[7f9fb8]: / mne / viz / misc.py

Download this file

1645 lines (1465 with data), 54.8 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
"""Functions to make simple plots with M/EEG data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import copy
import io
import os
import os.path as op
import warnings
from collections import defaultdict
from glob import glob
from itertools import cycle
from pathlib import Path
import numpy as np
from scipy.signal import filtfilt, freqz, group_delay, lfilter, sosfilt, sosfiltfilt
from .._fiff.constants import FIFF
from .._fiff.pick import (
_DATA_CH_TYPES_SPLIT,
_picks_by_type,
pick_channels,
pick_info,
pick_types,
)
from .._fiff.proj import make_projector
from .._freesurfer import _check_mri, _mri_orientation, _read_mri_info, _reorient_image
from ..defaults import DEFAULTS
from ..filter import estimate_ringing_samples
from ..fixes import _safe_svd
from ..rank import compute_rank
from ..surface import read_surface
from ..transforms import _frame_to_str, apply_trans
from ..utils import (
_check_option,
_mask_to_onsets_offsets,
_on_missing,
_pl,
fill_doc,
get_subjects_dir,
logger,
verbose,
warn,
)
from .utils import (
_figure_agg,
_get_color_list,
_prepare_trellis,
_validate_type,
plt_show,
)
def _index_info_cov(info, cov, exclude):
if exclude == "bads":
exclude = info["bads"]
info = pick_info(info, pick_channels(info["ch_names"], cov["names"], exclude))
del exclude
picks_list = _picks_by_type(info, meg_combined=False, ref_meg=False, exclude=())
picks_by_type = dict(picks_list)
ch_names = [n for n in cov.ch_names if n in info["ch_names"]]
ch_idx = [cov.ch_names.index(n) for n in ch_names]
info_ch_names = info["ch_names"]
idx_by_type = defaultdict(list)
for ch_type, sel in picks_by_type.items():
idx_by_type[ch_type] = [
ch_names.index(info_ch_names[c])
for c in sel
if info_ch_names[c] in ch_names
]
idx_names = [
(
idx_by_type[key],
f"{DEFAULTS['titles'][key]} covariance",
DEFAULTS["units"][key],
DEFAULTS["scalings"][key],
key,
)
for key in _DATA_CH_TYPES_SPLIT
if len(idx_by_type[key]) > 0
]
C = cov.data[ch_idx][:, ch_idx]
return info, C, ch_names, idx_names
@verbose
def plot_cov(
cov,
info,
exclude=(),
colorbar=True,
proj=False,
show_svd=True,
show=True,
verbose=None,
):
"""Plot Covariance data.
Parameters
----------
cov : instance of Covariance
The covariance matrix.
%(info_not_none)s
exclude : list of str | str
List of channels to exclude. If empty do not exclude any channel.
If 'bads', exclude info['bads'].
colorbar : bool
Show colorbar or not.
proj : bool
Apply projections or not.
show_svd : bool
Plot also singular values of the noise covariance for each sensor
type. We show square roots ie. standard deviations.
show : bool
Show figure if True.
%(verbose)s
Returns
-------
fig_cov : instance of matplotlib.figure.Figure
The covariance plot.
fig_svd : instance of matplotlib.figure.Figure | None
The SVD plot of the covariance (i.e., the eigenvalues or "matrix spectrum").
See Also
--------
mne.compute_rank
Notes
-----
For each channel type, the rank is estimated using
:func:`mne.compute_rank`.
.. versionchanged:: 0.19
Approximate ranks for each channel type are shown with red dashed lines.
"""
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
from ..cov import Covariance
info, C, ch_names, idx_names = _index_info_cov(info, cov, exclude)
del cov, exclude
projs = []
if proj:
projs = copy.deepcopy(info["projs"])
# Activate the projection items
for p in projs:
p["active"] = True
P, ncomp, _ = make_projector(projs, ch_names)
if ncomp > 0:
logger.info(f" Created an SSP operator (subspace dimension = {ncomp:d})")
C = np.dot(P, np.dot(C, P.T))
else:
logger.info(" The projection vectors do not apply to these channels.")
if np.iscomplexobj(C):
C = np.sqrt((C * C.conj()).real)
fig_cov, axes = plt.subplots(
1,
len(idx_names),
squeeze=False,
figsize=(3.8 * len(idx_names), 3.7),
layout="constrained",
)
for k, (idx, name, _, _, _) in enumerate(idx_names):
vlim = np.max(np.abs(C[idx][:, idx]))
im = axes[0, k].imshow(
C[idx][:, idx],
interpolation="nearest",
norm=Normalize(vmin=-vlim, vmax=vlim),
cmap="RdBu_r",
)
axes[0, k].set(title=name)
if colorbar:
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(axes[0, k])
cax = divider.append_axes("right", size="5.5%", pad=0.05)
cax.grid(False) # avoid mpl warning about auto-removal
plt.colorbar(im, cax=cax, format="%.0e")
fig_svd = None
if show_svd:
fig_svd, axes = plt.subplots(
1,
len(idx_names),
squeeze=False,
figsize=(3.8 * len(idx_names), 3.7),
layout="constrained",
)
for k, (idx, name, unit, scaling, key) in enumerate(idx_names):
this_C = C[idx][:, idx]
s = _safe_svd(this_C, compute_uv=False)
this_C = Covariance(this_C, [info["ch_names"][ii] for ii in idx], [], [], 0)
this_info = pick_info(info, idx)
with this_info._unlock():
this_info["projs"] = []
this_rank = compute_rank(this_C, info=this_info)
# Protect against true zero singular values
s[s <= 0] = 1e-10 * s[s > 0].min()
s = np.sqrt(s) * scaling
axes[0, k].plot(s, color="k", zorder=3)
this_rank = this_rank[key]
axes[0, k].axvline(
this_rank - 1, ls="--", color="r", alpha=0.5, zorder=4, clip_on=False
)
axes[0, k].text(
this_rank - 1,
axes[0, k].get_ylim()[1],
f"rank ≈ {this_rank:d}",
ha="right",
va="top",
color="r",
alpha=0.5,
zorder=4,
)
axes[0, k].set(
ylabel=f"Noise σ ({unit})",
yscale="log",
xlabel="Eigenvalue index",
title=name,
xlim=[0, len(s) - 1],
)
plt_show(show)
return fig_cov, fig_svd
def plot_source_spectrogram(
stcs, freq_bins, tmin=None, tmax=None, source_index=None, colorbar=False, show=True
):
"""Plot source power in time-freqency grid.
