[7f9fb8]: / mne / viz / ica.py

Download this file

1461 lines (1308 with data), 46.7 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
"""Functions to plot ICA specific data (besides topographies)."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import warnings
from functools import partial
import numpy as np
from scipy.stats import gaussian_kde
from .._fiff.meas_info import create_info
from .._fiff.pick import _picks_to_idx, pick_types
from .._fiff.proj import _has_eeg_average_ref_proj
from ..defaults import DEFAULTS, _handle_default
from ..utils import (
_reject_data_segments,
_validate_type,
fill_doc,
verbose,
)
from .epochs import plot_epochs_image
from .evoked import _butterfly_on_button_press, _butterfly_onpick
from .topomap import _plot_ica_topomap
from .utils import (
_compute_scalings,
_convert_psds,
_get_cmap,
_get_plot_ch_type,
_handle_precompute,
_make_event_color_dict,
plt_show,
)
@fill_doc
def plot_ica_sources(
ica,
inst,
picks=None,
start=None,
stop=None,
title=None,
show=True,
block=False,
show_first_samp=False,
show_scrollbars=True,
time_format="float",
precompute=None,
use_opengl=None,
*,
psd_args=None,
theme=None,
overview_mode=None,
splash=True,
):
"""Plot estimated latent sources given the unmixing matrix.
Typical usecases:
1. plot evolution of latent sources over time based on (Raw input)
2. plot latent source around event related time windows (Epochs input)
3. plot time-locking in ICA space (Evoked input)
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
inst : instance of Raw, Epochs or Evoked
The object to plot the sources from.
%(picks_ica)s
start, stop : float | int | None
If ``inst`` is a `~mne.io.Raw` or an `~mne.Evoked` object, the first and
last time point (in seconds) of the data to plot. If ``inst`` is a
`~mne.io.Raw` object, ``start=None`` and ``stop=None`` will be
translated into ``start=0.`` and ``stop=3.``, respectively. For
`~mne.Evoked`, ``None`` refers to the beginning and end of the evoked
signal. If ``inst`` is an `~mne.Epochs` object, specifies the index of
the first and last epoch to show.
title : str | None
The window title. If None a default is provided.
show : bool
Show figure if True.
block : bool
Whether to halt program execution until the figure is closed.
Useful for interactive selection of components in raw and epoch
plotter. For evoked, this parameter has no effect. Defaults to False.
show_first_samp : bool
If True, show time axis relative to the ``raw.first_samp``.
%(show_scrollbars)s
%(time_format)s
%(precompute)s
%(use_opengl)s
psd_args : dict | None
Dictionary of arguments to pass to :meth:`~mne.Epochs.compute_psd` in
interactive mode. Ignored if ``inst`` is not supplied. If ``None``,
nothing is passed. Defaults to ``None``.
.. versionadded:: 1.9
%(theme_pg)s
.. versionadded:: 1.0
%(overview_mode)s
.. versionadded:: 1.1
%(splash)s
.. versionadded:: 1.6
Returns
-------
%(browser)s
Notes
-----
For raw and epoch instances, it is possible to select components for
exclusion by clicking on the line. The selected components are added to
``ica.exclude`` on close.
%(notes_2d_backend)s
.. versionadded:: 0.10.0
"""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..io import BaseRaw
exclude = ica.exclude
picks = _picks_to_idx(ica.n_components_, picks, picks_on="components")
if isinstance(inst, BaseRaw | BaseEpochs):
fig = _plot_sources(
ica,
inst,
picks,
exclude,
start=start,
stop=stop,
show=show,
title=title,
block=block,
psd_args=psd_args,
show_first_samp=show_first_samp,
show_scrollbars=show_scrollbars,
time_format=time_format,
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
splash=splash,
)
elif isinstance(inst, Evoked):
if start is not None or stop is not None:
inst = inst.copy().crop(start, stop)
sources = ica.get_sources(inst)
fig = _plot_ica_sources_evoked(
evoked=sources,
picks=picks,
exclude=exclude,
title=title,
labels=getattr(ica, "labels_", None),
show=show,
ica=ica,
)
else:
raise ValueError("Data input must be of Raw or Epochs type")
return fig
def _create_properties_layout(figsize=None, fig=None):
"""Create main figure and axes layout used by plot_ica_properties."""
import matplotlib.pyplot as plt
if fig is not None and figsize is not None:
raise ValueError("Cannot specify both fig and figsize.")
if figsize is None:
figsize = [7.0, 6.0]
if fig is None:
fig = plt.figure(figsize=figsize, facecolor=[0.95] * 3)
axes_params = (
("topomap", [0.08, 0.5, 0.3, 0.45]),
("image", [0.5, 0.6, 0.45, 0.35]),
("erp", [0.5, 0.5, 0.45, 0.1]),
("spectrum", [0.08, 0.1, 0.32, 0.3]),
("variance", [0.5, 0.1, 0.45, 0.25]),
)
axes = [fig.add_axes(loc, label=name) for name, loc in axes_params]
return fig, axes
def _plot_ica_properties(
pick,
ica,
inst,
psds_mean,
freqs,
n_trials,
epoch_var,
plot_lowpass_edge,
epochs_src,
set_title_and_labels,
plot_std,
psd_ylabel,
spectrum_std,
log_scale,
topomap_args,
image_args,
fig,
axes,
kind,
dropped_indices,
):
"""Plot ICA properties (helper)."""
