[average_idx].set_title(axes_title)
if interactive:
# Add a slider to the figure and start publishing and subscribing to time_change
# events.
kwargs.update(vlim=_vlim)
axes.append(fig.add_subplot(gs[1]))
slider = Slider(
axes[-1],
"Time",
evoked.times[0],
evoked.times[-1],
valinit=times[0],
valfmt="%1.2fs",
)
slider.vline.remove() # remove initial point indicator
func = _merge_ch_data if merge_channels else lambda x: x
def _slider_changed(val):
publish(fig, TimeChange(time=val))
slider.on_changed(_slider_changed)
ts = np.tile(evoked.times, len(evoked.data)).reshape(evoked.data.shape)
axes[-1].plot(ts, evoked.data, color="k")
axes[-1].slider = slider
subscribe(
fig,
"time_change",
partial(
_on_time_change,
fig=fig,
data=evoked.data,
times=evoked.times,
pos=pos,
scaling=scaling,
func=func,
time_format=time_format,
scaling_time=scaling_time,
slider=slider,
kwargs=kwargs,
),
)
subscribe(
fig,
"colormap_range",
partial(_on_colormap_range, kwargs=kwargs),
)
if colorbar:
if nrows is None or ncols is None:
# axes were given by the user, so don't resize the colorbar
cax = axes[-1]
else: # use the default behavior
cax = None
cbar = fig.colorbar(images[-1], ax=axes, cax=cax, format=cbar_fmt, shrink=0.6)
if unit is not None:
cbar.ax.set_title(unit)
if cn is not None:
cbar.set_ticks(contours)
cbar.ax.tick_params(labelsize=7)
if cmap[1]:
for im in images:
im.axes.CB = DraggableColorbar(
cbar, im, kind="evoked_topomap", ch_type=ch_type
)
if proj == "interactive":
_check_delayed_ssp(evoked)
params = dict(
evoked=evoked,
fig=fig,
projs=evoked.info["projs"],
picks=picks,
images=images,
contours_=contours_,
pos=pos,
time_idx=time_idx,
res=res,
plot_update_proj_callback=_plot_update_evoked_topomap,
merge_channels=merge_channels,
scale=scaling,
axes=axes[: len(axes) - bool(interactive)],
contours=contours,
interp=interp,
extrapolate=extrapolate,
)
_draw_proj_checkbox(None, params)
# This is mostly for testing purposes, but it's also consistent with
# raw.plot, so maybe not a bad thing in principle either
from mne.viz._figure import BrowserParams
fig.mne = BrowserParams(proj_checkboxes=params["proj_checks"])
plt_show(show, block=False)
if axes_given:
fig.canvas.draw()
return fig
def _resize_cbar(cax, n_fig_axes, size=1):
"""Resize colorbar."""
cpos = cax.get_position()
if size <= 1:
cpos.x0 = 1 - (0.7 + 0.1 / size) / n_fig_axes
cpos.x1 = cpos.x0 + 0.1 / n_fig_axes
cpos.y0 = 0.2
cpos.y1 = 0.7
cax.set_position(cpos)
def _on_time_change(
event,
fig,
data,
times,
pos,
scaling,
func,
time_format,
scaling_time,
slider,
kwargs,
):
"""Handle updating topomap to show a new time."""
idx = np.argmin(np.abs(times - event.time))
data = func(data[:, idx]).ravel() * scaling
ax = fig.axes[0]
ax.clear()
im, _ = plot_topomap(data, pos, axes=ax, **kwargs)
if hasattr(ax, "CB"):
ax.CB.mappable = im
_resize_cbar(ax.CB.cbar.ax, 2)
if time_format is not None:
ax.set_title(time_format % (event.time * scaling_time))
# Updating the slider will generate a new time_change event. To prevent an
# infinite loop, only update the slider if the time has actually changed.
if event.time != slider.val:
slider.set_val(event.time)
ax.figure.canvas.draw_idle()
def _on_colormap_range(event, kwargs):
"""Handle updating colormap range."""
logger.debug(f"Updating colormap range to {event.fmin}, {event.fmax}")
kwargs.update(vlim=(event.fmin, event.fmax), cmap=event.cmap)
def _plot_topomap_multi_cbar(
data,
pos,
ax,
*,
vlim,
title,
unit,
cmap,
outlines,
colorbar,
cbar_fmt,
sphere,
ch_type,
sensors,
names,
mask,
mask_params,
contours,
image_interp,
extrapolate,
border,
res,
size,
cnorm,
):
_hide_frame(ax)
_vlim = (
np.min(data) if vlim[0] is None else vlim[0],
np.max(data) if vlim[1] is None else vlim[1],
)
# this definition of "norm" allows non-diverging colormap for cases
# where min & vmax are both negative (e.g., when they are power in dB)
signs = np.sign(_vlim)
norm = len(set(signs)) == 1 or np.any(signs == 0)
_cmap = _setup_cmap(cmap, norm=norm)
if title is not None:
ax.set_title(title, fontsize=10)
im, _ = plot_topomap(
data,
pos,
ch_type=ch_type,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=_cmap[0],
vlim=_vlim,
cnorm=cnorm,
axes=ax,
show=False,
onselect=None,
)
if colorbar:
cbar, cax = _add_colorbar(ax, im, cmap, title=None, format_=cbar_fmt)
cbar.set_ticks(_vlim)
if unit is not None:
cbar.ax.set_ylabel(unit, fontsize=8)
cbar.ax.tick_params(labelsize=8)
@legacy(alt="Epochs.compute_psd().plot_topomap()")
@verbose
def plot_epochs_psd_topomap(
epochs,
bands=None,
tmin=None,
tmax=None,
proj=False,
*,
bandwidth=None,
adaptive=False,
low_bias=True,
normalization="length",
ch_type=None,
normalize=False,
agg_fun=None,
dB=False,
sensors=True,
names=None,
mask=None,
mask_params=None,
contours=0,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
units=None,
axes=None,
show=True,
n_jobs=None,
verbose=None,
):
"""Plot the topomap of the power spectral density across epochs.