Parameters
----------
stcs : list of SourceEstimate
Source power for consecutive time windows, one SourceEstimate object
should be provided for each frequency bin.
freq_bins : list of tuples of float
Start and end points of frequency bins of interest.
tmin : float
Minimum time instant to show.
tmax : float
Maximum time instant to show.
source_index : int | None
Index of source for which the spectrogram will be plotted. If None,
the source with the largest activation will be selected.
colorbar : bool
If true, a colorbar will be added to the plot.
show : bool
Show figure if True.
Returns
-------
fig : instance of Figure
The figure.
"""
import matplotlib.pyplot as plt
# Input checks
if len(stcs) == 0:
raise ValueError("cannot plot spectrogram if len(stcs) == 0")
stc = stcs[0]
if tmin is not None and tmin < stc.times[0]:
raise ValueError(
"tmin cannot be smaller than the first time point provided in stcs"
)
if tmax is not None and tmax > stc.times[-1] + stc.tstep:
raise ValueError(
"tmax cannot be larger than the sum of the last time "
"point and the time step, which are provided in stcs"
)
# Preparing time-frequency cell boundaries for plotting
if tmin is None:
tmin = stc.times[0]
if tmax is None:
tmax = stc.times[-1] + stc.tstep
time_bounds = np.arange(tmin, tmax + stc.tstep, stc.tstep)
freq_bounds = sorted(set(np.ravel(freq_bins)))
freq_ticks = copy.deepcopy(freq_bounds)
# Reject time points that will not be plotted and gather results
source_power = []
for stc in stcs:
stc = stc.copy() # copy since crop modifies inplace
stc.crop(tmin, tmax - stc.tstep)
source_power.append(stc.data)
source_power = np.array(source_power)
# Finding the source with maximum source power
if source_index is None:
source_index = np.unravel_index(source_power.argmax(), source_power.shape)[1]
# If there is a gap in the frequency bins record its locations so that it
# can be covered with a gray horizontal bar
gap_bounds = []
for i in range(len(freq_bins) - 1):
lower_bound = freq_bins[i][1]
upper_bound = freq_bins[i + 1][0]
if lower_bound != upper_bound:
freq_bounds.remove(lower_bound)
gap_bounds.append((lower_bound, upper_bound))
# Preparing time-frequency grid for plotting
time_grid, freq_grid = np.meshgrid(time_bounds, freq_bounds)
# Plotting the results
fig = plt.figure(figsize=(9, 6), layout="constrained")
plt.pcolor(time_grid, freq_grid, source_power[:, source_index, :], cmap="Reds")
ax = plt.gca()
ax.set(title="Source power", xlabel="Time (s)", ylabel="Frequency (Hz)")
time_tick_labels = [str(np.round(t, 2)) for t in time_bounds]
n_skip = 1 + len(time_bounds) // 10
for i in range(len(time_bounds)):
if i % n_skip != 0:
time_tick_labels[i] = ""
ax.set_xticks(time_bounds)
ax.set_xticklabels(time_tick_labels)
plt.xlim(time_bounds[0], time_bounds[-1])
plt.yscale("log")
ax.set_yticks(freq_ticks)
ax.set_yticklabels([np.round(freq, 2) for freq in freq_ticks])
plt.ylim(freq_bounds[0], freq_bounds[-1])
plt.grid(True, ls="-")
if colorbar:
plt.colorbar()
# Covering frequency gaps with horizontal bars
for lower_bound, upper_bound in gap_bounds:
plt.barh(
lower_bound,
time_bounds[-1] - time_bounds[0],
upper_bound - lower_bound,
time_bounds[0],
color="#666666",
)
plt_show(show)
return fig
def _plot_mri_contours(
*,
mri_fname,
surfaces,
src,
orientation="coronal",
slices=None,
show=True,
show_indices=False,
show_orientation=False,
width=512,
slices_as_subplots=True,
):
"""Plot BEM contours on anatomical MRI slices.
Parameters
----------
slices_as_subplots : bool
Whether to add all slices as subplots to a single figure, or to
create a new figure for each slice. If ``False``, return NumPy
arrays instead of Matplotlib figures.
Returns
-------
matplotlib.figure.Figure | list of array
The plotted slices.
"""