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
topo_ax, image_ax, erp_ax, spec_ax, var_ax = axes
# plotting
# --------
# component topomap
_plot_ica_topomap(ica, pick, show=False, axes=topo_ax, **topomap_args)
topo_ax._ch_type = _get_plot_ch_type(
ica,
ch_type=None,
allow_ref_meg=ica.allow_ref_meg,
)
# image and erp
# we create a new epoch with dropped rows
epoch_data = epochs_src.get_data(copy=False)
epoch_data = np.insert(
arr=epoch_data,
obj=(dropped_indices - np.arange(len(dropped_indices))).astype(int),
values=0.0,
axis=0,
)
from ..epochs import EpochsArray
epochs_src = EpochsArray(
epoch_data, epochs_src.info, tmin=epochs_src.tmin, verbose=0
)
plot_epochs_image(
epochs_src,
picks=pick,
axes=[image_ax, erp_ax],
combine=None,
colorbar=False,
show=False,
**image_args,
)
# spectrum
spec_ax.plot(freqs, psds_mean, color="k")
if plot_std:
spec_ax.fill_between(
freqs,
psds_mean - spectrum_std[0],
psds_mean + spectrum_std[1],
color="k",
alpha=0.2,
)
if plot_lowpass_edge:
spec_ax.axvline(
inst.info["lowpass"], lw=2, linestyle="--", color="k", alpha=0.2
)
# epoch variance
var_ax_divider = make_axes_locatable(var_ax)
hist_ax = var_ax_divider.append_axes("right", size="33%", pad="2.5%")
var_ax.scatter(
range(len(epoch_var)), epoch_var, alpha=0.5, facecolor=[0, 0, 0], lw=0
)
# rejected epochs in red
var_ax.scatter(
dropped_indices,
epoch_var[dropped_indices],
alpha=1.0,
facecolor=[1, 0, 0],
lw=0,
)
# compute percentage of dropped epochs
var_percent = float(len(dropped_indices)) / float(len(epoch_var)) * 100.0
# histogram & histogram
_, counts, _ = hist_ax.hist(
epoch_var, orientation="horizontal", color="k", alpha=0.5
)
# kde
ymin, ymax = hist_ax.get_ylim()
try:
kde = gaussian_kde(epoch_var)
except np.linalg.LinAlgError:
pass # singular: happens when there is nothing plotted
else:
x = np.linspace(ymin, ymax, 50)
kde_ = kde(x)
kde_ /= kde_.max() or 1.0
kde_ *= hist_ax.get_xlim()[-1] * 0.9
hist_ax.plot(kde_, x, color="k")
hist_ax.set_ylim(ymin, ymax)
# aesthetics
# ----------
set_title_and_labels(image_ax, kind + " image and ERP/ERF", [], kind)
# erp
set_title_and_labels(erp_ax, [], "Time (s)", "AU")
erp_ax.spines["right"].set_color("k")
erp_ax.set_xlim(epochs_src.times[[0, -1]])
# remove half of yticks if more than 5
yt = erp_ax.get_yticks()
if len(yt) > 5:
erp_ax.yaxis.set_ticks(yt[::2])
# remove xticks - erp plot shows xticks for both image and erp plot
image_ax.xaxis.set_ticks([])
yt = image_ax.get_yticks()
image_ax.yaxis.set_ticks(yt[1:])
image_ax.set_ylim([-0.5, n_trials + 0.5])
def _set_scale(ax, scale):
"""Set the scale of a matplotlib axis."""
ax.set_xscale(scale)
ax.set_yscale(scale)
ax.relim()
ax.autoscale()
# spectrum
set_title_and_labels(spec_ax, "Spectrum", "Frequency (Hz)", psd_ylabel)
spec_ax.yaxis.labelpad = 0
spec_ax.set_xlim(freqs[[0, -1]])
ylim = spec_ax.get_ylim()
air = np.diff(ylim)[0] * 0.1
spec_ax.set_ylim(ylim[0] - air, ylim[1] + air)
image_ax.axhline(0, color="k", linewidth=0.5)
if log_scale:
_set_scale(spec_ax, "log")
# epoch variance
var_ax_title = f"Dropped segments: {var_percent:.2f} %"
set_title_and_labels(var_ax, var_ax_title, kind, "Variance (AU)")
hist_ax.set_ylabel("")
hist_ax.set_yticks([])
set_title_and_labels(hist_ax, None, None, None)
def _plot_ica_properties_on_press(event, ica, pick, topomap_args):
"""Handle keypress events for ica properties plot."""
import matplotlib.pyplot as plt
fig = event.canvas.figure
if event.key == "escape":
plt.close(fig)
if event.key in ("t", "l"):
ax_labels = [ax.get_label() for ax in fig.axes]
if event.key == "t":
ax = fig.axes[ax_labels.index("topomap")]
ax.clear()
ch_types = list(set(ica.get_channel_types()))
ch_type = ch_types[(ch_types.index(ax._ch_type) + 1) % len(ch_types)]
_plot_ica_topomap(
ica, pick, ch_type=ch_type, show=False, axes=ax, **topomap_args
)
ax._ch_type = ch_type
elif event.key == "l":
ax = fig.axes[ax_labels.index("spectrum")]
_set_scale(ax, "linear" if ax.get_xscale() == "log" else "log")
del ax
fig.canvas.draw()
# add keypress event handler
fig.canvas.mpl_connect(
"key_press_event",
lambda event: _plot_ica_properties_on_press(event, ica, pick, topomap_args),
)
return fig
def _get_psd_label_and_std(this_psd, dB, ica, num_std, *, estimate):
"""Handle setting up PSD for one component, for plot_ica_properties."""