Parameters
----------
epochs : instance of Epochs
The epochs object.
%(bands_psd_topo)s
%(tmin_tmax_psd)s
%(proj_psd)s
bandwidth : float
The bandwidth of the multi taper windowing function in Hz. The default
value is a window half-bandwidth of 4 Hz.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90%% spectral concentration within
bandwidth.
%(normalization)s
%(ch_type_topomap_psd)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
.. versionadded:: 0.21
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
%(units_topomap)s
%(axes_spectrum_plot_topomap)s
%(show)s
%(n_jobs)s
%(verbose)s
Returns
-------
fig : instance of Figure
Figure showing one scalp topography per frequency band.
"""
from ..channels import rename_channels
from ..time_frequency import Spectrum
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topomap)
spectrum = epochs.compute_psd(**init_kw)
plot_kw.setdefault("show_names", False)
if names is not None:
rename_channels(
spectrum.info, dict(zip(spectrum.ch_names, names)), verbose=verbose
)
plot_kw["show_names"] = True
return spectrum.plot_topomap(**plot_kw)
@fill_doc
def plot_psds_topomap(
psds,
freqs,
pos,
*,
bands=None,
ch_type="eeg",
normalize=False,
agg_fun=None,
dB=True,
sensors=True,
names=None,
mask=None,
mask_params=None,
contours=0,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
unit=None,
axes=None,
show=True,
):
"""Plot spatial maps of PSDs.
Parameters
----------
psds : array of float, shape (n_channels, n_freqs)
Power spectral densities.
freqs : array of float, shape (n_freqs,)
Frequencies used to compute psds.
%(pos_topomap_psd)s
%(bands_psd_topo)s
%(ch_type_topomap)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
.. versionadded:: 0.21
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
unit : str | None
Measurement unit to be displayed with the colorbar. If ``None``, no
unit is displayed (only "power" or "dB" as appropriate).
%(axes_spectrum_plot_topomap)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with a topomap subplot for each band.
"""
import matplotlib.pyplot as plt
from matplotlib.axes import Axes
# handle some defaults
sphere = _check_sphere(sphere)
if cbar_fmt == "auto":
cbar_fmt = "%0.1f" if dB else "%0.3f"
# make sure `bands` is a dict
if bands is None:
bands = {
"Delta (0-4 Hz)": (0, 4),
"Theta (4-8 Hz)": (4, 8),
"Alpha (8-12 Hz)": (8, 12),
"Beta (12-30 Hz)": (12, 30),
"Gamma (30-45 Hz)": (30, 45),
}
elif not hasattr(bands, "keys"):
# convert legacy list-of-tuple input to a dict
bands = {band[-1]: band[:-1] for band in bands}
logger.info(
"converting legacy list-of-tuples input to a dict for the `bands` parameter"
)
# upconvert single freqs to band upper/lower edges as needed
bin_spacing = np.diff(freqs)[0]
bin_edges = np.array([0, bin_spacing]) - bin_spacing / 2
for band, _edges in bands.items():
if not hasattr(_edges, "__len__"):
_edges = (_edges,)
if len(_edges) == 1:
bands[band] = tuple(bin_edges + freqs[np.argmin(np.abs(freqs - _edges[0]))])
# normalize data (if requested)
if normalize:
psds /= psds.sum(axis=-1, keepdims=True)
assert np.allclose(psds.sum(axis=-1), 1.0)
# aggregate within bands
if agg_fun is None:
agg_fun = np.sum if normalize else np.mean
freq_masks = list()
for band, (fmin, fmax) in bands.items():
_mask = (fmin < freqs) & (freqs < fmax)
# make sure no bands are empty
if _mask.sum() == 0:
raise RuntimeError(f'No frequencies in band "{band}" ({fmin}, {fmax})')
freq_masks.append(_mask)
band_data = [agg_fun(psds[:, _mask], axis=1) for _mask in freq_masks]
if dB and not normalize:
band_data = [10 * np.log10(_d) for _d in band_data]
# handle vmin/vmax
joint_vlim = vlim == "joint"
if joint_vlim:
vlim = (np.array(band_data).min(), np.array(band_data).max())
# unit label
if unit is None:
unit = "dB" if dB and not normalize else "power"
else:
_dB = dB and not normalize
unit = _format_units_psd(unit, dB=_dB)
# set up figure / axes
n_axes = len(bands)
user_passed_axes = axes is not None
if user_passed_axes:
if isinstance(axes, Axes):
axes = [axes]
_validate_if_list_of_axes(axes, n_axes)
fig = axes[0].figure
else:
fig, axes = plt.subplots(
1, n_axes, figsize=(2 * n_axes, 1.5), layout="constrained"
)
if n_axes == 1:
axes = [axes]
# loop over subplots/frequency bands
for ax, _mask, _data, (title, (fmin, fmax)) in zip(
axes, freq_masks, band_data, bands.items()
):
plot_colorbar = False if not colorbar else (not joint_vlim) or ax == axes[-1]
_plot_topomap_multi_cbar(
_data,
pos,
ax,
title=title,
vlim=vlim,
cmap=cmap,
outlines=outlines,
colorbar=plot_colorbar,
unit=unit,
cbar_fmt=cbar_fmt,
sphere=sphere,
ch_type=ch_type,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cnorm=cnorm,
)
if not user_passed_axes:
fig.canvas.draw()
plt_show(show)
return fig
@fill_doc
def plot_layout(layout, picks=None, show_axes=False, show=True):
"""Plot the sensor positions.
