[7f9fb8]: / mne / time_frequency / spectrum.py

Download this file

1787 lines (1613 with data), 58.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
"""Container classes for spectral data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from copy import deepcopy
from functools import partial
from inspect import signature
import numpy as np
from .._fiff.meas_info import ContainsMixin, Info
from .._fiff.pick import _pick_data_channels, _picks_to_idx, pick_info
from ..channels.channels import UpdateChannelsMixin
from ..channels.layout import _merge_ch_data, find_layout
from ..defaults import (
_BORDER_DEFAULT,
_EXTRAPOLATE_DEFAULT,
_INTERPOLATION_DEFAULT,
_handle_default,
)
from ..html_templates import _get_html_template
from ..utils import (
GetEpochsMixin,
_build_data_frame,
_check_method_kwargs,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_sphere,
_time_mask,
_validate_type,
fill_doc,
legacy,
logger,
object_diff,
repr_html,
verbose,
warn,
)
from ..utils.check import (
_check_fname,
_check_option,
_import_h5io_funcs,
_is_numeric,
check_fname,
)
from ..utils.misc import _pl
from ..utils.spectrum import _get_instance_type_string, _split_psd_kwargs
from ..viz.topo import _plot_timeseries, _plot_timeseries_unified, _plot_topo
from ..viz.topomap import _make_head_outlines, _prepare_topomap_plot, plot_psds_topomap
from ..viz.utils import (
_format_units_psd,
_get_plot_ch_type,
_make_combine_callable,
_plot_psd,
_prepare_sensor_names,
plt_show,
)
from .multitaper import _psd_from_mt, psd_array_multitaper
from .psd import _check_nfft, psd_array_welch
class SpectrumMixin:
"""Mixin providing spectral plotting methods to sensor-space containers."""
@legacy(alt=".compute_psd().plot()")
@verbose
def plot_psd(
self,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
reject_by_annotation=True,
*,
method="auto",
average=False,
dB=True,
estimate="power",
xscale="linear",
area_mode="std",
area_alpha=0.33,
color="black",
line_alpha=None,
spatial_colors=True,
sphere=None,
exclude="bads",
ax=None,
show=True,
n_jobs=1,
verbose=None,
**method_kw,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(reject_by_annotation_psd)s
%(method_plot_psd_auto)s
%(average_plot_psd)s
%(dB_plot_psd)s
%(estimate_plot_psd)s
%(xscale_plot_psd)s
%(area_mode_plot_psd)s
%(area_alpha_plot_psd)s
%(color_plot_psd)s
%(line_alpha_plot_psd)s
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
.. versionadded:: 0.22.0
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the bad
channels are excluded. Pass an empty list to plot all channels
(including channels marked "bad", if any).
.. versionadded:: 0.24.0
%(ax_plot_psd)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure with frequency spectra of the data channels.
Notes
-----
%(notes_plot_psd_meth)s
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot)
return self.compute_psd(**init_kw).plot(**plot_kw)
@legacy(alt=".compute_psd().plot_topo()")
@verbose
def plot_psd_topo(
self,
tmin=None,
tmax=None,
fmin=0,
fmax=100,
proj=False,
*,
method="auto",
dB=True,
layout=None,
color="w",
fig_facecolor="k",
axis_facecolor="k",
axes=None,
block=False,
show=True,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Plot power spectral density, separately for each channel.
Parameters
----------
%(tmin_tmax_psd)s
%(fmin_fmax_psd_topo)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(dB_spectrum_plot_topo)s
%(layout_spectrum_plot_topo)s
%(color_spectrum_plot_topo)s
%(fig_facecolor)s
%(axis_facecolor)s
%(axes_spectrum_plot_topo)s
%(block)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s Defaults to ``dict(n_fft=2048)``.
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure distributing one image per channel across sensor topography.
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topo)
return self.compute_psd(**init_kw).plot_topo(**plot_kw)
@legacy(alt=".compute_psd().plot_topomap()")
@verbose
def plot_psd_topomap(
self,
bands=None,
tmin=None,
tmax=None,
ch_type=None,
*,
proj=False,
method="auto",
normalize=False,
agg_fun=None,
dB=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=0,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
units=None,
axes=None,
show=True,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Plot scalp topography of PSD for chosen frequency bands.
Parameters
----------
%(bands_psd_topo)s
%(tmin_tmax_psd)s
%(ch_type_topomap_psd)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
%(border_topomap)s
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
%(units_topomap)s
%(axes_spectrum_plot_topomap)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure showing one scalp topography per frequency band.
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topomap)
return self.compute_psd(**init_kw).plot_topomap(**plot_kw)
def _set_legacy_nfft_default(self, tmin, tmax, method, method_kw):
"""Update method_kw with legacy n_fft default for plot_psd[_topo]().
This method returns ``None`` and has a side effect of (maybe) updating
the ``method_kw`` dict.
"""
if method == "welch" and method_kw.get("n_fft") is None:
tm = _time_mask(self.times, tmin, tmax, sfreq=self.info["sfreq"])
method_kw["n_fft"] = min(np.sum(tm), 2048)
class BaseSpectrum(ContainsMixin, UpdateChannelsMixin):
"""Base class for Spectrum and EpochsSpectrum."""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
*,
n_jobs,
verbose=None,
**method_kw,
):
# arg checking
self._sfreq = inst.info["sfreq"]
if np.isfinite(fmax) and (fmax > self.sfreq / 2):
raise ValueError(
f"Requested fmax ({fmax} Hz) must not exceed ½ the sampling "
f"frequency of the data ({0.5 * inst.info['sfreq']} Hz)."