psd_ylabel = _convert_psds(
this_psd, dB, estimate=estimate, scaling=1.0, unit="AU", first_dim="epoch"
)
psds_mean = this_psd.mean(axis=0)
diffs = this_psd - psds_mean
# the distribution of power for each frequency bin is highly
# skewed so we calculate std for values below and above average
# separately - this is used for fill_between shade
with warnings.catch_warnings(): # mean of empty slice
warnings.simplefilter("ignore")
spectrum_std = [
[np.sqrt((d[d < 0] ** 2).mean(axis=0)) for d in diffs.T],
[np.sqrt((d[d > 0] ** 2).mean(axis=0)) for d in diffs.T],
]
spectrum_std = np.array(spectrum_std) * num_std
return psd_ylabel, psds_mean, spectrum_std
@verbose
def plot_ica_properties(
ica,
inst,
picks=None,
axes=None,
dB=True,
plot_std=True,
log_scale=False,
topomap_args=None,
image_args=None,
psd_args=None,
figsize=None,
show=True,
reject="auto",
reject_by_annotation=True,
*,
estimate="power",
verbose=None,
):
"""Display component properties.
Properties include the topography, epochs image, ERP/ERF, power
spectrum, and epoch variance.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
inst : instance of Epochs or Raw
The data to use in plotting properties.
.. note::
You can interactively cycle through topographic maps for different
channel types by pressing :kbd:`T`.
picks : int | list of int | slice | None
Indices of the independent components (ICs) to visualize.
If an integer, represents the index of the IC to pick.
Multiple ICs can be selected using a list of int or a slice.
The indices are 0-indexed, so ``picks=1`` will pick the second
IC: ``ICA001``. ``None`` will pick the first 5 components.
axes : list of Axes | None
List of five matplotlib axes to use in plotting: [topomap_axis,
image_axis, erp_axis, spectrum_axis, variance_axis]. If None a new
figure with relevant axes is created. Defaults to None.
dB : bool
Whether to plot spectrum in dB. Defaults to True.
plot_std : bool | float
Whether to plot standard deviation/confidence intervals in ERP/ERF and
spectrum plots.
Defaults to True, which plots one standard deviation above/below for
the spectrum. If set to float allows to control how many standard
deviations are plotted for the spectrum. For example 2.5 will plot 2.5
standard deviation above/below.
For the ERP/ERF, by default, plot the 95 percent parametric confidence
interval is calculated. To change this, use ``ci`` in ``ts_args`` in
``image_args`` (see below).
log_scale : bool
Whether to use a logarithmic frequency axis to plot the spectrum.
Defaults to ``False``.
.. note::
You can interactively toggle this setting by pressing :kbd:`L`.
.. versionadded:: 1.1
topomap_args : dict | None
Dictionary of arguments to ``plot_topomap``. If None, doesn't pass any
additional arguments. Defaults to None.
image_args : dict | None
Dictionary of arguments to ``plot_epochs_image``. If None, doesn't pass
any additional arguments. Defaults to None.
psd_args : dict | None
Dictionary of arguments to :meth:`~mne.Epochs.compute_psd`. If
``None``, doesn't pass any additional arguments. Defaults to ``None``.
figsize : array-like, shape (2,) | None
Allows to control size of the figure. If None, the figure size
defaults to [7., 6.].
show : bool
Show figure if True.
reject : 'auto' | dict | None
Allows to specify rejection parameters used to drop epochs
(or segments if continuous signal is passed as inst).
If None, no rejection is applied. The default is 'auto',
which applies the rejection parameters used when fitting
the ICA object.
%(reject_by_annotation_raw)s
.. versionadded:: 0.21.0
%(estimate_plot_psd)s
.. versionadded:: 1.8.0
%(verbose)s
Returns
-------
fig : list
List of matplotlib figures.
Notes
-----
.. versionadded:: 0.13
"""
return _fast_plot_ica_properties(
ica,
inst,
picks=picks,
axes=axes,
dB=dB,
plot_std=plot_std,
log_scale=log_scale,
topomap_args=topomap_args,
image_args=image_args,
psd_args=psd_args,
figsize=figsize,
show=show,
reject=reject,
reject_by_annotation=reject_by_annotation,
verbose=verbose,
estimate=estimate,
precomputed_data=None,
)
def _fast_plot_ica_properties(
ica,
inst,
picks=None,
axes=None,
dB=True,
plot_std=True,
log_scale=False,
topomap_args=None,
image_args=None,
psd_args=None,
figsize=None,
show=True,
reject="auto",
precomputed_data=None,
reject_by_annotation=True,
*,
estimate="power",
verbose=None,
):
"""Display component properties."""
from ..preprocessing import ICA
# input checks and defaults
# -------------------------
_validate_type(ica, ICA, "ica", "ICA")
_validate_type(plot_std, (bool, "numeric"), "plot_std")
if isinstance(plot_std, bool):
num_std = 1.0 if plot_std else 0.0
else:
plot_std = True
num_std = float(plot_std)
limit = min(5, ica.n_components_) if picks is None else ica.n_components_
picks = _picks_to_idx(ica.n_components_, picks, picks_on="components")[:limit]
if axes is None:
fig, axes = _create_properties_layout(figsize=figsize)
else:
if len(picks) > 1:
raise ValueError("Only a single pick can be drawn to a set of axes.")