Parameters
----------
layout : None | Layout
Layout instance specifying sensor positions.
%(picks_layout)s
show_axes : bool
Show layout axes if True. Defaults to False.
show : bool
Show figure if True. Defaults to True.
Returns
-------
fig : instance of Figure
Figure containing the sensor topography.
Notes
-----
.. versionadded:: 0.12.0
"""
import matplotlib.pyplot as plt
fig = plt.figure(
figsize=(max(plt.rcParams["figure.figsize"]),) * 2, layout="constrained"
)
ax = fig.add_subplot(111)
ax.set(xticks=[], yticks=[], aspect="equal")
outlines = dict(border=([0, 1, 1, 0, 0], [0, 0, 1, 1, 0]))
_draw_outlines(ax, outlines)
layout = layout.copy().pick(picks)
for ii, (p, ch_id) in enumerate(zip(layout.pos, layout.names)):
center_pos = np.array((p[0] + p[2] / 2.0, p[1] + p[3] / 2.0))
ax.annotate(
ch_id,
xy=center_pos,
horizontalalignment="center",
verticalalignment="center",
size="x-small",
)
if show_axes:
x1, x2, y1, y2 = p[0], p[0] + p[2], p[1], p[1] + p[3]
ax.plot([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1], color="k")
ax.axis("off")
plt_show(show)
return fig
def _onselect(
eclick,
erelease,
tfr,
pos,
ch_type,
itmin,
itmax,
ifmin,
ifmax,
cmap,
fig,
layout=None,
):
"""Handle drawing average tfr over channels called from topomap."""
import matplotlib.pyplot as plt
from matplotlib.collections import PathCollection
from ..channels.layout import _pair_grad_sensors
ax = eclick.inaxes
xmin = min(eclick.xdata, erelease.xdata)
xmax = max(eclick.xdata, erelease.xdata)
ymin = min(eclick.ydata, erelease.ydata)
ymax = max(eclick.ydata, erelease.ydata)
indices = (
(pos[:, 0] < xmax)
& (pos[:, 0] > xmin)
& (pos[:, 1] < ymax)
& (pos[:, 1] > ymin)
)
colors = ["r" if ii else "k" for ii in indices]
indices = np.where(indices)[0]
for collection in ax.collections:
if isinstance(collection, PathCollection): # this is our "scatter"
collection.set_color(colors)
ax.figure.canvas.draw()
if len(indices) == 0:
return
data = tfr.data
if ch_type == "mag":
picks = pick_types(tfr.info, meg=ch_type, ref_meg=False)
data = np.mean(data[indices, ifmin:ifmax, itmin:itmax], axis=0)
chs = [tfr.ch_names[picks[x]] for x in indices]
elif ch_type == "grad":
grads = _pair_grad_sensors(tfr.info, layout=layout, topomap_coords=False)
idxs = list()
for idx in indices:
idxs.append(grads[idx * 2])
idxs.append(grads[idx * 2 + 1]) # pair of grads
data = np.mean(data[idxs, ifmin:ifmax, itmin:itmax], axis=0)
chs = [tfr.ch_names[x] for x in idxs]
elif ch_type == "eeg":
picks = pick_types(tfr.info, meg=False, eeg=True, ref_meg=False)
data = np.mean(data[indices, ifmin:ifmax, itmin:itmax], axis=0)
chs = [tfr.ch_names[picks[x]] for x in indices]
logger.info("Averaging TFR over channels " + str(chs))
if len(fig) == 0:
fig.append(figure_nobar())
if not plt.fignum_exists(fig[0].number):
fig[0] = figure_nobar()
ax = fig[0].add_subplot(111)
itmax = len(tfr.times) - 1 if itmax is None else min(itmax, len(tfr.times) - 1)
ifmax = len(tfr.freqs) - 1 if ifmax is None else min(ifmax, len(tfr.freqs) - 1)
if itmin is None:
itmin = 0
if ifmin is None:
ifmin = 0
extent = (
tfr.times[itmin] * 1e3,
tfr.times[itmax] * 1e3,
tfr.freqs[ifmin],
tfr.freqs[ifmax],
)
title = f"Average over {len(chs)} {ch_type} channels."
ax.set_title(title)
ax.set_xlabel("Time (ms)")
ax.set_ylabel("Frequency (Hz)")
img = ax.imshow(data, extent=extent, aspect="auto", origin="lower", cmap=cmap)
if len(fig[0].get_axes()) < 2:
fig[0].get_axes()[1].cbar = fig[0].colorbar(mappable=img)
else:
fig[0].get_axes()[1].cbar.on_mappable_changed(mappable=img)
fig[0].canvas.draw()
plt.figure(fig[0].number)
plt_show(True)
def _prepare_topomap(pos, ax, check_nonzero=True):
"""Prepare the topomap axis and check positions.
Hides axis frame and check that position information is present.
"""
_hide_frame(ax)
if check_nonzero and not pos.any():
raise RuntimeError(
"No position information found, cannot compute geometries for topomap."