)
# method
self._inst_type = type(inst)
method = _validate_method(method, _get_instance_type_string(self))
psd_funcs = dict(welch=psd_array_welch, multitaper=psd_array_multitaper)
# triage method and kwargs. partial() doesn't check validity of kwargs,
# so we do it manually to save compute time if any are invalid.
psd_funcs = dict(welch=psd_array_welch, multitaper=psd_array_multitaper)
_check_method_kwargs(psd_funcs[method], method_kw, msg=f'PSD method "{method}"')
self._psd_func = partial(psd_funcs[method], remove_dc=remove_dc, **method_kw)
# apply proj if desired
if proj:
inst = inst.copy().apply_proj()
self.inst = inst
# prep times and picks
self._time_mask = _time_mask(inst.times, tmin, tmax, sfreq=self.sfreq)
self._picks = _picks_to_idx(
inst.info, picks, "data", exclude, with_ref_meg=False
)
# add the info object. bads and non-data channels were dropped by
# _picks_to_idx() so we update the info accordingly:
self.info = pick_info(inst.info, sel=self._picks, copy=True)
# assign some attributes
self.preload = True # needed for __getitem__, never False
self._method = method
# self._dims may also get updated by child classes
self._dims = (
"channel",
"freq",
)
if method_kw.get("average", "") in (None, False):
self._dims += ("segment",)
if self._returns_complex_tapers(**method_kw):
self._dims = self._dims[:-1] + ("taper",) + self._dims[-1:]
# record data type (for repr and html_repr)
self._data_type = (
"Fourier Coefficients"
if method_kw.get("output") == "complex"
else "Power Spectrum"
)
# set nave (child constructor overrides this for Evoked input)
self._nave = None
def __eq__(self, other):
"""Test equivalence of two Spectrum instances."""
return object_diff(vars(self), vars(other)) == ""
def __getstate__(self):
"""Prepare object for serialization."""
inst_type_str = _get_instance_type_string(self)
out = dict(
method=self.method,
data=self._data,
sfreq=self.sfreq,
dims=self._dims,
freqs=self.freqs,
inst_type_str=inst_type_str,
data_type=self._data_type,
info=self.info,
nave=self.nave,
weights=self.weights,
)
return out
def __setstate__(self, state):
"""Unpack from serialized format."""
from ..epochs import Epochs
from ..evoked import Evoked
from ..io import Raw
self._method = state["method"]
self._data = state["data"]
self._freqs = state["freqs"]
self._dims = state["dims"]
self._sfreq = state["sfreq"]
self.info = Info(**state["info"])
self._data_type = state["data_type"]
self._nave = state.get("nave") # objs saved before #11282 won't have `nave`
self._weights = state.get("weights") # objs saved before #12747 won't have
self.preload = True
# instance type
inst_types = dict(Raw=Raw, Epochs=Epochs, Evoked=Evoked, Array=np.ndarray)
self._inst_type = inst_types[state["inst_type_str"]]
def __repr__(self):
"""Build string representation of the Spectrum object."""
inst_type_str = _get_instance_type_string(self)
# shape & dimension names
dims = " × ".join(
[f"{dim[0]} {dim[1]}s" for dim in zip(self.shape, self._dims)]
)
freq_range = f"{self.freqs[0]:0.1f}-{self.freqs[-1]:0.1f} Hz"
return (
f"<{self._data_type} (from {inst_type_str}, "
f"{self.method} method) | {dims}, {freq_range}>"
)
@repr_html
def _repr_html_(self, caption=None):
"""Build HTML representation of the Spectrum object."""
inst_type_str = _get_instance_type_string(self)
units = [f"{ch_type}: {unit}" for ch_type, unit in self.units().items()]
t = _get_html_template("repr", "spectrum.html.jinja")
t = t.render(
inst=self, computed_from=inst_type_str, units=units, filenames=None
)
return t
def _check_values(self):
"""Check PSD results for correct shape and bad values."""
assert len(self._dims) == self._data.ndim, (self._dims, self._data.ndim)
assert self._data.shape == self._shape
# TODO: should this be more fine-grained (report "chan X in epoch Y")?
ch_dim = self._dims.index("channel")
dims = list(range(self._data.ndim))
dims.pop(ch_dim)
# take min() across all but the channel axis
# (if the abs becomes memory intensive we could iterate over channels)
use_data = self._data
if use_data.dtype.kind == "c":
use_data = np.abs(use_data)
bad_value = use_data.min(axis=tuple(dims)) == 0
bad_value &= ~np.isin(self.ch_names, self.info["bads"])
if bad_value.any():
chs = np.array(self.ch_names)[bad_value].tolist()
s = _pl(bad_value.sum())
warn(f"Zero value in spectrum for channel{s} {', '.join(chs)}", UserWarning)
def _returns_complex_tapers(self, **method_kw):
return self.method == "multitaper" and method_kw.get("output") == "complex"
def _compute_spectra(self, data, fmin, fmax, n_jobs, method_kw, verbose):
# make the spectra
result = self._psd_func(
data, self.sfreq, fmin=fmin, fmax=fmax, n_jobs=n_jobs, verbose=verbose
)
# assign ._data (handling unaggregated multitaper output)
if self._returns_complex_tapers(**method_kw):
fourier_coefs, freqs, weights = result
self._data = fourier_coefs
self._weights = weights
else:
psds, freqs = result
self._data = psds
self._weights = None
# assign properties (._data already assigned above)
self._freqs = freqs
# this is *expected* shape, it gets asserted later in _check_values()
# (and then deleted afterwards)
self._shape = (len(self.ch_names), len(self.freqs))
# append n_welch_segments (use "" as .get() default since None considered valid)
if method_kw.get("average", "") in (None, False):
n_welch_segments = _compute_n_welch_segments(data.shape[-1], method_kw)
self._shape += (n_welch_segments,)
# insert n_tapers
if self._returns_complex_tapers(**method_kw):
self._shape = self._shape[:-1] + (self._weights.size,) + self._shape[-1:]
# we don't need these anymore, and they make save/load harder
del self._picks
del self._psd_func
del self._time_mask
@property
def _detrend_picks(self):
"""Provide compatibility with __iter__."""