from .utils import _validate_if_list_of_axes
_validate_if_list_of_axes(axes, obligatory_len=5)
fig = axes[0].get_figure()
psd_args = dict() if psd_args is None else psd_args
topomap_args = dict() if topomap_args is None else topomap_args
image_args = dict() if image_args is None else image_args
image_args["ts_args"] = dict(truncate_xaxis=False, show_sensors=False)
if plot_std:
from ..stats.parametric import _parametric_ci
image_args["ts_args"]["ci"] = _parametric_ci
elif "ts_args" not in image_args or "ci" not in image_args["ts_args"]:
image_args["ts_args"]["ci"] = False
for item_name, item in (
("psd_args", psd_args),
("topomap_args", topomap_args),
("image_args", image_args),
):
_validate_type(item, dict, item_name, "dictionary")
_validate_type(dB, (bool, None), "dB")
_validate_type(log_scale, (bool, None), "log_scale")
# calculations
# ------------
if isinstance(precomputed_data, tuple):
kind, dropped_indices, epochs_src, data = precomputed_data
else:
kind, dropped_indices, epochs_src, data = _prepare_data_ica_properties(
inst, ica, reject_by_annotation, reject
)
del reject
ica_data = np.swapaxes(data[:, picks, :], 0, 1)
dropped_src = ica_data
# spectrum
Nyquist = inst.info["sfreq"] / 2.0
lp = inst.info["lowpass"]
if "fmax" not in psd_args:
psd_args["fmax"] = min(lp * 1.25, Nyquist)
plot_lowpass_edge = lp < Nyquist and (psd_args["fmax"] > lp)
spectrum = epochs_src.compute_psd(picks=picks, **psd_args)
# we've already restricted picks ↑↑↑↑↑↑↑↑↑↑↑
# in the spectrum object, so here we do picks=all ↓↓↓↓↓↓↓↓↓↓↓
psds, freqs = spectrum.get_data(return_freqs=True, picks="all", exclude=[])
# we also pass exclude=[] so that when this is called by right-clicking in
# a plot_sources() window on an ICA component name that has been marked as
# bad, we can still get a plot of it.
def set_title_and_labels(ax, title, xlab, ylab):
if title:
ax.set_title(title)
if xlab:
ax.set_xlabel(xlab)
if ylab:
ax.set_ylabel(ylab)
ax.axis("auto")
ax.tick_params("both", labelsize=8)
ax.axis("tight")
# plot
# ----
all_fig = list()
for idx, pick in enumerate(picks):
# calculate component-specific spectrum stuff
psd_ylabel, psds_mean, spectrum_std = _get_psd_label_and_std(
psds[:, idx, :].copy(),
dB,
ica,
num_std,
estimate=estimate,
)
# if more than one component, spawn additional figures and axes
if idx > 0:
fig, axes = _create_properties_layout(figsize=figsize)
# we reconstruct an epoch_variance with 0 where indexes where dropped
epoch_var = np.var(ica_data[idx], axis=1)
drop_var = np.var(dropped_src[idx], axis=1)
drop_indices_corrected = (
dropped_indices - np.arange(len(dropped_indices))
).astype(int)
epoch_var = np.insert(
arr=epoch_var,
obj=drop_indices_corrected,
values=drop_var[dropped_indices],
axis=0,
)
# the actual plot
fig = _plot_ica_properties(
pick,
ica,
inst,
psds_mean,
freqs,
ica_data.shape[1],
epoch_var,
plot_lowpass_edge,
epochs_src,
set_title_and_labels,
plot_std,
psd_ylabel,
spectrum_std,
log_scale,
topomap_args,
image_args,
fig,
axes,
kind,
dropped_indices,
)
all_fig.append(fig)
plt_show(show)
return all_fig
def _prepare_data_ica_properties(inst, ica, reject_by_annotation=True, reject="auto"):
"""Prepare Epochs sources to plot ICA properties.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
inst : instance of Epochs or Raw
The data to use in plotting properties.
reject_by_annotation : bool, optional
[description], by default True
reject : str, optional
[description], by default 'auto'
Returns
-------
kind : str
"Segment" for BaseRaw and "Epochs" for BaseEpochs
dropped_indices : list
Dropped epochs indexes.
epochs_src : instance of Epochs
Segmented data of ICA sources.
data : array of shape (n_epochs, n_ica_sources, n_times)
A view on epochs ICA sources data.