)
def _hide_frame(ax):
"""Hide axis frame for topomaps."""
ax.get_yticks()
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.set_frame_on(False)
def _check_extrapolate(extrapolate, ch_type):
_check_option("extrapolate", extrapolate, ("box", "local", "head", "auto"))
if extrapolate == "auto":
extrapolate = "local" if ch_type in _MEG_CH_TYPES_SPLIT else "head"
return extrapolate
@verbose
def _init_anim(
ax,
ax_line,
ax_cbar,
params,
merge_channels,
sphere,
ch_type,
image_interp,
extrapolate,
verbose,
):
"""Initialize animated topomap."""
logger.info("Initializing animation...")
data = params["data"]
items = list()
vmin = params["vmin"] if "vmin" in params else None
vmax = params["vmax"] if "vmax" in params else None
if params["butterfly"]:
all_times = params["all_times"]
for idx in range(len(data)):
ax_line.plot(all_times, data[idx], color="k", lw=1)
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)
ax_line.set(
yticks=np.around(np.linspace(vmin, vmax, 5), -1), xlim=all_times[[0, -1]]
)
params["line"] = ax_line.axvline(all_times[0], color="r")
items.append(params["line"])
if merge_channels:
from mne.channels.layout import _merge_ch_data
data, _ = _merge_ch_data(data, "grad", [])
norm = True if np.min(data) > 0 else False
cmap = "Reds" if norm else "RdBu_r"
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)
outlines = _make_head_outlines(sphere, params["pos"], "head", params["clip_origin"])
_hide_frame(ax)
extent, Xi, Yi, interp = _setup_interp(
pos=params["pos"],
res=64,
image_interp=image_interp,
extrapolate=extrapolate,
outlines=outlines,
border=0,
)
patch_ = _get_patch(outlines, extrapolate, interp, ax)
params["Zis"] = list()
for frame in params["frames"]:
params["Zis"].append(interp.set_values(data[:, frame])(Xi, Yi))
Zi = params["Zis"][0]
zi_min = np.nanmin(params["Zis"])
zi_max = np.nanmax(params["Zis"])
cont_lims = np.linspace(zi_min, zi_max, 7, endpoint=False)[1:]
params.update(
{
"vmin": vmin,
"vmax": vmax,
"Xi": Xi,
"Yi": Yi,
"Zi": Zi,
"extent": extent,
"cmap": cmap,
"cont_lims": cont_lims,
}
)
# plot map and contour
im = ax.imshow(
Zi,
cmap=cmap,
vmin=vmin,
vmax=vmax,
origin="lower",
aspect="equal",
extent=extent,
interpolation="bilinear",
)
ax.autoscale(enable=True, tight=True)
ax.figure.colorbar(im, cax=ax_cbar)
cont = ax.contour(Xi, Yi, Zi, levels=cont_lims, colors="k", linewidths=1)
im.set_clip_path(patch_)
text = ax.text(0.55, 0.95, "", transform=ax.transAxes, va="center", ha="right")
params["text"] = text
items.append(im)
items.append(text)
cont_collections = _cont_collections(cont)
for col in cont_collections:
col.set_clip_path(patch_)
outlines_ = _draw_outlines(ax, outlines)
params.update({"patch": patch_, "outlines": outlines_})
return tuple(items) + cont_collections
def _animate(frame, ax, ax_line, params):
"""Update animated topomap."""
if params["pause"]:
frame = params["frame"]
time_idx = params["frames"][frame]
if params["time_unit"] == "ms":
title = f"{params['times'][frame] * 1e3:6.0f} ms"
else:
title = f"{params['times'][frame]:6.3f} s"
if params["blit"]:
text = params["text"]
else:
ax.cla() # Clear old contours.
text = ax.text(0.45, 1.15, "", transform=ax.transAxes)
for k, (x, y) in params["outlines"].items():
if "mask" in k:
continue
ax.plot(x, y, color="k", linewidth=1, clip_on=False)
_hide_frame(ax)
text.set_text(title)
vmin = params["vmin"]
vmax = params["vmax"]
Xi = params["Xi"]
Yi = params["Yi"]
Zi = params["Zis"][frame]
extent = params["extent"]
cmap = params["cmap"]
patch = params["patch"]
im = ax.imshow(
Zi,
cmap=cmap,
vmin=vmin,
vmax=vmax,
origin="lower",
aspect="equal",
extent=extent,
interpolation="bilinear",
)
cont_lims = params["cont_lims"]
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
cont = ax.contour(Xi, Yi, Zi, levels=cont_lims, colors="k", linewidths=1)
im.set_clip_path(patch)
cont_collections = _cont_collections(cont)
for col in cont_collections:
col.set_clip_path(patch)
items = [im, text]
if params["butterfly"]:
all_times = params["all_times"]
line = params["line"]
line.remove()
ylim = ax_line.get_ylim()
params["line"] = ax_line.axvline(all_times[time_idx], color="r")
ax_line.set_ylim(ylim)
items.append(params["line"])
params["frame"] = frame
return tuple(items) + cont_collections
def _pause_anim(event, params):
"""Pause or continue the animation on mouse click."""
params["pause"] = not params["pause"]
def _key_press(event, params):
"""Handle key presses for the animation."""
if event.key == "left":
params["pause"] = True
params["frame"] = max(params["frame"] - 1, 0)
elif event.key == "right":
params["pause"] = True
params["frame"] = min(params["frame"] + 1, len(params["frames"]) - 1)
def _topomap_animation(
evoked,
ch_type,
times,
frame_rate,
butterfly,
blit,
show,
time_unit,
sphere,
image_interp,
extrapolate,
*,
vmin,
vmax,
verbose=None,
):
"""Make animation of evoked data as topomap timeseries.
See mne.evoked.Evoked.animate_topomap.