import matplotlib.pyplot as plt
from matplotlib import patheffects
from ..source_space._source_space import _ensure_src
# For ease of plotting, we will do everything in voxel coordinates.
_validate_type(show_orientation, (bool, str), "show_orientation")
if isinstance(show_orientation, str):
_check_option(
"show_orientation", show_orientation, ("always",), extra="when str"
)
_check_option("orientation", orientation, ("coronal", "axial", "sagittal"))
# Load the T1 data
_, _, _, _, _, nim = _read_mri_info(mri_fname, units="mm", return_img=True)
data, rasvox_mri_t = _reorient_image(nim)
mri_rasvox_t = np.linalg.inv(rasvox_mri_t)
axis, x, y = _mri_orientation(orientation)
n_slices = data.shape[axis]
# if no slices were specified, pick some equally-spaced ones automatically
if slices is None:
slices = np.round(np.linspace(start=0, stop=n_slices - 1, num=14)).astype(int)
# omit first and last one (not much brain visible there anyway…)
slices = slices[1:-1]
slices = np.atleast_1d(slices).copy()
slices[slices < 0] += n_slices # allow negative indexing
if (
not np.array_equal(np.sort(slices), slices)
or slices.ndim != 1
or slices.size < 1
or slices[0] < 0
or slices[-1] >= n_slices
or slices.dtype.kind not in "iu"
):
raise ValueError(
"slices must be a sorted 1D array of int with unique "
"elements, at least one element, and no elements "
f"greater than {n_slices - 1:d}, got {slices}"
)
# create of list of surfaces
surfs = list()
for file_name, color in surfaces:
surf = dict()
surf["rr"], surf["tris"] = read_surface(file_name)
# move surface to voxel coordinate system
surf["rr"] = apply_trans(mri_rasvox_t, surf["rr"])
surfs.append((surf, color))
sources = list()
if src is not None:
_ensure_src(src, extra=" or None")
# Eventually we can relax this by allowing ``trans`` if need be
if src[0]["coord_frame"] != FIFF.FIFFV_COORD_MRI:
raise ValueError(
"Source space must be in MRI coordinates, got "
f"{_frame_to_str[src[0]['coord_frame']]}"
)
for src_ in src:
points = src_["rr"][src_["inuse"].astype(bool)]
sources.append(apply_trans(mri_rasvox_t, points * 1e3))
sources = np.concatenate(sources, axis=0)
# get the figure dimensions right
if slices_as_subplots:
n_col = 4
fig, axs, _, _ = _prepare_trellis(len(slices), n_col)
fig.set_facecolor("k")
dpi = fig.get_dpi()
n_axes = len(axs)
else:
n_col = n_axes = 1
dpi = 96
# 2x standard MRI resolution is probably good enough for the
# traces
w = width / dpi
figsize = (w, w / data.shape[x] * data.shape[y])
bounds = np.concatenate(
[[-np.inf], slices[:-1] + np.diff(slices) / 2.0, [np.inf]]
) # float
slicer = [slice(None)] * 3
ori_labels = dict(R="LR", A="PA", S="IS")
xlabels, ylabels = ori_labels["RAS"[x]], ori_labels["RAS"[y]]
path_effects = [patheffects.withStroke(linewidth=4, foreground="k", alpha=0.75)]
figs = []
for ai, (sl, lower, upper) in enumerate(zip(slices, bounds[:-1], bounds[1:])):
if slices_as_subplots:
ax = axs[ai]
else:
# No need for constrained layout here because we make our axes fill the
# entire figure
fig = _figure_agg(figsize=figsize, dpi=dpi, facecolor="k")
ax = fig.add_axes([0, 0, 1, 1], frame_on=False, facecolor="k")
# adjust the orientations for good view
slicer[axis] = sl
dat = data[tuple(slicer)].T
# First plot the anatomical data
ax.imshow(dat, cmap=plt.cm.gray, origin="lower")
ax.set_autoscale_on(False)
ax.axis("off")
ax.set_aspect("equal") # XXX eventually could deal with zooms
# and then plot the contours on top
for surf, color in surfs:
with warnings.catch_warnings(record=True): # ignore contour warn
warnings.simplefilter("ignore")
ax.tricontour(
surf["rr"][:, x],
surf["rr"][:, y],
surf["tris"],
surf["rr"][:, axis],
levels=[sl],
colors=color,
linewidths=1.0,
zorder=1,
)
if len(sources):
in_slice = (sources[:, axis] >= lower) & (sources[:, axis] < upper)
ax.scatter(
sources[in_slice, x],
sources[in_slice, y],
marker=".",
color="#FF00FF",
s=1,
zorder=2,
)
if show_indices:
ax.text(
dat.shape[1] // 8 + 0.5,
0.5,
str(sl),
color="w",
fontsize="x-small",
va="bottom",
ha="left",
)
# label the axes
kwargs = dict(
color="#66CCEE",
fontsize="medium",
path_effects=path_effects,
family="monospace",
clip_on=False,
zorder=5,
weight="bold",
)
always = show_orientation == "always"
if show_orientation:
if ai % n_col == 0 or always: # left
ax.text(
0, dat.shape[0] / 2.0, xlabels[0], va="center", ha="left", **kwargs
)
if ai % n_col == n_col - 1 or ai == n_axes - 1 or always: # right
ax.text(
dat.shape[1] - 1,
dat.shape[0] / 2.0,
xlabels[1],
va="center",
ha="right",
**kwargs,
)
if ai >= n_axes - n_col or always: # bottom
ax.text(
dat.shape[1] / 2.0,
0,
ylabels[0],
ha="center",
va="bottom",
**kwargs,
)
if ai < n_col or n_col == 1 or always: # top
ax.text(
dat.shape[1] / 2.0,
dat.shape[0] - 1,
ylabels[1],
ha="center",
va="top",
**kwargs,
)
if not slices_as_subplots:
# convert to NumPy array
with io.BytesIO() as buff:
fig.savefig(
buff, format="raw", bbox_inches="tight", pad_inches=0, dpi=dpi
)
w_, h_ = fig.canvas.get_width_height()
plt.close(fig)
buff.seek(0)
fig_array = np.frombuffer(buff.getvalue(), dtype=np.uint8)
fig = fig_array.reshape((int(h_), int(w_), -1))
figs.append(fig)
if slices_as_subplots:
plt_show(show, fig=fig)
return fig
else:
return figs
@fill_doc
def plot_bem(
subject,
subjects_dir=None,
orientation="coronal",
slices=None,
brain_surfaces=None,
src=None,
show=True,
show_indices=True,
mri="T1.mgz",
show_orientation=True,
):
"""Plot BEM contours on anatomical MRI slices.
Parameters
----------
%(subject)s
%(subjects_dir)s
orientation : str
'coronal' or 'axial' or 'sagittal'.
slices : list of int | None
The indices of the MRI slices to plot. If ``None``, automatically
pick 12 equally-spaced slices.
brain_surfaces : str | list of str | None
One or more brain surface to plot (optional). Entries should correspond
to files in the subject's ``surf`` directory (e.g. ``"white"``).
src : SourceSpaces | path-like | None
SourceSpaces instance or path to a source space to plot individual
sources as scatter-plot. Sources will be shown on exactly one slice
(whichever slice is closest to each source in the given orientation
plane). Path can be absolute or relative to the subject's ``bem``
folder.
.. versionchanged:: 0.20
All sources are shown on the nearest slice rather than some
being omitted.
show : bool
Show figure if True.
show_indices : bool
Show slice indices if True.
.. versionadded:: 0.20
mri : str
The name of the MRI to use. Can be a standard FreeSurfer MRI such as
``'T1.mgz'``, or a full path to a custom MRI file.
.. versionadded:: 0.21
show_orientation : bool | str
Show the orientation (L/R, P/A, I/S) of the data slices.
True (default) will only show it on the outside most edges of the
figure, False will never show labels, and "always" will label each
plot.
.. versionadded:: 0.21
.. versionchanged:: 0.24
Added support for "always".