"""
from ..epochs import BaseEpochs
from ..io import BaseRaw, RawArray
_validate_type(inst, (BaseRaw, BaseEpochs), "inst", "Raw or Epochs")
if isinstance(inst, BaseRaw):
# when auto, delegate reject to the ica
from ..epochs import make_fixed_length_epochs
if reject == "auto":
reject = ica.reject_
if reject is None:
drop_inds = None
dropped_indices = []
# break up continuous signal into segments
epochs_src = make_fixed_length_epochs(
ica.get_sources(inst),
duration=2,
preload=True,
reject_by_annotation=reject_by_annotation,
proj=False,
verbose=False,
)
else:
data = inst.get_data()
data, drop_inds = _reject_data_segments(
data, reject, flat=None, decim=None, info=inst.info, tstep=2.0
)
inst_rejected = RawArray(data, inst.info)
# break up continuous signal into segments
epochs_src = make_fixed_length_epochs(
ica.get_sources(inst_rejected),
duration=2,
preload=True,
reject_by_annotation=reject_by_annotation,
proj=False,
verbose=False,
)
# getting dropped epochs indexes
dropped_indices = [(d[0] // len(epochs_src.times)) + 1 for d in drop_inds]
kind = "Segment"
else:
drop_inds = None
epochs_src = ica.get_sources(inst)
dropped_indices = []
kind = "Epochs"
return kind, dropped_indices, epochs_src, epochs_src.get_data(copy=False)
def _plot_ica_sources_evoked(evoked, picks, exclude, title, show, ica, labels=None):
"""Plot average over epochs in ICA space.
Parameters
----------
evoked : instance of mne.Evoked
The Evoked to be used.
%(picks_base)s all sources in the order as fitted.
exclude : array-like of int
The components marked for exclusion. If None (default), ICA.exclude
will be used.
title : str
The figure title.
show : bool
Show figure if True.
labels : None | dict
The ICA labels attribute.
"""
import matplotlib.pyplot as plt
from matplotlib import patheffects
if title is None:
title = "Reconstructed latent sources, time-locked"
fig, axes = plt.subplots(1, layout="constrained")
ax = axes
axes = [axes]
times = evoked.times * 1e3
# plot unclassified sources and label excluded ones
lines = list()
texts = list()
picks = np.sort(picks)
idxs = [picks]
if labels is not None:
labels_used = [k for k in labels if "/" not in k]
exclude_labels = list()
for ii in picks:
if ii in exclude:
line_label = ica._ica_names[ii]
if labels is not None:
annot = list()
for this_label in labels_used:
indices = labels[this_label]
if ii in indices:
annot.append(this_label)
if annot:
line_label += " – " + ", ".join(annot) # Unicode en-dash
exclude_labels.append(line_label)
else:
exclude_labels.append(None)
label_props = [("k", "-") if lb is None else ("r", "-") for lb in exclude_labels]
styles = ["-", "--", ":", "-."]
if labels is not None:
# differentiate categories by linestyle and components by color
col_lbs = [it for it in exclude_labels if it is not None]
cmap = _get_cmap("tab10", len(col_lbs))
unique_labels = set()
for label in exclude_labels:
if label is None:
continue
elif " – " in label:
unique_labels.add(label.split(" – ")[1])
else:
unique_labels.add("")
# Determine up to 4 different styles for n categories
cat_styles = dict(
zip(
unique_labels,
map(
lambda ux: styles[int(ux % len(styles))], range(len(unique_labels))
),
)
)
for label_idx, label in enumerate(exclude_labels):
if label is not None:
color = cmap(col_lbs.index(label))
if " – " in label:
label_name = label.split(" – ")[1]
else:
label_name = ""
style = cat_styles[label_name]
label_props[label_idx] = (color, style)
for pick_idx, (exc_label, pick) in enumerate(zip(exclude_labels, picks)):
color, style = label_props[pick_idx]
# ensure traces of excluded components are plotted on top
zorder = 2 if exc_label is None else 10
lines.extend(
ax.plot(
times,
evoked.data[pick].T,
picker=True,
zorder=zorder,
color=color,
linestyle=style,
label=exc_label,
)
)
lines[-1].set_pickradius(3.0)
ax.set(title=title, xlim=times[[0, -1]], xlabel="Time (ms)", ylabel="(NA)")
leg_lines_labels = list(
zip(
*[
(line, label)
for line, label in zip(lines, exclude_labels)
if label is not None
]
)
)
if len(leg_lines_labels):
leg_lines, leg_labels = leg_lines_labels
ax.legend(leg_lines, leg_labels, loc="best")
texts.append(
ax.text(
0,
0,
"",
zorder=3,
verticalalignment="baseline",
horizontalalignment="left",
fontweight="bold",
alpha=0,
)
)
# this is done to give the structure of a list of lists of a group of lines
# in each subplot
lines = [lines]
ch_names = evoked.ch_names
path_effects = [patheffects.withStroke(linewidth=2, foreground="w", alpha=0.75)]
params = dict(
axes=axes,
texts=texts,
lines=lines,
idxs=idxs,
ch_names=ch_names,
need_draw=False,
path_effects=path_effects,
)
fig.canvas.mpl_connect("pick_event", partial(_butterfly_onpick, params=params))
fig.canvas.mpl_connect(
"button_press_event", partial(_butterfly_on_button_press, params=params)
)
plt_show(show)
return fig
def plot_ica_scores(
ica,
scores,
exclude=None,
labels=None,
axhline=None,
title="ICA component scores",
figsize=None,
n_cols=None,
show=True,
):
"""Plot scores related to detected components.
Use this function to asses how well your score describes outlier
sources and how well you were detecting them.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA object.
scores : array-like of float, shape (n_ica_components,) | list of array
Scores based on arbitrary metric to characterize ICA components.
exclude : array-like of int
The components marked for exclusion. If None (default), ICA.exclude
will be used.
labels : str | list | 'ecg' | 'eog' | None
The labels to consider for the axes tests. Defaults to None.