"""
from matplotlib import animation
from matplotlib import pyplot as plt
if ch_type is None:
ch_type = _get_plot_ch_type(evoked, ch_type)
time_unit, _ = _check_time_unit(time_unit, evoked.times)
if times is None:
times = np.linspace(evoked.times[0], evoked.times[-1], 10)
times = np.array(times)
if times.ndim != 1:
raise ValueError(f"times must be 1D, got {times.ndim} dimensions")
if max(times) > evoked.times[-1] or min(times) < evoked.times[0]:
raise ValueError("All times must be inside the evoked time series.")
frames = [np.abs(evoked.times - time).argmin() for time in times]
picks, pos, merge_channels, _, ch_type, sphere, clip_origin = _prepare_topomap_plot(
evoked, ch_type, sphere=sphere
)
data = evoked.data[picks, :]
data *= _handle_default("scalings")[ch_type]
norm = np.min(data) >= 0
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)
fig = plt.figure(figsize=(6, 5), layout="constrained")
shape = (8, 12)
colspan = shape[1] - 1
rowspan = shape[0] - bool(butterfly)
ax = plt.subplot2grid(shape, (0, 0), rowspan=rowspan, colspan=colspan)
if butterfly:
ax_line = plt.subplot2grid(shape, (rowspan, 0), colspan=colspan)
else:
ax_line = None
if isinstance(frames, Integral):
frames = np.linspace(0, len(evoked.times) - 1, frames).astype(int)
ax_cbar = plt.subplot2grid(shape, (0, colspan), rowspan=rowspan)
ax_cbar.set_title(_handle_default("units")[ch_type], fontsize=10)
extrapolate = _check_extrapolate(extrapolate, ch_type)
params = dict(
data=data,
pos=pos,
all_times=evoked.times,
frame=0,
frames=frames,
butterfly=butterfly,
blit=blit,
pause=False,
times=times,
time_unit=time_unit,
clip_origin=clip_origin,
vmin=vmin,
vmax=vmax,
)
init_func = partial(
_init_anim,
ax=ax,
ax_cbar=ax_cbar,
ax_line=ax_line,
params=params,
merge_channels=merge_channels,
sphere=sphere,
ch_type=ch_type,
image_interp=image_interp,
extrapolate=extrapolate,
verbose=verbose,
)
animate_func = partial(_animate, ax=ax, ax_line=ax_line, params=params)
pause_func = partial(_pause_anim, params=params)
fig.canvas.mpl_connect("button_press_event", pause_func)
key_press_func = partial(_key_press, params=params)
fig.canvas.mpl_connect("key_press_event", key_press_func)
if frame_rate is None:
frame_rate = evoked.info["sfreq"] / 10.0
interval = 1000 / frame_rate # interval is in ms
anim = animation.FuncAnimation(
fig,
animate_func,
init_func=init_func,
frames=len(frames),
interval=interval,
blit=blit,
)
fig.mne_animation = anim # to make sure anim is not garbage collected
plt_show(show, block=False)
if "line" in params:
# Finally remove the vertical line so it does not appear in saved fig.
params["line"].remove()
return fig, anim
def _set_contour_locator(vmin, vmax, contours):
"""Set correct contour levels."""
locator = None
if isinstance(contours, Integral) and contours > 0:
from matplotlib import ticker
# nbins = ticks - 1, since 2 of the ticks are vmin and vmax, the
# correct number of bins is equal to contours + 1.
locator = ticker.MaxNLocator(nbins=contours + 1)
contours = locator.tick_values(vmin, vmax)
contours = contours[1:-1]
return locator, contours
def _plot_corrmap(
data,
subjs,
indices,
ch_type,
ica,
label,
*,
show,
outlines,
cmap,
contours,
sensors=False,
template=False,
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
show_names=False,
):
"""Customize ica.plot_components for corrmap."""
from ..channels.layout import _merge_ch_data
if not template:
title = "Detected components"
if label is not None:
title += " of type " + label
else:
title = "Supplied template"
picks = list(range(len(data)))
p = 20
if len(picks) > p: # plot components by sets of 20
n_components = len(picks)
figs = [
_plot_corrmap(
data[k : k + p],
subjs[k : k + p],
indices[k : k + p],
ch_type,
ica,
label,
show=show,
outlines=outlines,
cmap=cmap,
contours=contours,
sensors=sensors,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
show_names=show_names,
)
for k in range(0, n_components, p)
]
return figs
elif np.isscalar(picks):
picks = [picks]
(
data_picks,
pos,
merge_channels,
names,
_,
sphere,
clip_origin,
) = _prepare_topomap_plot(ica, ch_type, sphere=sphere)
names = _prepare_sensor_names(names, show_names)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
data = np.atleast_2d(data)
data = data[:, data_picks]
# prepare data for iteration
fig, axes, _, _ = _prepare_trellis(len(picks), ncols=5)
fig.suptitle(title)
for ii, data_, ax, subject, idx in zip(picks, data, axes, subjs, indices):
if template:
ttl = f"Subj. {subject}, {ica._ica_names[idx]}"
ax.set_title(ttl, fontsize=12)
else:
ax.set_title(f"Subj. {subject}")
if merge_channels:
data_, _ = _merge_ch_data(data_, ch_type, [])
_vlim = _setup_vmin_vmax(data_, None, None)
plot_topomap(
data_.flatten(),
pos,
vlim=_vlim,
names=names,
res=64,
axes=ax,
cmap=cmap,
outlines=outlines,
contours=contours,
show=False,
sensors=sensors,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
)
_hide_frame(ax)
fig.canvas.draw()
plt_show(show)
return fig
def _trigradient(x, y, z):
"""Take gradients of z on a mesh."""
from matplotlib.tri import CubicTriInterpolator, Triangulation
tri = Triangulation(x, y)
tci = CubicTriInterpolator(tri, z)
dx, dy = tci.gradient(tri.x, tri.y)
return dx, dy
@fill_doc
def plot_arrowmap(
data,
info_from,
info_to=None,
scale=3e-10,
vlim=(None, None),
cnorm=None,
cmap=None,
sensors=True,
res=64,
axes=None,
show_names=False,
mask=None,
mask_params=None,
outlines="head",
contours=6,
image_interp=_INTERPOLATION_DEFAULT,
show=True,
onselect=None,
extrapolate=_EXTRAPOLATE_DEFAULT,
sphere=None,
):
"""Plot arrow map.