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
See Also
--------
mne.viz.plot_alignment
Notes
-----
Images are plotted in MRI voxel coordinates.
If ``src`` is not None, for a given slice index, all source points are
shown that are halfway between the previous slice and the given slice,
and halfway between the given slice and the next slice.
For large slice decimations, this can
make some source points appear outside the BEM contour, which is shown
for the given slice index. For example, in the case where the single
midpoint slice is used ``slices=[128]``, all source points will be shown
on top of the midpoint MRI slice with the BEM boundary drawn for that
slice.
"""
from ..source_space import SourceSpaces, read_source_spaces
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
mri_fname = _check_mri(mri, subject, subjects_dir)
# Get the BEM surface filenames
bem_path = subjects_dir / subject / "bem"
if not bem_path.is_dir():
raise OSError(f'Subject bem directory "{bem_path}" does not exist')
surfaces = _get_bem_plotting_surfaces(bem_path)
if brain_surfaces is not None:
if isinstance(brain_surfaces, str):
brain_surfaces = (brain_surfaces,)
for surf_name in brain_surfaces:
for hemi in ("lh", "rh"):
surf_fname = subjects_dir / subject / "surf" / f"{hemi}.{surf_name}"
if surf_fname.exists():
surfaces.append((surf_fname, "#00DD00"))
else:
raise OSError(f"Surface {surf_fname} does not exist.")
# TODO: Refactor with / improve _ensure_src to do this
if isinstance(src, str | Path | os.PathLike):
src = Path(src)
if not src.exists():
# convert to Path until get_subjects_dir returns a Path object
src_ = Path(subjects_dir) / subject / "bem" / src
if not src_.exists():
raise OSError(f"{src} does not exist")
src = src_
src = read_source_spaces(src)
elif src is not None and not isinstance(src, SourceSpaces):
raise TypeError(
f"src needs to be None, path-like or SourceSpaces instance, not {repr(src)}"
)
if len(surfaces) == 0:
raise OSError(
"No surface files found. Surface files must end with "
"inner_skull.surf, outer_skull.surf or outer_skin.surf"
)
# Plot the contours
fig = _plot_mri_contours(
mri_fname=mri_fname,
surfaces=surfaces,
src=src,
orientation=orientation,
slices=slices,
show=show,
show_indices=show_indices,
show_orientation=show_orientation,
slices_as_subplots=True,
)
return fig
def _get_bem_plotting_surfaces(bem_path):
surfaces = []
for surf_name, color in (
("*inner_skull", "#FF0000"),
("*outer_skull", "#FFFF00"),
("*outer_skin", "#FFAA80"),
):
surf_fname = glob(op.join(bem_path, surf_name + ".surf"))
if len(surf_fname) > 0:
surf_fname = surf_fname[0]
logger.info(f"Using surface: {surf_fname}")
surfaces.append((surf_fname, color))
return surfaces
@verbose
def plot_events(
events,
sfreq=None,
first_samp=0,
color=None,
event_id=None,
axes=None,
equal_spacing=True,
show=True,
on_missing="raise",
verbose=None,
):
"""Plot :term:`events` to get a visual display of the paradigm.
Parameters
----------
%(events)s
sfreq : float | None
The sample frequency. If None, data will be displayed in samples (not
seconds).
first_samp : int
The index of the first sample. Recordings made on Neuromag systems
number samples relative to the system start (not relative to the
beginning of the recording). In such cases the ``raw.first_samp``
attribute can be passed here. Default is 0.
color : dict | None
Dictionary of event_id integers as keys and colors as values. If None,
colors are automatically drawn from a default list (cycled through if
number of events longer than list of default colors). Color can be any
valid :ref:`matplotlib color <matplotlib:colors_def>`.
event_id : dict | None
Dictionary of event labels (e.g. 'aud_l') as keys and their associated
event_id values. Labels are used to plot a legend. If None, no legend
is drawn.
axes : instance of Axes
The subplot handle.
equal_spacing : bool
Use equal spacing between events in y-axis.
show : bool
Show figure if True.
%(on_missing_events)s
%(verbose)s
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
Notes
-----
.. versionadded:: 0.9.0
"""
if sfreq is None:
sfreq = 1.0
xlabel = "Samples"
else:
xlabel = "Time (s)"
events = np.asarray(events)
if len(events) == 0:
raise ValueError("No events in events array, cannot plot.")
unique_events = np.unique(events[:, 2])
if event_id is not None:
# get labels and unique event ids from event_id dict,
# sorted by value
event_id_rev = {v: k for k, v in event_id.items()}
conditions, unique_events_id = zip(
*sorted(event_id.items(), key=lambda x: x[1])
)
keep = np.ones(len(unique_events_id), bool)
for ii, this_event in enumerate(unique_events_id):
if this_event not in unique_events:
msg = f"{this_event} from event_id is not present in events."