return list()
@property
def ch_names(self):
return self.info["ch_names"]
@property
def data(self):
return self._data
@property
def freqs(self):
return self._freqs
@property
def method(self):
return self._method
@property
def nave(self):
return self._nave
@property
def weights(self):
return self._weights
@property
def sfreq(self):
return self._sfreq
@property
def shape(self):
return self._data.shape
def copy(self):
"""Return copy of the Spectrum instance.
Returns
-------
spectrum : instance of Spectrum
A copy of the object.
"""
return deepcopy(self)
@fill_doc
def get_data(
self, picks=None, exclude="bads", fmin=0, fmax=np.inf, return_freqs=False
):
"""Get spectrum data in NumPy array format.
Parameters
----------
%(picks_good_data_noref)s
%(exclude_spectrum_get_data)s
%(fmin_fmax_psd)s
return_freqs : bool
Whether to return the frequency bin values for the requested
frequency range. Default is ``False``.
Returns
-------
data : array
The requested data in a NumPy array.
freqs : array
The frequency values for the requested range. Only returned if
``return_freqs`` is ``True``.
"""
picks = _picks_to_idx(
self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
)
fmin_idx = np.searchsorted(self.freqs, fmin)
fmax_idx = np.searchsorted(self.freqs, fmax, side="right")
freq_picks = np.arange(fmin_idx, fmax_idx)
freq_axis = self._dims.index("freq")
chan_axis = self._dims.index("channel")
# normally there's a risk of np.take reducing array dimension if there
# were only one channel or frequency selected, but `_picks_to_idx`
# always returns an array of picks, and np.arange always returns an
# array of freq bin indices, so we're safe; the result will always be
# 2D.
data = self._data.take(picks, chan_axis).take(freq_picks, freq_axis)
if return_freqs:
freqs = self._freqs[fmin_idx:fmax_idx]
return (data, freqs)
return data
@fill_doc
def plot(
self,
*,
picks=None,
average=False,
dB=True,
amplitude=False,
xscale="linear",
ci="sd",
ci_alpha=0.3,
color="black",
alpha=None,
spatial_colors=True,
sphere=None,
exclude=(),
axes=None,
show=True,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(picks_all_data_noref)s
.. versionchanged:: 1.5
In version 1.5, the default behavior changed so that all
:term:`data channels` (not just "good" data channels) are shown by
default.
average : bool
Whether to average across channels before plotting. If ``True``, interactive
plotting of scalp topography is disabled, and parameters ``ci`` and
``ci_alpha`` control the style of the confidence band around the mean.
Default is ``False``.
%(dB_spectrum_plot)s
amplitude : bool
Whether to plot an amplitude spectrum (``True``) or power spectrum
(``False``).
.. versionchanged:: 1.8
In version 1.8, the default changed to ``amplitude=False``.
%(xscale_plot_psd)s
ci : float | 'sd' | 'range' | None
Type of confidence band drawn around the mean when ``average=True``. If
``'sd'`` the band spans ±1 standard deviation across channels. If
``'range'`` the band spans the range across channels at each frequency. If a
:class:`float`, it indicates the (bootstrapped) confidence interval to
display, and must satisfy ``0 < ci <= 100``. If ``None``, no band is drawn.
Default is ``sd``.
ci_alpha : float
Opacity of the confidence band. Must satisfy ``0 <= ci_alpha <= 1``. Default
is 0.3.
%(color_plot_psd)s
alpha : float | None
Opacity of the spectrum line(s). If :class:`float`, must satisfy
``0 <= alpha <= 1``. If ``None``, opacity will be ``1`` when
``average=True`` and ``0.1`` when ``average=False``. Default is ``None``.
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
%(exclude_spectrum_plot)s
.. versionchanged:: 1.5
In version 1.5, the default behavior changed from ``exclude='bads'`` to
``exclude=()``.
%(axes_spectrum_plot_topomap)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with spectra plotted in separate subplots for each channel type.
"""
# Must nest this _mpl_figure import because of the BACKEND global
# stuff
from ..viz._mpl_figure import _line_figure, _split_picks_by_type
# arg checking
ci = _check_ci(ci)
_check_option("xscale", xscale, ("log", "linear"))
sphere = _check_sphere(sphere, self.info)
# defaults
scalings = _handle_default("scalings", None)
titles = _handle_default("titles", None)
units = _handle_default("units", None)
_validate_type(amplitude, bool, "amplitude")
estimate = "amplitude" if amplitude else "power"
logger.info(f"Plotting {estimate} spectral density ({dB=}).")