Compute arrowmaps, based upon the Hosaka-Cohen transformation
:footcite:`CohenHosaka1976`, these arrows represents an estimation of the
current flow underneath the MEG sensors. They are a poor man's MNE.
Since planar gradiometers takes gradients along latitude and longitude,
they need to be projected to the flattened manifold span by magnetometer
or radial gradiometers before taking the gradients in the 2D Cartesian
coordinate system for visualization on the 2D topoplot. You can use the
``info_from`` and ``info_to`` parameters to interpolate from
gradiometer data to magnetometer data.
Parameters
----------
data : array, shape (n_channels,)
The data values to plot.
info_from : instance of Info
The measurement info from data to interpolate from.
info_to : instance of Info | None
The measurement info to interpolate to. If None, it is assumed
to be the same as info_from.
scale : float, default 3e-10
To scale the arrows.
%(vlim_plot_topomap)s
.. versionadded:: 1.2
%(cnorm)s
.. versionadded:: 1.2
%(cmap_topomap_simple)s
%(sensors_topomap)s
%(res_topomap)s
%(axes_plot_topomap)s
%(show_names_topomap)s
If ``True``, a list of names must be provided (see ``names`` keyword).
%(mask_topomap)s
%(mask_params_topomap)s
%(outlines_topomap)s
%(contours_topomap)s
%(image_interp_topomap)s
%(show)s
onselect : callable | None
Handle for a function that is called when the user selects a set of
channels by rectangle selection (matplotlib ``RectangleSelector``). If
None interactive selection is disabled. Defaults to None.
%(extrapolate_topomap)s
.. versionadded:: 0.18
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(sphere_topomap_auto)s
Returns
-------
fig : matplotlib.figure.Figure
The Figure of the plot.
Notes
-----
.. versionadded:: 0.17
References
----------
.. footbibliography::
"""
from matplotlib import pyplot as plt
from ..forward import _map_meg_or_eeg_channels
sphere = _check_sphere(sphere, info_from)
ch_type = _picks_by_type(info_from)
if len(ch_type) > 1:
raise ValueError(
"Multiple channel types are not supported."
"All channels must either be of type 'grad' "
"or 'mag'."
)
else:
ch_type = ch_type[0][0]
if ch_type not in ("mag", "grad"):
raise ValueError(
f"Channel type '{ch_type}' not supported. Supported channel "
"types are 'mag' and 'grad'."
)
if info_to is None and ch_type == "mag":
info_to = info_from
else:
ch_type = _picks_by_type(info_to)
if len(ch_type) > 1:
raise ValueError("Multiple channel types are not supported.")
else:
ch_type = ch_type[0][0]
if ch_type != "mag":
raise ValueError(f"only 'mag' channel type is supported. Got {ch_type}")
if info_to is not info_from:
info_to = pick_info(info_to, pick_types(info_to, meg=True))
info_from = pick_info(info_from, pick_types(info_from, meg=True))
# XXX should probably support the "origin" argument
mapping = _map_meg_or_eeg_channels(
info_from, info_to, origin=(0.0, 0.0, 0.04), mode="accurate"
)
data = np.dot(mapping, data)
_, pos, _, _, _, sphere, clip_origin = _prepare_topomap_plot(
info_to, "mag", sphere=sphere
)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
if axes is None:
fig, axes = plt.subplots(layout="constrained")
else:
fig = axes.figure
plot_topomap(
data,
pos,
axes=axes,
vlim=vlim,
cmap=cmap,
cnorm=cnorm,
sensors=sensors,
res=res,
mask=mask,
mask_params=mask_params,
outlines=outlines,
contours=contours,
image_interp=image_interp,
show=False,
onselect=onselect,
extrapolate=extrapolate,
sphere=sphere,
ch_type=ch_type,
)
x, y = tuple(pos.T)
dx, dy = _trigradient(x, y, data)
dxx = dy.data
dyy = -dx.data
axes.quiver(x, y, dxx, dyy, scale=scale, color="k", lw=1)
plt_show(show)
return fig
@fill_doc
def plot_bridged_electrodes(
info, bridged_idx, ed_matrix, title=None, topomap_args=None
):
"""Topoplot electrode distance matrix with bridged electrodes connected.
Parameters
----------
%(info_not_none)s
bridged_idx : list of tuple
The indices of channels marked as bridged with each bridged
pair stored as a tuple.
Can be generated via
:func:`mne.preprocessing.compute_bridged_electrodes`.
ed_matrix : array of float, shape (n_channels, n_channels)
The electrical distance matrix for each pair of EEG electrodes.
Can be generated via
:func:`mne.preprocessing.compute_bridged_electrodes`.
title : str
A title to add to the plot.
topomap_args : dict | None
Arguments to pass to :func:`mne.viz.plot_topomap`.
Returns
-------
fig : instance of matplotlib.figure.Figure
The topoplot figure handle.