_on_missing(on_missing, msg)
keep[ii] = False
conditions = [cond for cond, k in zip(conditions, keep) if k]
unique_events_id = [id_ for id_, k in zip(unique_events_id, keep) if k]
if len(unique_events_id) == 0:
raise RuntimeError("No usable event IDs found")
for this_event in unique_events:
if this_event not in unique_events_id:
warn(f"event {this_event} missing from event_id will be ignored")
else:
unique_events_id = unique_events
color = _handle_event_colors(color, unique_events, event_id)
import matplotlib.pyplot as plt
unique_events_id = np.array(unique_events_id)
fig = None
figsize = plt.rcParams["figure.figsize"]
# assuming the user did not change matplotlib default params, the figsize of
# (6.4, 4.8) becomes too big if scaled beyond twice its size, so maximum 2
_scaling = min(max(1, len(unique_events_id) / 10), 2)
figsize_scaled = np.array(figsize) * _scaling
if axes is None:
fig = plt.figure(layout="constrained", figsize=tuple(figsize_scaled))
ax = axes if axes else plt.gca()
min_event = np.min(unique_events_id)
max_event = np.max(unique_events_id)
max_x = (
events[np.isin(events[:, 2], unique_events_id), 0].max() - first_samp
) / sfreq
handles, labels = list(), list()
for idx, ev in enumerate(unique_events_id):
ev_mask = events[:, 2] == ev
count = ev_mask.sum()
if count == 0:
continue
y = np.full(count, idx + 1 if equal_spacing else events[ev_mask, 2][0])
if event_id is not None:
event_label = f"{event_id_rev[ev]}\n(id:{ev}; N:{count})"
else:
event_label = f"id:{ev}; N:{count:d}"
labels.append(event_label)
kwargs = {}
if ev in color:
kwargs["color"] = color[ev]
handles.append(
ax.plot(
(events[ev_mask, 0] - first_samp) / sfreq,
y,
".",
clip_on=False,
**kwargs,
)[0]
)
if equal_spacing:
ax.set_ylim(0, unique_events_id.size + 1)
ax.set_yticks(1 + np.arange(unique_events_id.size))
ax.set_yticklabels(unique_events_id)
else:
ax.set_ylim([min_event - 1, max_event + 1])
ax.set(xlabel=xlabel, ylabel="Event id", xlim=[0, max_x])
ax.grid(True)
fig = fig if fig is not None else plt.gcf()
# reverse order so that the highest numbers are at the top
# (match plot order)
handles, labels = handles[::-1], labels[::-1]
# spread legend entries over more columns, 25 still ~fit in one column
# (assuming non-user supplied fig), max at 3 columns
ncols = min(int(np.ceil(len(unique_events_id) / 25)), 3)
# Make space for legend
box = ax.get_position()
factor = 0.8 if event_id is not None else 0.9
factor -= 0.1 * (ncols - 1)
ax.set_position([box.x0, box.y0, box.width * factor, box.height])
# Try some adjustments to squeeze as much information into the legend
# without cutting off the ends
ax.legend(
handles,
labels,
loc="center left",
bbox_to_anchor=(1, 0.5),
fontsize="small",
borderpad=0, # default 0.4
labelspacing=0.25, # default 0.5
columnspacing=1.0, # default 2
handletextpad=0, # default 0.8
markerscale=2, # default 1
borderaxespad=0.2, # default 0.5
ncols=ncols,
)
fig.canvas.draw()
plt_show(show)
return fig
def _get_presser(fig):
"""Get our press callback."""
callbacks = fig.canvas.callbacks.callbacks["button_press_event"]
func = None
for key, val in callbacks.items():
func = val()
if func.__class__.__name__ == "partial":
break
else:
func = None
assert func is not None
return func
def plot_dipole_amplitudes(dipoles, colors=None, show=True):
"""Plot the amplitude traces of a set of dipoles.
Parameters
----------
dipoles : list of instance of Dipole
The dipoles whose amplitudes should be shown.
colors : list of color | None
Color to plot with each dipole. If None default colors are used.
show : bool
Show figure if True.
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
Notes
-----
.. versionadded:: 0.9.0
"""
import matplotlib.pyplot as plt
if colors is None:
colors = cycle(_get_color_list())
fig, ax = plt.subplots(1, 1, layout="constrained")
xlim = [np.inf, -np.inf]
for dip, color in zip(dipoles, colors):
ax.plot(dip.times, dip.amplitude * 1e9, color=color, linewidth=1.5)
xlim[0] = min(xlim[0], dip.times[0])
xlim[1] = max(xlim[1], dip.times[-1])
ax.set(xlim=xlim, xlabel="Time (s)", ylabel="Amplitude (nAm)")
if show:
fig.show(warn=False)
return fig
def adjust_axes(axes, remove_spines=("top", "right"), grid=True):
"""Adjust some properties of axes.
Parameters
----------
axes : list
List of axes to process.
remove_spines : list of str
Which axis spines to remove.
grid : bool
Turn grid on (True) or off (False).
"""
axes = [axes] if not isinstance(axes, list | tuple | np.ndarray) else axes
for ax in axes:
if grid:
ax.grid(zorder=0)
for key in remove_spines:
ax.spines[key].set_visible(False)
def _filter_ticks(lims, fscale):
"""Create approximately spaced ticks between lims."""
if fscale == "linear":
return None, None # let matplotlib handle it
lims = np.array(lims)
ticks = list()
if lims[1] > 20 * lims[0]:
base = np.array([1, 2, 4])
else:
base = np.arange(1, 11)
for exp in range(
int(np.floor(np.log10(lims[0]))), int(np.floor(np.log10(lims[1]))) + 1
):
ticks += (base * (10**exp)).tolist()
ticks = np.array(ticks)
ticks = ticks[(ticks >= lims[0]) & (ticks <= lims[1])]
ticklabels = [(f"{t:g}" if t < 1 else f"{t}") for t in ticks]
return ticks, ticklabels
def _get_flim(flim, fscale, freq, sfreq=None):
"""Get reasonable frequency limits."""
if flim is None:
if freq is None:
flim = [0.1 if fscale == "log" else 0.0, sfreq / 2.0]
else:
if fscale == "linear":
flim = [freq[0]]
else:
flim = [freq[0] if freq[0] > 0 else 0.1 * freq[1]]
flim += [freq[-1]]
if fscale == "log":
if flim[0] <= 0:
raise ValueError(f"flim[0] must be positive, got {flim[0]}")
elif flim[0] < 0:
raise ValueError(f"flim[0] must be non-negative, got {flim[0]}")
return flim
_DEFAULT_ALIM = (-80, 10)
def plot_filter(
h,
sfreq,
freq=None,
gain=None,
title=None,
color="#1f77b4",
flim=None,
fscale="log",
alim=_DEFAULT_ALIM,
show=True,
compensate=False,
plot=("time", "magnitude", "delay"),
axes=None,
*,
dlim=None,
):
"""Plot properties of a filter.
Parameters
----------
h : dict or ndarray
An IIR dict or 1D ndarray of coefficients (for FIR filter).
sfreq : float
Sample rate of the data (Hz).
freq : array-like or None
The ideal response frequencies to plot (must be in ascending order).
If None (default), do not plot the ideal response.
gain : array-like or None
The ideal response gains to plot.
If None (default), do not plot the ideal response.
title : str | None
The title to use. If None (default), determine the title based
on the type of the system.
color : color object
The color to use (default '#1f77b4').
flim : tuple or None
If not None, the x-axis frequency limits (Hz) to use.