# split picks by channel type
picks = _picks_to_idx(
self.info, picks, "data", exclude=exclude, with_ref_meg=False
)
(picks_list, units_list, scalings_list, titles_list) = _split_picks_by_type(
self, picks, units, scalings, titles
)
# prepare data (e.g. aggregate across dims, convert complex to power)
psd_list = [
self._prepare_data_for_plot(
self._data.take(_p, axis=self._dims.index("channel"))
)
for _p in picks_list
]
# initialize figure
fig, axes = _line_figure(self, axes, picks=picks)
# don't add ylabels & titles if figure has unexpected number of axes
make_label = len(axes) == len(fig.axes)
# Plot Frequency [Hz] xlabel only on the last axis
xlabels_list = [False] * (len(axes) - 1) + [True]
# plot
_plot_psd(
self,
fig,
self.freqs,
psd_list,
picks_list,
titles_list,
units_list,
scalings_list,
axes,
make_label,
color,
area_mode=ci,
area_alpha=ci_alpha,
dB=dB,
estimate=estimate,
average=average,
spatial_colors=spatial_colors,
xscale=xscale,
line_alpha=alpha,
sphere=sphere,
xlabels_list=xlabels_list,
)
plt_show(show, fig)
return fig
@fill_doc
def plot_topo(
self,
*,
dB=True,
layout=None,
color="w",
fig_facecolor="k",
axis_facecolor="k",
axes=None,
block=False,
show=True,
):
"""Plot power spectral density, separately for each channel.
Parameters
----------
%(dB_spectrum_plot_topo)s
%(layout_spectrum_plot_topo)s
%(color_spectrum_plot_topo)s
%(fig_facecolor)s
%(axis_facecolor)s
%(axes_spectrum_plot_topo)s
%(block)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure distributing one image per channel across sensor topography.
"""
if layout is None:
layout = find_layout(self.info)
psds, freqs = self.get_data(return_freqs=True)
# prepare data (e.g. aggregate across dims, convert complex to power)
psds = self._prepare_data_for_plot(psds)
if dB:
psds = 10 * np.log10(psds)
y_label = "dB"
else:
y_label = "Power"
show_func = partial(
_plot_timeseries_unified, data=[psds], color=color, times=[freqs]
)
click_func = partial(_plot_timeseries, data=[psds], color=color, times=[freqs])
picks = _pick_data_channels(self.info)
info = pick_info(self.info, picks)
fig = _plot_topo(
info,
times=freqs,
show_func=show_func,
click_func=click_func,
layout=layout,
axis_facecolor=axis_facecolor,
fig_facecolor=fig_facecolor,
x_label="Frequency (Hz)",
unified=True,
y_label=y_label,
axes=axes,
)
plt_show(show, block=block)
return fig
@fill_doc
def plot_topomap(
self,
bands=None,
ch_type=None,
*,
normalize=False,
agg_fun=None,
dB=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
units=None,
axes=None,
show=True,
):
"""Plot scalp topography of PSD for chosen frequency bands.
Parameters
----------
%(bands_psd_topo)s
%(ch_type_topomap_psd)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
%(border_topomap)s
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
%(cnorm)s
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
%(units_topomap)s
%(axes_spectrum_plot_topomap)s
%(show)s
Returns
-------
fig : instance of Figure
Figure showing one scalp topography per frequency band.
"""
ch_type = _get_plot_ch_type(self, ch_type)
if units is None:
units = _handle_default("units", None)
unit = units[ch_type] if hasattr(units, "keys") else units
scalings = _handle_default("scalings", None)
scaling = scalings[ch_type]
(
picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(self, ch_type, sphere=sphere)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
psds, freqs = self.get_data(picks=picks, return_freqs=True)
# prepare data (e.g. aggregate across dims, convert complex to power)
psds = self._prepare_data_for_plot(psds)
psds *= scaling**2
if merge_channels:
psds, names = _merge_ch_data(psds, ch_type, names, method="mean")
names = _prepare_sensor_names(names, show_names)
return plot_psds_topomap(
psds=psds,
freqs=freqs,
pos=pos,
bands=bands,
ch_type=ch_type,
normalize=normalize,
agg_fun=agg_fun,
dB=dB,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
unit=unit,
axes=axes,
show=show,
)
def _prepare_data_for_plot(self, data):
# handle unaggregated Welch
if "segment" in self._dims:
logger.info("Aggregating Welch estimates (median) before plotting...")
data = np.nanmedian(data, axis=self._dims.index("segment"))
# handle unaggregated multitaper (also handles complex -> power)
elif "taper" in self._dims:
logger.info("Aggregating multitaper estimates before plotting...")
data = _psd_from_mt(data, self.weights)
# handle complex data (should only be Welch remaining)
if np.iscomplexobj(data):
data = (data * data.conj()).real # Scaling may be slightly off
# handle epochs
if "epoch" in self._dims:
# XXX TODO FIXME decide how to properly aggregate across repeated
# measures (epochs) and non-repeated but correlated measures
# (channels) when calculating stddev or a CI. For across-channel
# aggregation, doi:10.1007/s10162-012-0321-8 used hotellings T**2
# with a correction factor that estimated data rank using monte
# carlo simulations; seems like we could use our own data rank
# estimation methods to similar effect. Their exact approach used
# complex spectra though, here we've already converted to power;
# not sure if that makes an important difference? Anyway that
# aggregation would need to happen in the _plot_psd function
# though, not here... for now we just average like we always did.
# only log message if averaging will actually have an effect
if data.shape[0] > 1:
logger.info("Averaging across epochs before plotting...")
# epoch axis should always be the first axis
data = data.mean(axis=0)
return data
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save spectrum data to disk (in HDF5 format).
Parameters
----------
fname : path-like
Path of file to save to.
%(overwrite)s
%(verbose)s
See Also
--------
mne.time_frequency.read_spectrum
"""
_, write_hdf5 = _import_h5io_funcs()
check_fname(fname, "spectrum", (".h5", ".hdf5"))
fname = _check_fname(fname, overwrite=overwrite, verbose=verbose)
out = self.__getstate__()
write_hdf5(fname, out, overwrite=overwrite, title="mnepython", slash="replace")
@verbose
def to_data_frame(
self, picks=None, index=None, copy=True, long_format=False, *, verbose=None
):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default,
an additional column "freq" is added, unless ``index='freq'``
(in which case frequency values form the DataFrame's index).