See Also
--------
mne.preprocessing.compute_bridged_electrodes
"""
import matplotlib.pyplot as plt
from ..channels.layout import _find_topomap_coords
if topomap_args is None:
topomap_args = dict()
else:
topomap_args = topomap_args.copy() # don't change original
picks = pick_types(info, eeg=True)
topomap_args.setdefault("image_interp", "nearest")
topomap_args.setdefault("cmap", "summer_r")
topomap_args.setdefault("names", pick_info(info, picks).ch_names)
topomap_args.setdefault("contours", False)
sphere = topomap_args.get("sphere", _check_sphere(None))
if "axes" not in topomap_args:
fig, ax = plt.subplots(layout="constrained")
topomap_args["axes"] = ax
else:
fig = None
# handle colorbar here instead of in plot_topomap
colorbar = topomap_args.pop("colorbar", True)
if ed_matrix.shape[1:] != (picks.size, picks.size):
raise RuntimeError(
f"Expected {(ed_matrix.shape[0], picks.size, picks.size)} "
f"shaped `ed_matrix`, got {ed_matrix.shape}"
)
# fill in lower triangular
ed_matrix = ed_matrix.copy()
tril_idx = np.tril_indices(picks.size)
for epo_idx in range(ed_matrix.shape[0]):
ed_matrix[epo_idx][tril_idx] = ed_matrix[epo_idx].T[tril_idx]
elec_dists = np.median(np.nanmin(ed_matrix, axis=1), axis=0)
im, cn = plot_topomap(elec_dists, pick_info(info, picks), **topomap_args)
fig = im.figure if fig is None else fig
# add bridged connections
for idx0, idx1 in bridged_idx:
pos = _find_topomap_coords(info, [idx0, idx1], sphere=sphere)
im.axes.plot([pos[0, 0], pos[1, 0]], [pos[0, 1], pos[1, 1]], color="r")
if title is not None:
im.axes.set_title(title)
if colorbar:
cax = fig.colorbar(im, shrink=0.6)
cax.set_label(r"Electrical Distance ($\mu$$V^2$)")
return fig
def plot_ch_adjacency(info, adjacency, ch_names, kind="2d", edit=False):
"""Plot channel adjacency.
Parameters
----------
info : instance of Info
Info object with channel locations.
adjacency : array
Array of channels x channels shape. Defines which channels are adjacent
to each other. Note that if you edit adjacencies
(via ``edit=True``), this array will be modified in place.
ch_names : list of str
Names of successive channels in the ``adjacency`` matrix.
kind : str
How to plot the adjacency. Can be either ``'3d'`` or ``'2d'``.
edit : bool
Whether to allow interactive editing of the adjacency matrix via
clicking respective channel pairs. Once clicked, the channel is
"activated" and turns green. Clicking on another channel adds or
removes adjacency relation between the activated and newly clicked
channel (depending on whether the channels are already adjacent or
not); the newly clicked channel now becomes activated. Clicking on
an activated channel deactivates it. Editing is currently only
supported for ``kind='2d'``.
Returns
-------
fig : Figure
The :class:`~matplotlib.figure.Figure` instance where the channel
adjacency is plotted.
See Also
--------
mne.channels.get_builtin_ch_adjacencies
mne.channels.read_ch_adjacency
mne.channels.find_ch_adjacency
Notes
-----
.. versionadded:: 1.1
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
_validate_type(info, Info, "info")
_validate_type(adjacency, (np.ndarray, csr_array), "adjacency")
has_sparse = isinstance(adjacency, csr_array)
if edit and kind == "3d":
raise ValueError("Editing a 3d adjacency plot is not supported.")
# select relevant channels
sel = pick_channels(info.ch_names, ch_names, ordered=True)
info = pick_info(info, sel)
# make sure adjacency is correct size wrt to inst:
n_channels = len(info.ch_names)
if adjacency.shape[0] != n_channels:
raise ValueError(
"``adjacency`` must have the same number of rows "
"as the number of channels in ``info``. Found "
f"{adjacency.shape[0]} channels for ``adjacency`` and"
f" {n_channels} for ``inst``."
)
if kind == "3d":
with plt.rc_context({"toolbar": "None"}):
fig = plot_sensors(info, kind=kind, show=False)
_set_3d_axes_equal(fig.axes[0])
elif kind == "2d":
with plt.rc_context({"toolbar": "None"}):
fig = plot_sensors(info, kind="topomap", show=False)
fig.axes[0].axis("equal")
path_collection = fig.axes[0].findobj(mpl.collections.PathCollection)
path_collection[0].set_linewidths(0.0)
if kind == "2d":
path_collection[0].set_alpha(0.7)
pos = path_collection[0].get_offsets()
# make sure nodes are on top
path_collection[0].set_zorder(10)
# scale node size with number of connections
n_connections = [np.sum(adjacency[[i]]) - 1 for i in range(adjacency.shape[0])]
node_size = [max(x, 3) ** 2.5 for x in n_connections]
path_collection[0].set_sizes(node_size)
else:
# plotting channel positions via mne.viz.plot_sensors(info) and using
# the coordinates from info['chs'][ch_idx]['loc][:3] gives different
# positions. Also .get_offsets gives 2d projections even for 3d points
# so we use the private _offsets3d property...
pos = path_collection[0]._offsets3d
pos = np.stack([pos[0].data, pos[1].data, pos[2]], axis=1)
ax = fig.axes[0]
lines = dict()
n_channels = adjacency.shape[0]
for ch_idx in range(n_channels):
# make sure we don't repeat channels
row = adjacency[[ch_idx], ch_idx + 1 :]
if has_sparse:
ch_neighbours = row.nonzero()[1]
else:
ch_neighbours = np.where(row)[0]
if len(ch_neighbours) == 0:
continue
ch_neighbours += ch_idx + 1
for ngb_idx in ch_neighbours:
this_pos = pos[[ch_idx, ngb_idx], :]
ch_pair = tuple([ch_idx, ngb_idx])
lines[ch_pair] = ax.plot(*this_pos.T, color=(0.55, 0.55, 0.55), lw=0.75)[0]
if edit:
# allow interactivity in 2d plots
highlighted = dict()
this_onpick = partial(
_onpick_ch_adjacency,
axes=ax,
positions=pos,
highlighted=highlighted,
line_dict=lines,
adjacency=adjacency,
node_size=node_size,
path_collection=path_collection,
)
fig.canvas.mpl_connect("pick_event", this_onpick)
return fig
def _onpick_ch_adjacency(
event,
axes=None,
positions=None,
highlighted=None,
line_dict=None,
adjacency=None,
node_size=None,
path_collection=None,
):
"""Handle interactivity in plot_ch_adjacency."""