If None, freq will be used. If None (default) and freq is None,
``(0.1, sfreq / 2.)`` will be used.
fscale : str
Frequency scaling to use, can be "log" (default) or "linear".
alim : tuple
The y-axis amplitude limits (dB) to use (default: (-60, 10)).
show : bool
Show figure if True (default).
compensate : bool
If True, compensate for the filter delay (phase will not be shown).
- For linear-phase FIR filters, this visualizes the filter coefficients
assuming that the output will be shifted by ``N // 2``.
- For IIR filters, this changes the filter coefficient display
by filtering backward and forward, and the frequency response
by squaring it.
.. versionadded:: 0.18
plot : list | tuple | str
A list of the requested plots from ``time``, ``magnitude`` and
``delay``. Default is to plot all three filter properties
('time', 'magnitude', 'delay').
.. versionadded:: 0.21.0
axes : instance of Axes | list | None
The axes to plot to. If list, the list must be a list of Axes of
the same length as the number of requested plot types. If instance of
Axes, there must be only one filter property plotted.
Defaults to ``None``.
.. versionadded:: 0.21.0
dlim : None | tuple
The y-axis delay limits (s) to use (default:
``(-tmax / 2., tmax / 2.)``).
.. versionadded:: 1.1.0
Returns
-------
fig : matplotlib.figure.Figure
The figure containing the plots.
See Also
--------
mne.filter.create_filter
plot_ideal_filter
Notes
-----
.. versionadded:: 0.14
"""
import matplotlib.pyplot as plt
sfreq = float(sfreq)
_check_option("fscale", fscale, ["log", "linear"])
if isinstance(plot, str):
plot = [plot]
for xi, x in enumerate(plot):
_check_option(f"plot[{xi}]", x, ("magnitude", "delay", "time"))
flim = _get_flim(flim, fscale, freq, sfreq)
if fscale == "log":
omega = np.logspace(np.log10(flim[0]), np.log10(flim[1]), 1000)
else:
omega = np.linspace(flim[0], flim[1], 1000)
xticks, xticklabels = _filter_ticks(flim, fscale)
omega /= sfreq / (2 * np.pi)
if isinstance(h, dict): # IIR h.ndim == 2: # second-order sections
if "sos" in h:
H = np.ones(len(omega), np.complex128)
gd = np.zeros(len(omega))
for section in h["sos"]:
this_H = freqz(section[:3], section[3:], omega)[1]
H *= this_H
if compensate:
H *= this_H.conj() # time reversal is freq conj
else:
# Assume the forward-backward delay zeros out, which it
# mostly should
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter("ignore")
gd += group_delay((section[:3], section[3:]), omega)[1]
n = estimate_ringing_samples(h["sos"])
delta = np.zeros(n)
delta[0] = 1
if compensate:
delta = np.pad(delta, [(n - 1, 0)], "constant")
func = sosfiltfilt
gd += (len(delta) - 1) // 2
else:
func = sosfilt
h = func(h["sos"], delta)
else:
H = freqz(h["b"], h["a"], omega)[1]
if compensate:
H *= H.conj()
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter("ignore")
gd = group_delay((h["b"], h["a"]), omega)[1]
if compensate:
gd += group_delay((h["b"].conj(), h["a"].conj()), omega)[1]
n = estimate_ringing_samples((h["b"], h["a"]))
delta = np.zeros(n)
delta[0] = 1
if compensate:
delta = np.pad(delta, [(n - 1, 0)], "constant")
func = filtfilt
else:
func = lfilter
h = func(h["b"], h["a"], delta)
if title is None:
title = "SOS (IIR) filter"
if compensate:
title += " (forward-backward)"
else:
H = freqz(h, worN=omega)[1]
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter("ignore")
gd = group_delay((h, [1.0]), omega)[1]
title = "FIR filter" if title is None else title
if compensate:
title += " (delay-compensated)"
fig = None
if axes is None:
fig, axes = plt.subplots(len(plot), 1, layout="constrained")
if isinstance(axes, plt.Axes):
axes = [axes]
elif isinstance(axes, np.ndarray):
axes = list(axes)
if fig is None:
fig = axes[0].get_figure()
if len(axes) != len(plot):
raise ValueError(
f"Length of axes ({len(axes)}) must be the same as number of "
f"requested filter properties ({len(plot)})"
)
t = np.arange(len(h))
if dlim is None:
dlim = np.abs(t).max() / 2.0
dlim = [-dlim, dlim]
if compensate:
n_shift = (len(h) - 1) // 2
t -= n_shift
assert t[0] == -t[-1]
gd -= n_shift
t = t / sfreq
gd = gd / sfreq
f = omega * sfreq / (2 * np.pi)
sl = slice(0 if fscale == "linear" else 1, None, None)
mag = 10 * np.log10(np.maximum((H * H.conj()).real, 1e-20))
if "time" in plot:
ax_time_idx = np.where([p == "time" for p in plot])[0][0]
axes[ax_time_idx].plot(t, h, color=color, linewidth=1.2)
axes[ax_time_idx].grid(visible=True, which="major", axis="both", linewidth=0.15)
axes[ax_time_idx].set(
xlim=t[[0, -1]], xlabel="Time (s)", ylabel="Amplitude", title=title
)
# Magnitude
if "magnitude" in plot:
ax_mag_idx = np.where([p == "magnitude" for p in plot])[0][0]
axes[ax_mag_idx].plot(f[sl], mag[sl], color=color, linewidth=1.2, zorder=4)
axes[ax_mag_idx].grid(visible=True, which="major", axis="both", linewidth=0.15)
if freq is not None and gain is not None:
plot_ideal_filter(freq, gain, axes[ax_mag_idx], fscale=fscale, show=False)
axes[ax_mag_idx].set(ylabel="Magnitude (dB)", xlabel="", xscale=fscale)
if xticks is not None:
axes[ax_mag_idx].set(xticks=xticks)
axes[ax_mag_idx].set(xticklabels=xticklabels)
axes[ax_mag_idx].set(
xlim=flim, ylim=alim, xlabel="Frequency (Hz)", ylabel="Amplitude (dB)"
)
# Delay
if "delay" in plot:
ax_delay_idx = np.where([p == "delay" for p in plot])[0][0]
axes[ax_delay_idx].plot(f[sl], gd[sl], color=color, linewidth=1.2, zorder=4)
axes[ax_delay_idx].grid(
visible=True, which="major", axis="both", linewidth=0.15
)
# shade nulled regions
for start, stop in zip(*_mask_to_onsets_offsets(mag <= -39.9)):
axes[ax_delay_idx].axvspan(
f[start], f[stop - 1], facecolor="k", alpha=0.05, zorder=5
)
axes[ax_delay_idx].set(
xlim=flim, ylabel="Group delay (s)", xlabel="Frequency (Hz)", xscale=fscale
)
if xticks is not None:
axes[ax_delay_idx].set(xticks=xticks)
axes[ax_delay_idx].set(xticklabels=xticklabels)
axes[ax_delay_idx].set(
xlim=flim, ylim=dlim, xlabel="Frequency (Hz)", ylabel="Delay (s)"
)
adjust_axes(axes)
plt_show(show)
return fig
def plot_ideal_filter(
freq,
gain,
axes=None,
title="",
flim=None,
fscale="log",
alim=_DEFAULT_ALIM,
color="r",
alpha=0.5,
linestyle="--",
show=True,
):
"""Plot an ideal filter response.