Parameters
----------
%(picks_all)s
index : str | list of str | None
Kind of index to use for the DataFrame. If ``None``, a sequential
integer index (:class:`pandas.RangeIndex`) will be used. If a
:class:`str`, a :class:`pandas.Index` will be used (see Notes). If
a list of two or more string values, a :class:`pandas.MultiIndex`
will be used. Defaults to ``None``.
%(copy_df)s
%(long_format_df_spe)s
%(verbose)s
Returns
-------
%(df_return)s
Notes
-----
Valid values for ``index`` depend on whether the Spectrum was created
from continuous data (:class:`~mne.io.Raw`, :class:`~mne.Evoked`) or
discontinuous data (:class:`~mne.Epochs`). For continuous data, only
``None`` or ``'freq'`` is supported. For discontinuous data, additional
valid values are ``'epoch'`` and ``'condition'``, or a :class:`list`
comprising some of the valid string values (e.g.,
``['freq', 'epoch']``).
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# triage for Epoch-derived or unaggregated spectra
from_epo = _get_instance_type_string(self) == "Epochs"
unagg_welch = "segment" in self._dims
unagg_mt = "taper" in self._dims
# arg checking
valid_index_args = ["freq"]
if from_epo:
valid_index_args += ["epoch", "condition"]
index = _check_pandas_index_arguments(index, valid_index_args)
# get data
picks = _picks_to_idx(self.info, picks, "all", exclude=())
data = self.get_data(picks)
if copy:
data = data.copy()
# reshape
if unagg_mt:
data = np.moveaxis(data, self._dims.index("freq"), -2)
if from_epo:
n_epochs, n_picks, n_freqs = data.shape[:3]
else:
n_epochs, n_picks, n_freqs = (1,) + data.shape[:2]
n_segs = data.shape[-1] if unagg_mt or unagg_welch else 1
data = np.moveaxis(data, self._dims.index("channel"), -1)
# at this point, should be ([epoch], freq, [segment/taper], channel)
data = data.reshape(n_epochs * n_freqs * n_segs, n_picks)
# prepare extra columns / multiindex
mindex = list()
default_index = list()
if from_epo:
rev_event_id = {v: k for k, v in self.event_id.items()}
_conds = [rev_event_id[k] for k in self.events[:, 2]]
conditions = np.repeat(_conds, n_freqs * n_segs)
epoch_nums = np.repeat(self.selection, n_freqs * n_segs)
mindex.extend([("condition", conditions), ("epoch", epoch_nums)])
default_index.extend(["condition", "epoch"])
freqs = np.tile(np.repeat(self.freqs, n_segs), n_epochs)
mindex.append(("freq", freqs))
default_index.append("freq")
if unagg_mt or unagg_welch:
name = "taper" if unagg_mt else "segment"
seg_nums = np.tile(np.arange(n_segs), n_epochs * n_freqs)
mindex.append((name, seg_nums))
default_index.append(name)
# build DataFrame
df = _build_data_frame(
self, data, picks, long_format, mindex, index, default_index=default_index
)
return df
def units(self, latex=False):
"""Get the spectrum units for each channel type.
Parameters
----------
latex : bool
Whether to format the unit strings as LaTeX. Default is ``False``.
Returns
-------
units : dict
Mapping from channel type to a string representation of the units
for that channel type.
"""
units = _handle_default("si_units", None)
return {
ch_type: _format_units_psd(units[ch_type], power=True, latex=latex)
for ch_type in sorted(self.get_channel_types(unique=True))
}
@fill_doc
class Spectrum(BaseSpectrum):
"""Data object for spectral representations of continuous data.
.. warning:: The preferred means of creating Spectrum objects from
continuous or averaged data is via the instance methods
:meth:`mne.io.Raw.compute_psd` or
:meth:`mne.Evoked.compute_psd`. Direct class instantiation
is not supported.
Parameters
----------
inst : instance of Raw or Evoked
The data from which to compute the frequency spectrum.
%(method_psd_auto)s
``'auto'`` (default) uses Welch's method for continuous data
and multitaper for :class:`~mne.Evoked` data.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(exclude_psd)s
%(proj_psd)s
%(remove_dc)s
%(reject_by_annotation_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Attributes
----------
ch_names : list
The channel names.
freqs : array
Frequencies at which the amplitude, power, or fourier coefficients
have been computed.
%(info_not_none)s
method : ``'welch'`` | ``'multitaper'``
The method used to compute the spectrum.
nave : int | None
The number of trials averaged together when generating the spectrum. ``None``
indicates no averaging is known to have occurred.
weights : array | None
The weights for each taper. Only present if spectra computed with
``method='multitaper'`` and ``output='complex'``.
.. versionadded:: 1.8
See Also
--------
EpochsSpectrum
SpectrumArray
mne.io.Raw.compute_psd
mne.Epochs.compute_psd
mne.Evoked.compute_psd
References
----------
.. footbibliography::
"""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
reject_by_annotation,
*,
n_jobs,
verbose=None,
**method_kw,
):
from ..io import BaseRaw
# triage reading from file
if isinstance(inst, dict):
self.__setstate__(inst)
return
# do the basic setup
super().__init__(
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
# get just the data we want
if isinstance(self.inst, BaseRaw):
start, stop = np.where(self._time_mask)[0][[0, -1]]
rba = "NaN" if reject_by_annotation else None
data = self.inst.get_data(
self._picks, start, stop + 1, reject_by_annotation=rba
)
if np.any(np.isnan(data)) and method == "multitaper":
raise NotImplementedError(
'Cannot use method="multitaper" when reject_by_annotation=True. '
'Please use method="welch" instead.'