If list, should match the outer shape of ``scores``.
If 'ecg' or 'eog', the ``labels_`` attributes will be looked up.
Note that '/' is used internally for sublabels specifying ECG and
EOG channels.
axhline : float
Draw horizontal line to e.g. visualize rejection threshold.
title : str
The figure title.
figsize : tuple of int | None
The figure size. If None it gets set automatically.
n_cols : int | None
Scores are plotted in a grid. This parameter controls how
many to plot side by side before starting a new row. By
default, a number will be chosen to make the grid as square as
possible.
show : bool
Show figure if True.
Returns
-------
fig : instance of Figure
The figure object.
"""
import matplotlib.pyplot as plt
my_range = np.arange(ica.n_components_)
if exclude is None:
exclude = ica.exclude
exclude = np.unique(exclude)
if not isinstance(scores[0], list | np.ndarray):
scores = [scores]
n_scores = len(scores)
if n_cols is None:
# prefer more rows.
n_rows = int(np.ceil(np.sqrt(n_scores)))
n_cols = (n_scores - 1) // n_rows + 1
else:
n_cols = min(n_scores, n_cols)
n_rows = (n_scores - 1) // n_cols + 1
if figsize is None:
figsize = (6.4 * n_cols, 2.7 * n_rows)
fig, axes = plt.subplots(
n_rows, n_cols, figsize=figsize, sharex=True, sharey=True, layout="constrained"
)
if isinstance(axes, np.ndarray):
axes = axes.flatten()
else:
axes = [axes]
fig.suptitle(title)
if labels == "ecg":
labels = [label for label in ica.labels_ if label.startswith("ecg/")]
labels.sort(key=lambda label: label.split("/")[1]) # sort by index
if len(labels) == 0:
labels = [label for label in ica.labels_ if label.startswith("ecg")]
elif labels == "eog":
labels = [label for label in ica.labels_ if label.startswith("eog/")]
labels.sort(key=lambda label: label.split("/")[1]) # sort by index
if len(labels) == 0:
labels = [label for label in ica.labels_ if label.startswith("eog")]
elif isinstance(labels, str):
labels = [labels]
elif labels is None:
labels = (None,) * n_scores
if len(labels) != n_scores:
raise ValueError(f"Need as many labels ({len(labels)}) as scores ({n_scores})")
for label, this_scores, ax in zip(labels, scores, axes):
if len(my_range) != len(this_scores):
raise ValueError(
"The length of `scores` must equal the number of ICA components."
)
ax.bar(my_range, this_scores, color="gray", edgecolor="k")
for excl in exclude:
ax.bar(my_range[excl], this_scores[excl], color="r", edgecolor="k")
if axhline is not None:
if np.isscalar(axhline):
axhline = [axhline]
for axl in axhline:
ax.axhline(axl, color="r", linestyle="--")
ax.set_ylabel("score")
if label is not None:
if "eog/" in label:
split = label.split("/")
label = ", ".join([split[0], split[2]])
elif "/" in label:
label = ", ".join(label.split("/"))
ax.set_title(f"({label})")
ax.set_xlabel("ICA components")
ax.set_xlim(-0.6, len(this_scores) - 0.4)
fig.canvas.draw()
plt_show(show)
return fig
@verbose
def plot_ica_overlay(
ica,
inst,
exclude=None,
picks=None,
start=None,
stop=None,
title=None,
show=True,
n_pca_components=None,
*,
on_baseline="warn",
verbose=None,
):
"""Overlay of raw and cleaned signals given the unmixing matrix.
This method helps visualizing signal quality and artifact rejection.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA object.
inst : instance of Raw or Evoked
The signal to plot. If `~mne.io.Raw`, the raw data per channel type is displayed
before and after cleaning. A second panel with the RMS for MEG sensors and the
:term:`GFP` for EEG sensors is displayed. If `~mne.Evoked`, butterfly traces for
signals before and after cleaning will be superimposed.
exclude : array-like of int | None (default)
The components marked for exclusion. If ``None`` (default), the components
listed in ``ICA.exclude`` will be used.
%(picks_base)s all channels that were included during fitting.
start, stop : float | None
The first and last time point (in seconds) of the data to plot. If
``inst`` is a `~mne.io.Raw` object, ``start=None`` and ``stop=None``
will be translated into ``start=0.`` and ``stop=3.``, respectively. For
`~mne.Evoked`, ``None`` refers to the beginning and end of the evoked
signal.
%(title_none)s
%(show)s
%(n_pca_components_apply)s
.. versionadded:: 0.22
%(on_baseline_ica)s
%(verbose)s
Returns
-------
fig : instance of Figure
The figure.
