[7f9fb8]: / mne / utils / dataframe.py

Download this file

132 lines (113 with data), 4.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""inst.to_data_frame() helper functions."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from inspect import signature
import numpy as np
from ..defaults import _handle_default
from ._logging import logger, verbose
from .check import check_version
@verbose
def _set_pandas_dtype(df, columns, dtype, verbose=None):
"""Try to set the right columns to dtype."""
for column in columns:
df[column] = df[column].astype(dtype)
logger.info(f'Converting "{column}" to "{dtype}"...')
def _scale_dataframe_data(inst, data, picks, scalings):
ch_types = inst.get_channel_types()
ch_types_used = list()
scalings = _handle_default("scalings", scalings)
for tt in scalings.keys():
if tt in ch_types:
ch_types_used.append(tt)
for tt in ch_types_used:
scaling = scalings[tt]
idx = [ii for ii in range(len(picks)) if ch_types[ii] == tt]
if len(idx):
data[:, idx] *= scaling
return data
def _convert_times(times, time_format, meas_date=None, first_time=0):
"""Convert vector of time in seconds to ms, datetime, or timedelta."""
# private function; pandas already checked in calling function
from pandas import to_timedelta
if time_format == "ms":
times = np.round(times * 1e3).astype(np.int64)
elif time_format == "timedelta":
times = to_timedelta(times, unit="s")
elif time_format == "datetime":
times = to_timedelta(times + first_time, unit="s") + meas_date
return times
def _inplace(df, method, **kwargs):
# Handle transition: inplace=True (pandas <1.5) → copy=False (>=1.5)
# and 3.0 warning:
# E DeprecationWarning: The copy keyword is deprecated and will be removed in a
# future version. Copy-on-Write is active in pandas since 3.0 which utilizes a
# lazy copy mechanism that defers copies until necessary. Use .copy() to make
# an eager copy if necessary.
_meth = getattr(df, method) # used for set_index() and rename()
if check_version("pandas", "3.0"):
return _meth(**kwargs)
elif "copy" in signature(_meth).parameters:
return _meth(**kwargs, copy=False)
else:
_meth(**kwargs, inplace=True)
return df
@verbose
def _build_data_frame(
inst,
data,
picks,
long_format,
mindex,
index,
default_index,
col_names=None,
col_kind="channel",
verbose=None,
):
"""Build DataFrame from MNE-object-derived data array."""
# private function; pandas already checked in calling function
from pandas import DataFrame
from ..source_estimate import _BaseSourceEstimate
# build DataFrame
if col_names is None:
col_names = [inst.ch_names[p] for p in picks]
df = DataFrame(data, columns=col_names)
for i, (k, v) in enumerate(mindex):
df.insert(i, k, v)
# build Index
if long_format:
df = _inplace(df, "set_index", keys=default_index)
df.columns.name = col_kind
elif index is not None:
df = _inplace(df, "set_index", keys=index)
if set(index) == set(default_index):
df.columns.name = col_kind
# long format
if long_format:
df = df.stack().reset_index()
df = _inplace(df, "rename", columns={0: "value"})
# add column for channel types (as appropriate)
ch_map = (
None
if isinstance(inst, _BaseSourceEstimate)
else dict(
zip(
np.array(inst.ch_names)[picks],
np.array(inst.get_channel_types())[picks],
)
)
)
if ch_map is not None:
col_index = len(df.columns) - 1
ch_type = df["channel"].map(ch_map)
df.insert(col_index, "ch_type", ch_type)
# restore index
if index is not None:
df = _inplace(df, "set_index", keys=index)
# convert channel/vertex/ch_type columns to factors
to_factor = [
c for c in df.columns.tolist() if c not in ("freq", "time", "value")
]
_set_pandas_dtype(df, to_factor, "category")
return df