)
else: # Evoked
data = self.inst.data[self._picks][:, self._time_mask]
# set nave
self._nave = getattr(inst, "nave", None)
# compute the spectra
self._compute_spectra(data, fmin, fmax, n_jobs, method_kw, verbose)
# check for correct shape and bad values
self._check_values()
del self._shape # calculated from self._data henceforth
# save memory
del self.inst
def __getitem__(self, item):
"""Get Spectrum data.
Parameters
----------
item : int | slice | array-like
Indexing is similar to a :class:`NumPy array<numpy.ndarray>`; see
Notes.
Returns
-------
%(getitem_spectrum_return)s
Notes
-----
Integer-, list-, and slice-based indexing is possible:
- ``spectrum[0]`` gives all frequency bins in the first channel
- ``spectrum[:3]`` gives all frequency bins in the first 3 channels
- ``spectrum[[0, 2], 5]`` gives the value in the sixth frequency bin of
the first and third channels
- ``spectrum[(4, 7)]`` is the same as ``spectrum[4, 7]``.
.. note::
Unlike :class:`~mne.io.Raw` objects (which returns a tuple of the
requested data values and the corresponding times), accessing
:class:`~mne.time_frequency.Spectrum` values via subscript does
**not** return the corresponding frequency bin values. If you need
them, use ``spectrum.freqs[freq_indices]`` or
``spectrum.get_data(..., return_freqs=True)``.
"""
from ..io import BaseRaw
self._parse_get_set_params = partial(BaseRaw._parse_get_set_params, self)
return BaseRaw._getitem(self, item, return_times=False)
def _check_data_shape(data, info, freqs, dim_names, weights, is_epoched):
if data.ndim != len(dim_names):
raise ValueError(
f"Expected data to have {len(dim_names)} dimensions, got {data.ndim}."
)
allowed_dims = ["epoch", "channel", "freq", "segment", "taper"]
if not is_epoched:
allowed_dims.remove("epoch")
# TODO maybe we should be nice and allow plural versions of each dimname?
for dim in dim_names:
_check_option("dim_names", dim, allowed_dims)
if "channel" not in dim_names or "freq" not in dim_names:
raise ValueError("Both 'channel' and 'freq' must be present in `dim_names`.")
if list(dim_names).index("channel") != int(is_epoched):
raise ValueError(
f"'channel' must be the {'second' if is_epoched else 'first'} dimension of "
"the data."
)
want_n_chan = _pick_data_channels(info, exclude=()).size
got_n_chan = data.shape[list(dim_names).index("channel")]
if got_n_chan != want_n_chan:
raise ValueError(
f"The number of channels in `data` ({got_n_chan}) must match the number of "
f"good + bad data channels in `info` ({want_n_chan})."
)
# given we limit max array size and ensure channel & freq dims present, only one of
# taper or segment can be present
if "taper" in dim_names:
if dim_names[-2] != "taper": # _psd_from_mt assumes this (called when plotting)
raise ValueError(
"'taper' must be the second to last dimension of the data."
)
# expect weights for each taper
actual = None if weights is None else weights.size
expected = data.shape[list(dim_names).index("taper")]
if actual != expected:
raise ValueError(
f"Expected size of `weights` to be {expected} to match 'n_tapers' in "
f"`data`, got {actual}."
)
elif "segment" in dim_names and dim_names[-1] != "segment":
raise ValueError("'segment' must be the last dimension of the data.")
# freq being in wrong position ruled out by above checks
want_n_freq = freqs.size
got_n_freq = data.shape[list(dim_names).index("freq")]
if got_n_freq != want_n_freq:
raise ValueError(
f"The number of frequencies in `data` ({got_n_freq}) must match the number "
f"of elements in `freqs` ({want_n_freq})."
)
@fill_doc
class SpectrumArray(Spectrum):
"""Data object for precomputed spectral data (in NumPy array format).
Parameters
----------
data : ndarray, shape (n_channels, [n_tapers], n_freqs, [n_segments])
The spectra for each channel.
%(info_not_none)s
%(freqs_tfr_array)s
dim_names : tuple of str
The name of the dimensions in the data, in the order they occur. Must contain
``'channel'`` and ``'freq'``; if data are unaggregated estimates, also include
either a ``'segment'`` (e.g., Welch-like algorithms) or ``'taper'`` (e.g.,
multitaper algorithms) dimension. If including ``'taper'``, you should also pass
a ``weights`` parameter.
.. versionadded:: 1.8
weights : ndarray | None
Weights for the ``'taper'`` dimension, if present (see ``dim_names``).
.. versionadded:: 1.8
%(verbose)s
See Also
--------
mne.create_info
mne.EvokedArray
mne.io.RawArray
EpochsSpectrumArray
Notes
-----
%(notes_spectrum_array)s
.. versionadded:: 1.6
"""
@verbose
def __init__(
self,
data,
info,
freqs,
dim_names=("channel", "freq"),
weights=None,
*,
verbose=None,
):
# (channel, [taper], freq, [segment])
_check_option("data.ndim", data.ndim, (2, 3)) # only allow one extra dimension
_check_data_shape(data, info, freqs, dim_names, weights, is_epoched=False)
self.__setstate__(
dict(
method="unknown",
data=data,
sfreq=info["sfreq"],
dims=dim_names,
freqs=freqs,
inst_type_str="Array",
data_type=(
"Fourier Coefficients"
if np.iscomplexobj(data)
else "Power Spectrum"
),
info=info,
weights=weights,
)
)
@fill_doc
class EpochsSpectrum(BaseSpectrum, GetEpochsMixin):
"""Data object for spectral representations of epoched data.
.. warning:: The preferred means of creating Spectrum objects from Epochs
is via the instance method :meth:`mne.Epochs.compute_psd`.