"""
# avoid circular imports
from ..evoked import Evoked
from ..io import BaseRaw
from ..preprocessing.ica import _check_start_stop
if ica.current_fit == "unfitted":
raise RuntimeError("You need to fit the ICA first")
_validate_type(inst, (BaseRaw, Evoked), "inst", "Raw or Evoked")
if title is None:
title = "Signals before (red) and after (black) cleaning"
picks = ica.ch_names if picks is None else picks
picks = _picks_to_idx(inst.info, picks, exclude=())
if exclude is None:
exclude = ica.exclude
if not isinstance(exclude, np.ndarray | list):
raise TypeError(f"exclude must be of type list. Got {type(exclude)}")
if isinstance(inst, BaseRaw):
start = 0.0 if start is None else start
stop = 3.0 if stop is None else stop
start, stop = _check_start_stop(inst, start, stop)
raw_cln = ica.apply(
inst.copy(),
exclude=exclude,
start=start,
stop=stop,
n_pca_components=n_pca_components,
)
fig = _plot_ica_overlay_raw(
raw=inst,
raw_cln=raw_cln,
picks=picks,
start=start,
stop=stop,
title=title,
show=show,
)
else:
assert isinstance(inst, Evoked)
inst = inst.copy().crop(start, stop)
if picks is not None:
with inst.info._unlock():
inst.info["comps"] = [] # can be safely disabled
inst.pick([inst.ch_names[p] for p in picks])
evoked_cln = ica.apply(
inst.copy(),
exclude=exclude,
n_pca_components=n_pca_components,
on_baseline=on_baseline,
)
fig = _plot_ica_overlay_evoked(
evoked=inst, evoked_cln=evoked_cln, title=title, show=show
)
return fig
def _plot_ica_overlay_raw(*, raw, raw_cln, picks, start, stop, title, show):
"""Plot evoked after and before ICA cleaning.
Parameters
----------
raw : Raw
Raw data before exclusion of ICs.
raw_cln : Raw
Data after exclusion of ICs.
picks : array of shape (n_channels_selected,)
Array of selected channel indices.
start : int
Start time to plot in samples.
stop : int
Stop time to plot in samples.
title : str
Title of the figure(s).
show : bool
Show figure if True.
Returns
-------
fig : instance of Figure
"""
import matplotlib.pyplot as plt
ch_types = raw.get_channel_types(picks=picks, unique=True)
for ch_type in ch_types:
if ch_type in ("mag", "grad"):
fig, ax = plt.subplots(3, 1, sharex=True, layout="constrained")
elif ch_type == "eeg" and not _has_eeg_average_ref_proj(
raw.info, check_active=True
):
fig, ax = plt.subplots(3, 1, sharex=True, layout="constrained")
else:
fig, ax = plt.subplots(2, 1, sharex=True, layout="constrained")
fig.suptitle(title)
# select sensors and retrieve data array
picks_by_type = _picks_to_idx(raw.info, ch_type, exclude=())
picks_ = np.intersect1d(picks, picks_by_type)
data, times = raw[picks_, start:stop]
data_cln, _ = raw_cln[picks_, start:stop]
# plot all sensors of the same type together
ax[0].plot(times, data.T, color="r")
ax[0].plot(times, data_cln.T, color="k")
_ch_type = DEFAULTS["titles"].get(ch_type, ch_type)
ax[0].set(xlabel="Time (s)", xlim=times[[0, -1]], title=f"Raw {_ch_type} data")
# second plot for M/EEG using GFP or RMS
if ch_type == "eeg": # Global Field Power
ax[1].plot(times, np.std(data, axis=0), color="r")
ax[1].plot(times, np.std(data_cln, axis=0), color="k")
ax[1].set(
xlabel="Time (s)",
xlim=times[[0, -1]],
title=f"{_ch_type} Global Field Power",
)
elif ch_type in ("mag", "grad"): # RMS
ax[1].plot(times, np.sqrt((data**2).mean(axis=0)), color="r")
ax[1].plot(times, np.sqrt((data_cln**2).mean(axis=0)), color="k")
ax[1].set(xlabel="Time (s)", xlim=times[[0, -1]], title=f"{_ch_type} RMS")
# last plot with the average across all channels of the same type
if ch_type != "eeg" or not _has_eeg_average_ref_proj(
raw.info, check_active=True
):
ax[-1].plot(times, data.mean(axis=0), color="r")
ax[-1].plot(times, data_cln.mean(axis=0), color="k")
ax[-1].set(
xlabel="Time (s)",
xlim=times[[0, -1]],
title=f"Average across {_ch_type} channels",
)
plt_show(show)
return fig
def _plot_ica_overlay_evoked(evoked, evoked_cln, title, show):
"""Plot evoked after and before ICA cleaning.
Parameters
----------
evoked : instance of mne.Evoked
The Evoked before IC rejection.
evoked_cln : instance of mne.Evoked
The Evoked after IC rejection.
title : str | None
The title of the figure.
show : bool
If True, all open plots will be shown.
Returns
-------
fig : instance of Figure
"""
import matplotlib.pyplot as plt
ch_types_used = [c for c in ["mag", "grad", "eeg"] if c in evoked]
n_rows = len(ch_types_used)
ch_types_used_cln = [c for c in ["mag", "grad", "eeg"] if c in evoked_cln]
if len(ch_types_used) != len(ch_types_used_cln):
raise ValueError("Raw and clean evokeds must match. Found different channels.")
fig, axes = plt.subplots(n_rows, 1, layout="constrained")
if title is None:
title = "Average signal before (red) and after (black) ICA"
fig.suptitle(title)
axes = axes.flatten() if isinstance(axes, np.ndarray) else axes
evoked.plot(axes=axes, show=False, time_unit="s", spatial_colors=False)
for ax in fig.axes:
for line in ax.get_lines():
line.set_color("r")
fig.canvas.draw()
evoked_cln.plot(axes=axes, show=False, time_unit="s", spatial_colors=False)
fig.canvas.draw()
plt_show(show)
return fig
def _plot_sources(
ica,
inst,
picks,
exclude,
start,
stop,
show,
title,
block,
show_scrollbars,
show_first_samp,
time_format,
precompute,
use_opengl,
*,
psd_args,
theme=None,
overview_mode=None,
splash=True,
):
"""Plot the ICA components as a RawArray or EpochsArray."""