Parameters
----------
freq : array-like
The ideal response frequencies to plot (must be in ascending order).
gain : array-like or None
The ideal response gains to plot.
axes : instance of Axes | None
The subplot handle. With None (default), axes are created.
title : str
The title to use, (default: '').
flim : tuple or None
If not None, the x-axis frequency limits (Hz) to use.
If None (default), freq used.
fscale : str
Frequency scaling to use, can be "log" (default) or "linear".
alim : tuple
If not None (default), the y-axis limits (dB) to use.
color : color object
The color to use (default: 'r').
alpha : float
The alpha to use (default: 0.5).
linestyle : str
The line style to use (default: '--').
show : bool
Show figure if True (default).
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
See Also
--------
plot_filter
Notes
-----
.. versionadded:: 0.14
Examples
--------
Plot a simple ideal band-pass filter::
>>> from mne.viz import plot_ideal_filter
>>> freq = [0, 1, 40, 50]
>>> gain = [0, 1, 1, 0]
>>> plot_ideal_filter(freq, gain, flim=(0.1, 100)) #doctest: +SKIP
<...Figure...>
"""
import matplotlib.pyplot as plt
my_freq, my_gain = list(), list()
if freq[0] != 0:
raise ValueError(
"freq should start with DC (zero) and end with "
f"Nyquist, but got {freq[0]} for DC"
)
freq = np.array(freq)
# deal with semilogx problems @ x=0
_check_option("fscale", fscale, ["log", "linear"])
if fscale == "log":
freq[0] = 0.1 * freq[1] if flim is None else min(flim[0], freq[1])
flim = _get_flim(flim, fscale, freq)
transitions = list()
for ii in range(len(freq)):
if ii < len(freq) - 1 and gain[ii] != gain[ii + 1]:
transitions += [[freq[ii], freq[ii + 1]]]
my_freq += np.linspace(freq[ii], freq[ii + 1], 20, endpoint=False).tolist()
my_gain += np.linspace(gain[ii], gain[ii + 1], 20, endpoint=False).tolist()
else:
my_freq.append(freq[ii])
my_gain.append(gain[ii])
my_gain = 10 * np.log10(np.maximum(my_gain, 10 ** (alim[0] / 10.0)))
if axes is None:
axes = plt.subplots(1, layout="constrained")[1]
for transition in transitions:
axes.axvspan(*transition, color=color, alpha=0.1)
axes.plot(
my_freq,
my_gain,
color=color,
linestyle=linestyle,
alpha=alpha,
linewidth=2,
zorder=3,
)
xticks, xticklabels = _filter_ticks(flim, fscale)
axes.set(ylim=alim, xlabel="Frequency (Hz)", ylabel="Amplitude (dB)", xscale=fscale)
if xticks is not None:
axes.set(xticks=xticks)
axes.set(xticklabels=xticklabels)
axes.set(xlim=flim)
if title:
axes.set(title=title)
adjust_axes(axes)
plt_show(show)
return axes.figure
def _handle_event_colors(color_dict, unique_events, event_id):
"""Create event-integer-to-color mapping, assigning defaults as needed."""
default_colors = dict(zip(sorted(unique_events), cycle(_get_color_list())))
# warn if not enough colors
if color_dict is None:
if len(unique_events) > len(_get_color_list()):
warn(
"More events than default colors available. You should pass "
"a list of unique colors."
)
else:
custom_colors = dict()
for key, color in color_dict.items():
if key in unique_events: # key was a valid event integer
custom_colors[key] = color
elif key in event_id: # key was an event label
custom_colors[event_id[key]] = color
else: # key not a valid event, warn and ignore
warn(
f"Event ID {key} is in the color dict but is not "
"present in events or event_id."
)
# warn if color_dict is missing any entries
unassigned = sorted(set(unique_events) - set(custom_colors))
if len(unassigned):
unassigned_str = ", ".join(str(e) for e in unassigned)
warn(
f"Color was not assigned for event{_pl(unassigned)} {unassigned_str}. "
"Default colors will be used."
)
default_colors.update(custom_colors)
return default_colors
@fill_doc
def plot_csd(
csd, info=None, mode="csd", colorbar=True, cmap=None, n_cols=None, show=True
):
"""Plot CSD matrices.
A sub-plot is created for each frequency. If an info object is passed to
the function, different channel types are plotted in different figures.
Parameters
----------
csd : instance of CrossSpectralDensity
The CSD matrix to plot.
%(info)s
Used to split the figure by channel-type, if provided.
By default, the CSD matrix is plotted as a whole.
mode : 'csd' | 'coh'
Whether to plot the cross-spectral density ('csd', the default), or
the coherence ('coh') between the channels.
colorbar : bool
Whether to show a colorbar. Defaults to ``True``.
cmap : str | None
The matplotlib colormap to use. Defaults to None, which means the
colormap will default to matplotlib's default.
n_cols : int | None
CSD matrices are plotted in a grid. This parameter controls how
many matrix to plot side by side before starting a new row. By
default, a number will be chosen to make the grid as square as
possible.
show : bool
Whether to show the figure. Defaults to ``True``.
Returns
-------
fig : list of Figure
The figures created by this function.