Direct class instantiation is not supported.
Parameters
----------
inst : instance of Epochs
The data from which to compute the frequency spectrum.
%(method_psd)s
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(exclude_psd)s
%(proj_psd)s
%(remove_dc)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Attributes
----------
ch_names : list
The channel names.
freqs : array
Frequencies at which the amplitude, power, or fourier coefficients
have been computed.
%(info_not_none)s
method : ``'welch'``| ``'multitaper'``
The method used to compute the spectrum.
weights : array | None
The weights for each taper. Only present if spectra computed with
``method='multitaper'`` and ``output='complex'``.
.. versionadded:: 1.8
See Also
--------
EpochsSpectrumArray
Spectrum
mne.Epochs.compute_psd
References
----------
.. footbibliography::
"""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
*,
n_jobs,
verbose=None,
**method_kw,
):
# triage reading from file
if isinstance(inst, dict):
self.__setstate__(inst)
return
# do the basic setup
super().__init__(
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
# get just the data we want
data = self.inst._get_data(picks=self._picks, on_empty="raise")[
:, :, self._time_mask
]
# compute the spectra
self._compute_spectra(data, fmin, fmax, n_jobs, method_kw, verbose)
self._dims = ("epoch",) + self._dims
self._shape = (len(self.inst),) + self._shape
# check for correct shape and bad values
self._check_values()
del self._shape
# we need these for to_data_frame()
self.event_id = self.inst.event_id.copy()
self.events = self.inst.events.copy()
self.selection = self.inst.selection.copy()
# we need these for __getitem__()
self.drop_log = deepcopy(self.inst.drop_log)
self._metadata = self.inst.metadata
# save memory
del self.inst
def __getitem__(self, item):
"""Subselect epochs from an EpochsSpectrum.
Parameters
----------
item : int | slice | array-like | str
Access options are the same as for :class:`~mne.Epochs` objects,
see the docstring of :meth:`mne.Epochs.__getitem__` for
explanation.
Returns
-------
%(getitem_epochspectrum_return)s
"""
return super().__getitem__(item)
def __getstate__(self):
"""Prepare object for serialization."""
out = super().__getstate__()
out.update(
metadata=self._metadata,
drop_log=self.drop_log,
event_id=self.event_id,
events=self.events,
selection=self.selection,
)
return out
def __setstate__(self, state):
"""Unpack from serialized format."""
super().__setstate__(state)
self._metadata = state["metadata"]
self.drop_log = state["drop_log"]
self.event_id = state["event_id"]
self.events = state["events"]
self.selection = state["selection"]
def average(self, method="mean"):
"""Average the spectra across epochs.
Parameters
----------
method : 'mean' | 'median' | callable
How to aggregate spectra across epochs. If callable, must take a
:class:`NumPy array<numpy.ndarray>` of shape
``(n_epochs, n_channels, n_freqs)`` and return an array of shape
``(n_channels, n_freqs)``. Default is ``'mean'``.
Returns
-------
spectrum : instance of Spectrum
The aggregated spectrum object.
"""
_validate_type(method, ("str", "callable"), "method")
method = _make_combine_callable(
method, axis=0, valid=("mean", "median"), keepdims=False
)
if not callable(method):
raise ValueError(
'"method" must be a valid string or callable, '
f"got a {type(method).__name__} ({method})."
)
# averaging unaggregated spectral estimates are not supported
if "segment" in self._dims:
raise NotImplementedError(
"Averaging individual Welch segments across epochs is not "
"supported. Consider averaging the signals before computing "
"the Welch spectrum estimates."
)
if "taper" in self._dims:
raise NotImplementedError(
"Averaging multitaper tapers across epochs is not supported. Consider "
"averaging the signals before computing the complex spectrum."
)
# serialize the object and update data, dims, and data type
state = super().__getstate__()
state["nave"] = state["data"].shape[0]
state["data"] = method(state["data"])
state["dims"] = state["dims"][1:]
state["data_type"] = f"Averaged {state['data_type']}"
defaults = dict(
method=None,
fmin=None,
fmax=None,
tmin=None,
tmax=None,
picks=None,
exclude=(),
proj=None,
remove_dc=None,
reject_by_annotation=None,
n_jobs=None,
verbose=None,
)
return Spectrum(state, **defaults)
@fill_doc
class EpochsSpectrumArray(EpochsSpectrum):
"""Data object for precomputed epoched spectral data (in NumPy array format).
Parameters
----------
data : ndarray, shape (n_epochs, n_channels, [n_tapers], n_freqs, [n_segments])
The spectra for each channel in each epoch.
%(info_not_none)s
%(freqs_tfr_array)s
%(events_epochs)s
%(event_id)s
dim_names : tuple of str
The name of the dimensions in the data, in the order they occur. Must contain
``'channel'`` and ``'freq'``; if data are unaggregated estimates, also include
either a ``'segment'`` (e.g., Welch-like algorithms) or ``'taper'`` (e.g.,
multitaper algorithms) dimension. If including ``'taper'``, you should also pass
a ``weights`` parameter.
.. versionadded:: 1.8
weights : ndarray | None
Weights for the ``'taper'`` dimension, if present (see ``dim_names``).
.. versionadded:: 1.8
%(verbose)s
See Also
--------
mne.create_info
mne.EpochsArray
SpectrumArray
Notes
-----
%(notes_spectrum_array)s
.. versionadded:: 1.6
"""
@verbose
def __init__(
self,
data,
info,
freqs,
events=None,
event_id=None,
dim_names=("epoch", "channel", "freq"),
weights=None,
*,
verbose=None,
):
# (epoch, channel, [taper], freq, [segment])
_check_option("data.ndim", data.ndim, (3, 4)) # only allow one extra dimension
if list(dim_names).index("epoch") != 0:
raise ValueError("'epoch' must be the first dimension of `data`.")
if events is not None and data.shape[0] != events.shape[0]:
raise ValueError(
f"The first dimension of `data` ({data.shape[0]}) must match the first "
f"dimension of `events` ({events.shape[0]})."