from ..epochs import BaseEpochs, EpochsArray
from ..io import BaseRaw, RawArray
from ._figure import _get_browser
# handle defaults / check arg validity
is_raw = isinstance(inst, BaseRaw)
is_epo = isinstance(inst, BaseEpochs)
sfreq = inst.info["sfreq"]
color = _handle_default("color", (0.0, 0.0, 0.0))
units = _handle_default("units", None)
scalings = (
_compute_scalings(None, inst)
if is_raw
else _handle_default("scalings_plot_raw")
)
scalings["misc"] = 5.0
scalings["whitened"] = 1.0
unit_scalings = _handle_default("scalings", None)
# data
if is_raw:
data = ica._transform_raw(inst, 0, len(inst.times))[picks]
else:
data = ica._transform_epochs(inst, concatenate=True)[picks]
# events
if is_epo:
event_id_rev = {v: k for k, v in inst.event_id.items()}
event_nums = inst.events[:, 2]
event_color_dict = _make_event_color_dict(None, inst.events, inst.event_id)
# channel properties / trace order / picks
ch_names = list(ica._ica_names) # copy
ch_types = ["misc" for _ in picks]
# add EOG/ECG channels if present
eog_chs = pick_types(inst.info, meg=False, eog=True, ref_meg=False)
ecg_chs = pick_types(inst.info, meg=False, ecg=True, ref_meg=False)
for eog_idx in eog_chs:
ch_names.append(inst.ch_names[eog_idx])
ch_types.append("eog")
for ecg_idx in ecg_chs:
ch_names.append(inst.ch_names[ecg_idx])
ch_types.append("ecg")
extra_picks = np.concatenate((eog_chs, ecg_chs)).astype(int)
if len(extra_picks):
if is_raw:
eog_ecg_data, _ = inst[extra_picks, :]
else:
eog_ecg_data = np.concatenate(inst.get_data(extra_picks), axis=1)
data = np.append(data, eog_ecg_data, axis=0)
picks = np.concatenate((picks, ica.n_components_ + np.arange(len(extra_picks))))
ch_order = np.arange(len(picks))
n_channels = min([20, len(picks)])
ch_names_picked = [ch_names[x] for x in picks]
# create info
info = create_info(ch_names_picked, sfreq, ch_types=ch_types)
with info._unlock():
info["meas_date"] = inst.info["meas_date"]
info["bads"] = [ch_names[x] for x in exclude if x in picks]
if is_raw:
inst_array = RawArray(data, info, inst.first_samp)
inst_array._annotations = inst.annotations
else:
data = data.reshape(-1, len(inst), len(inst.times)).swapaxes(0, 1)
inst_array = EpochsArray(data, info)
# handle time dimension
start = 0 if start is None else start
_last = inst.times[-1] if is_raw else len(inst.events)
stop = min(start + 20, _last) if stop is None else stop
first_time = inst._first_time if show_first_samp else 0
if is_raw:
duration = stop - start
start += first_time
else:
n_epochs = stop - start
total_epochs = len(inst)
epoch_n_times = len(inst.times)
n_epochs = min(n_epochs, total_epochs)
n_times = total_epochs * epoch_n_times
duration = n_epochs * epoch_n_times / sfreq
event_times = (
np.arange(total_epochs) * epoch_n_times + inst.time_as_index(0)
) / sfreq
# NB: this includes start and end of data:
boundary_times = np.arange(total_epochs + 1) * epoch_n_times / sfreq
if duration <= 0:
raise RuntimeError("Stop must be larger than start.")
# misc
bad_color = "lightgray"
title = "ICA components" if title is None else title
precompute = _handle_precompute(precompute)
params = dict(
inst=inst_array,
ica=ica,
ica_inst=inst,
info=info,
# channels and channel order
ch_names=np.array(ch_names_picked),
ch_types=np.array(ch_types),
ch_order=ch_order,
picks=picks,
n_channels=n_channels,
picks_data=list(),
# time
t_start=start if is_raw else boundary_times[start],
duration=duration,
n_times=inst.n_times if is_raw else n_times,
first_time=first_time,
time_format=time_format,
decim=1,
# events
event_times=None if is_raw else event_times,
# preprocessing
projs=list(),
projs_on=np.array([], dtype=bool),
apply_proj=False,
remove_dc=True, # for EOG/ECG
filter_coefs=None,
filter_bounds=None,
noise_cov=None,
# scalings
scalings=scalings,
units=units,
unit_scalings=unit_scalings,
# colors
ch_color_bad=bad_color,
ch_color_dict=color,
# display
butterfly=False,
clipping=None,
scrollbars_visible=show_scrollbars,
scalebars_visible=False,
window_title=title,
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
psd_args=psd_args,
splash=splash,
)
if is_epo:
params.update(
n_epochs=n_epochs,
boundary_times=boundary_times,
event_id_rev=event_id_rev,
event_color_dict=event_color_dict,
event_nums=event_nums,
epoch_color_bad=(1, 0, 0),
epoch_colors=None,
xlabel="Epoch number",
)
fig = _get_browser(show=show, block=block, **params)
return fig