"""
import matplotlib.pyplot as plt
if mode not in ["csd", "coh"]:
raise ValueError('"mode" should be either "csd" or "coh".')
if info is not None:
info_ch_names = info["ch_names"]
sel_eeg = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude=[])
sel_mag = pick_types(info, meg="mag", eeg=False, ref_meg=False, exclude=[])
sel_grad = pick_types(info, meg="grad", eeg=False, ref_meg=False, exclude=[])
idx_eeg = [
csd.ch_names.index(info_ch_names[c])
for c in sel_eeg
if info_ch_names[c] in csd.ch_names
]
idx_mag = [
csd.ch_names.index(info_ch_names[c])
for c in sel_mag
if info_ch_names[c] in csd.ch_names
]
idx_grad = [
csd.ch_names.index(info_ch_names[c])
for c in sel_grad
if info_ch_names[c] in csd.ch_names
]
indices = [idx_eeg, idx_mag, idx_grad]
titles = ["EEG", "Magnetometers", "Gradiometers"]
if mode == "csd":
# The units in which to plot the CSD
units = dict(eeg="µV²", grad="fT²/cm²", mag="fT²")
scalings = dict(eeg=1e12, grad=1e26, mag=1e30)
else:
indices = [np.arange(len(csd.ch_names))]
if mode == "csd":
titles = ["Cross-spectral density"]
# Units and scaling unknown
units = dict()
scalings = dict()
elif mode == "coh":
titles = ["Coherence"]
n_freqs = len(csd.frequencies)
if n_cols is None:
n_cols = int(np.ceil(np.sqrt(n_freqs)))
n_rows = int(np.ceil(n_freqs / float(n_cols)))
figs = []
for ind, title, ch_type in zip(indices, titles, ["eeg", "mag", "grad"]):
if len(ind) == 0:
continue
fig, axes = plt.subplots(
n_rows,
n_cols,
squeeze=False,
figsize=(2 * n_cols + 1, 2.2 * n_rows),
layout="constrained",
)
csd_mats = []
for i in range(len(csd.frequencies)):
cm = csd.get_data(index=i)[ind][:, ind]
if mode == "csd":
cm = np.abs(cm) * scalings.get(ch_type, 1)
elif mode == "coh":
# Compute coherence from the CSD matrix
psd = np.diag(cm).real
cm = np.abs(cm) ** 2 / psd[np.newaxis, :] / psd[:, np.newaxis]
csd_mats.append(cm)
vmax = np.max(csd_mats)
for i, (freq, mat) in enumerate(zip(csd.frequencies, csd_mats)):
ax = axes[i // n_cols][i % n_cols]
im = ax.imshow(mat, interpolation="nearest", cmap=cmap, vmin=0, vmax=vmax)
ax.set_xticks([])
ax.set_yticks([])
if csd._is_sum:
ax.set_title(f"{np.min(freq):.1f}-{np.max(freq):.1f} Hz.")
else:
ax.set_title(f"{freq:.1f} Hz.")
plt.suptitle(title)
if colorbar:
cb = plt.colorbar(im, ax=[a for ax_ in axes for a in ax_])
if mode == "csd":
label = "CSD"
if ch_type in units:
label += f" ({units[ch_type]})"
cb.set_label(label)
elif mode == "coh":
cb.set_label("Coherence")
figs.append(fig)
plt_show(show)
return figs
def plot_chpi_snr(snr_dict, axes=None):
"""Plot time-varying SNR estimates of the HPI coils.
Parameters
----------
snr_dict : dict
The dictionary returned by `~mne.chpi.compute_chpi_snr`. Must have keys
``times``, ``freqs``, ``TYPE_snr``, ``TYPE_power``, and ``TYPE_resid``
(where ``TYPE`` can be ``mag`` or ``grad`` or both).
axes : None | list of matplotlib.axes.Axes
Figure axes in which to draw the SNR, power, and residual plots. The
number of axes should be 3× the number of MEG sensor types present in
``snr_dict``. If ``None`` (the default), a new
`~matplotlib.figure.Figure` is created with the required number of
axes.
Returns
-------
fig : instance of matplotlib.figure.Figure
A figure with subplots for SNR, power, and residual variance,
separately for magnetometers and/or gradiometers (depending on what is
present in ``snr_dict``).
Notes
-----
If you supply a list of existing `~matplotlib.axes.Axes`, then the figure
legend will not be drawn automatically. If you still want it, running
``fig.legend(loc='right', title='cHPI frequencies')`` will recreate it.
.. versionadded:: 0.24
"""
import matplotlib.pyplot as plt
valid_keys = list(snr_dict)[2:]
titles = dict(snr="SNR", power="cHPI power", resid="Residual variance")
full_names = dict(mag="magnetometers", grad="gradiometers")
axes_was_none = axes is None
if axes_was_none:
fig, axes = plt.subplots(len(valid_keys), 1, sharex=True, layout="constrained")
else:
fig = axes[0].get_figure()
if len(axes) != len(valid_keys):
raise ValueError(
f"axes must be a list of {len(valid_keys)} axes, got "
f"length {len(axes)} ({axes})."
)
fig.set_size_inches(10, 10)
legend_labels_exist = False
for key, ax in zip(valid_keys, axes):
ch_type, kind = key.split("_")
scaling = 1 if kind == "snr" else DEFAULTS["scalings"][ch_type]
plot_kwargs = dict(color="k") if kind == "resid" else dict()
lines = ax.plot(snr_dict["times"], snr_dict[key] * scaling**2, **plot_kwargs)
# the freqs should be the same for all sensor types (and for SNR and
# power subplots), so we only need to label the lines on one axes
# (otherwise we get duplicate legend entries).
if not legend_labels_exist:
for line, freq in zip(lines, snr_dict["freqs"]):
line.set_label(f"{freq} Hz")
legend_labels_exist = True
unit = DEFAULTS["units"][ch_type]
unit = f"({unit})" if "/" in unit else unit
set_kwargs = dict(
title=f"{titles[kind]}, {full_names[ch_type]}",
ylabel="dB" if kind == "snr" else f"{unit}²",
)
if not axes_was_none:
set_kwargs.update(xlabel="Time (s)")
ax.set(**set_kwargs)
if axes_was_none:
ax.set(xlabel="Time (s)")
fig.align_ylabels()
fig.legend(loc="right", title="cHPI frequencies")
return fig