)
_check_data_shape(data, info, freqs, dim_names, weights, is_epoched=True)
self.__setstate__(
dict(
method="unknown",
data=data,
sfreq=info["sfreq"],
dims=dim_names,
freqs=freqs,
inst_type_str="Array",
data_type=(
"Fourier Coefficients"
if np.iscomplexobj(data)
else "Power Spectrum"
),
info=info,
events=events,
event_id=event_id,
metadata=None,
selection=np.arange(data.shape[0]),
drop_log=tuple(tuple() for _ in range(data.shape[0])),
weights=weights,
)
)
def combine_spectrum(all_spectrum, weights="nave"):
"""Merge spectral data by weighted addition.
Create a new :class:`mne.time_frequency.Spectrum` instance, using a combination of
the supplied instances as its data. By default, the mean (weighted by trials) is
used. Subtraction can be performed by passing negative weights (e.g., ``[1, -1]``).
Data must have the same channels and the same frequencies.
Parameters
----------
all_spectrum : list of Spectrum
The Spectrum objects.
weights : list of float | str
The weights to apply to the data of each :class:`~mne.time_frequency.Spectrum`
instance, or a string describing the weighting strategy to apply: 'nave'
computes sum-to-one weights proportional to each object’s nave attribute;
'equal' weights each :class:`~mne.time_frequency.Spectrum` by
``1 / len(all_spectrum)``.
Returns
-------
spectrum : Spectrum
The new spectral data.
Notes
-----
.. versionadded:: 1.10.0
"""
spectrum = all_spectrum[0].copy()
if isinstance(weights, str):
if weights not in ("nave", "equal"):
raise ValueError('Weights must be a list of float, or "nave" or "equal"')
if weights == "nave":
for s_ in all_spectrum:
if s_.nave is None:
raise ValueError(f"The 'nave' attribute is not specified for {s_}")
weights = np.array([e.nave for e in all_spectrum], float)
weights /= weights.sum()
else: # == 'equal'
weights = [1.0 / len(all_spectrum)] * len(all_spectrum)
weights = np.array(weights, float)
if weights.ndim != 1 or weights.size != len(all_spectrum):
raise ValueError("Weights must be the same size as all_spectrum")
ch_names = spectrum.ch_names
for s_ in all_spectrum[1:]:
assert s_.ch_names == ch_names, (
f"{spectrum} and {s_} do not contain the same channels"
)
assert np.max(np.abs(s_.freqs - spectrum.freqs)) < 1e-7, (
f"{spectrum} and {s_} do not contain the same frequencies"
)
# use union of bad channels
bads = list(
set(spectrum.info["bads"]).union(*(s_.info["bads"] for s_ in all_spectrum[1:]))
)
spectrum.info["bads"] = bads
# combine spectral data
spectrum._data = sum(w * s_.data for w, s_ in zip(weights, all_spectrum))
if spectrum.nave is not None:
spectrum._nave = max(
int(1.0 / sum(w**2 / s_.nave for w, s_ in zip(weights, all_spectrum))), 1
)
return spectrum
def read_spectrum(fname):
"""Load a :class:`mne.time_frequency.Spectrum` object from disk.
Parameters
----------
fname : path-like
Path to a spectrum file in HDF5 format, which should end with ``.h5`` or
``.hdf5``.
Returns
-------
spectrum : instance of Spectrum
The loaded Spectrum object.
See Also
--------
mne.time_frequency.Spectrum.save
"""
read_hdf5, _ = _import_h5io_funcs()
_validate_type(fname, "path-like", "fname")
fname = _check_fname(fname=fname, overwrite="read", must_exist=False)
# read it in
hdf5_dict = read_hdf5(fname, title="mnepython", slash="replace")
defaults = dict(
method=None,
fmin=None,
fmax=None,
tmin=None,
tmax=None,
picks=None,
exclude=(),
proj=None,
remove_dc=None,
reject_by_annotation=None,
n_jobs=None,
verbose=None,
)
Klass = EpochsSpectrum if hdf5_dict["inst_type_str"] == "Epochs" else Spectrum
return Klass(hdf5_dict, **defaults)
def _check_ci(ci):
ci = "sd" if ci == "std" else ci # be forgiving
if _is_numeric(ci):
if not (0 < ci <= 100):
raise ValueError(f"ci must satisfy 0 < ci <= 100, got {ci}")
ci /= 100.0
else:
_check_option("ci", ci, [None, "sd", "range"])
return ci
def _compute_n_welch_segments(n_times, method_kw):
# get default values from psd_array_welch
_defaults = dict()
for param in ("n_fft", "n_per_seg", "n_overlap"):
_defaults[param] = signature(psd_array_welch).parameters[param].default
# override defaults with user-specified values
for key, val in _defaults.items():
_defaults.update({key: method_kw.get(key, val)})
# sanity check values / replace `None`s with real numbers
n_fft, n_per_seg, n_overlap = _check_nfft(n_times, **_defaults)
# compute expected number of segments
step = n_per_seg - n_overlap
return (n_times - n_overlap) // step
def _validate_method(method, instance_type):
"""Convert 'auto' to a real method name, and validate."""
if method == "auto":
method = "welch" if instance_type.startswith("Raw") else "multitaper"
_check_option("method", method, ("welch", "multitaper"))
return method