node_ind = event.ind[0]
if node_ind in highlighted:
# de-select node, change its color back to normal
highlighted[node_ind].remove()
del highlighted[node_ind]
axes.figure.canvas.draw()
else:
# new node selected
if len(highlighted) == 0:
# no highlighted nodes yet
size = max(node_size[node_ind] * 2, 100)
# add current node
dots = axes.scatter(
*positions[node_ind, :].T, color="tab:green", s=size, zorder=15
)
highlighted[node_ind] = dots
axes.figure.canvas.draw() # make sure it renders
else:
# one previously highlighted - add or remove line
key = list(highlighted.keys())[0]
both_nodes = [key, node_ind]
both_nodes.sort()
both_nodes = tuple(both_nodes)
if both_nodes in line_dict.keys():
# remove line
n_conn_change = -1
line_dict[both_nodes].remove()
# remove line_dict entry
del line_dict[both_nodes]
# clear adjacency matrix entry
_set_adjacency(adjacency, both_nodes, False)
else:
# add line
n_conn_change = +1
selected_pos = positions[both_nodes, :]
line = axes.plot(*selected_pos.T, color="tab:green")[0]
# add line to line_dict
line_dict[both_nodes] = line
# modify adjacency matrix
_set_adjacency(adjacency, both_nodes, True)
# de-highlight previous
highlighted[key].remove()
del highlighted[key]
# update node sizes
n_connections = [
np.sum(adjacency[[idx]]) - 1 + n_conn_change for idx in both_nodes
]
for idx, n_conn in zip(both_nodes, n_connections):
node_size[idx] = max(n_conn, 3) ** 2.5
path_collection[0].set_sizes(node_size)
# highlight new node
size = max(node_size[node_ind] * 2, 100)
dots = axes.scatter(
*positions[node_ind, :].T, color="tab:green", s=size, zorder=15
)
highlighted[node_ind] = dots
axes.figure.canvas.draw()
def _set_adjacency(adjacency, both_nodes, value):
"""Set adjacency for given node pair, caching errors for sparse arrays."""
import warnings
with warnings.catch_warnings(record=True):
adjacency[both_nodes, both_nodes[::-1]] = value
@fill_doc
def plot_regression_weights(
model,
*,
ch_type=None,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
axes=None,
colorbar=True,
cbar_fmt="%1.1e",
title=None,
show=True,
):
"""Plot the regression weights of a fitted EOGRegression model.
Parameters
----------
model : EOGRegression
The fitted EOGRegression model whose weights will be plotted.
%(ch_type_topomap)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap)s
%(cnorm)s
%(axes_evoked_plot_topomap)s
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
%(title_none)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with a topomap subplot for each channel type.
Notes
-----
.. versionadded:: 1.2
"""
import matplotlib
import matplotlib.pyplot as plt
from ..channels.layout import _merge_ch_data
sphere = _check_sphere(sphere)
if ch_type is None:
ch_types = model.info_.get_channel_types(unique=True, only_data_chs=True)
else:
ch_types = [ch_type]
del ch_type
nrows = model.coef_.shape[1]
ncols = len(ch_types)
axes_was_none = axes is None
if axes_was_none:
fig, axes = plt.subplots(
nrows,
ncols,
squeeze=False,
figsize=(ncols * 2, nrows * 1.5 + 1),
layout="constrained",
)
axes = axes.T.ravel()
else:
if isinstance(axes, matplotlib.axes.Axes):
axes = [axes]
fig = axes[0].get_figure()
if len(axes) != nrows * ncols:
raise ValueError(
f"axes must be a list of {nrows * ncols} axes, got "
f"length {len(axes)} ({axes})."
)
axes = iter(axes)
data_picks = _picks_to_idx(model.info_, model.picks, exclude=model.exclude)
data_info = pick_info(model.info_, data_picks)
artifact_ch_names = [
model.info_["chs"][idx]["ch_name"]
for idx in _picks_to_idx(model.info_, model.picks_artifact)
]
for ch_type in ch_types:
(
data_picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(data_info, ch_type=ch_type, sphere=sphere)
outlines = _make_head_outlines(
sphere, pos, outlines=outlines, clip_origin=clip_origin
)
coef = model.coef_[data_picks]
for data, ch_name in zip(coef.T, artifact_ch_names):
if merge_channels:
data, names = _merge_ch_data(data, ch_type, names)
ax = next(axes)
names = _prepare_sensor_names(data_info.ch_names, show_names)
_plot_topomap_multi_cbar(
data,
pos,
ax,
title=f"{ch_type}/{ch_name}",
vlim=vlim,
cmap=cmap,
outlines=outlines,
colorbar=colorbar,
unit="",
cbar_fmt=cbar_fmt,
sphere=sphere,
ch_type=ch_type,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cnorm=cnorm,
)
if axes_was_none:
fig.suptitle(title)
plt_show(show)
return fig