# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import copy as cp
import numbers
import numpy as np
from scipy.fft import rfftfreq
from .._fiff.pick import _picks_to_idx, pick_channels
from ..parallel import parallel_func
from ..time_frequency.multitaper import (
_compute_mt_params,
_csd_from_mt,
_mt_spectra,
_psd_from_mt_adaptive,
)
from ..utils import (
ProgressBar,
_check_fname,
_import_h5io_funcs,
_validate_type,
copy_function_doc_to_method_doc,
logger,
verbose,
warn,
)
from ..viz.misc import plot_csd
from .tfr import EpochsTFR, _cwt_array, _get_nfft, morlet
@verbose
def pick_channels_csd(
csd, include=(), exclude=(), ordered=True, copy=True, *, verbose=None
):
"""Pick channels from cross-spectral density matrix.
Parameters
----------
csd : instance of CrossSpectralDensity
The CSD object to select the channels from.
include : list of str
List of channels to include (if empty, include all available).
exclude : list of str
Channels to exclude (if empty, do not exclude any).
%(ordered)s
copy : bool
If True (the default), return a copy of the CSD matrix with the
modified channels. If False, channels are modified in-place.
.. versionadded:: 0.20.0
%(verbose)s
Returns
-------
res : instance of CrossSpectralDensity
Cross-spectral density restricted to selected channels.
"""
if copy:
csd = csd.copy()
sel = pick_channels(csd.ch_names, include=include, exclude=exclude, ordered=ordered)
data = []
for vec in csd._data.T:
mat = _vector_to_sym_mat(vec)
mat = mat[sel, :][:, sel]
data.append(_sym_mat_to_vector(mat))
ch_names = [csd.ch_names[i] for i in sel]
csd._data = np.array(data).T
csd.ch_names = ch_names
return csd
class CrossSpectralDensity:
"""Cross-spectral density.
Given a list of time series, the CSD matrix denotes for each pair of time
series, the cross-spectral density. This matrix is symmetric and internally
stored as a vector.
This object can store multiple CSD matrices: one for each frequency.
Use ``.get_data(freq)`` to obtain an CSD matrix as an ndarray.
Parameters
----------
data : ndarray, shape ((n_channels**2 + n_channels) // 2, n_frequencies)
For each frequency, the cross-spectral density matrix in vector format.
ch_names : list of str
List of string names for each channel.
frequencies : float | list of float | list of list of float
Frequency or frequencies for which the CSD matrix was calculated. When
averaging across frequencies (see the :func:`CrossSpectralDensity.mean`
function), this will be a list of lists that contains for each
frequency bin, the frequencies that were averaged. Frequencies should
always be sorted.
n_fft : int
The number of FFT points or samples that have been used in the
computation of this CSD.
tmin : float | None
Start of the time window for which CSD was calculated in seconds. Can
be ``None`` (the default) to indicate no timing information is
available.
tmax : float | None
End of the time window for which CSD was calculated in seconds. Can be
``None`` (the default) to indicate no timing information is available.
projs : list of Projection | None
List of projectors to apply to timeseries data when using this CSD
object to compute a DICS beamformer. Defaults to ``None``, which means
no projectors will be applied.
See Also
--------
csd_fourier
csd_multitaper
csd_morlet
csd_array_fourier
csd_array_multitaper
csd_array_morlet
"""
def __init__(
self, data, ch_names, frequencies, n_fft, tmin=None, tmax=None, projs=None
):
data = np.asarray(data)
if data.ndim == 1:
data = data[:, np.newaxis]
elif data.ndim > 2:
raise ValueError("`data` should be either a 1D or 2D array.")
self._data = data
if len(ch_names) != _n_dims_from_triu(len(data)):
raise ValueError(
"Number of ch_names does not match the number of "
"time series in the CSD matrix."
)
self.ch_names = list(ch_names)
self.tmin = tmin
self.tmax = tmax
if isinstance(frequencies, numbers.Number):
frequencies = [frequencies]
if len(frequencies) != data.shape[1]:
raise ValueError(
"Number of frequencies does not match the number of CSD matrices in "
f"the data array ({len(frequencies)} != {data.shape[1]})."
)
self.frequencies = frequencies
self.n_fft = n_fft
if projs is None:
self.projs = []
else:
self.projs = cp.deepcopy(projs)
@property
def n_channels(self):
"""Number of time series defined in this CSD object."""
return len(self.ch_names)
@property
def _is_sum(self):
"""Whether the CSD matrix represents a sum (or average) of freqs."""
# If the CSD is an average, the frequencies will be stored as a list
# of lists (or like-like objects) instead of plain numbers.
return not isinstance(self.frequencies[0], numbers.Number)
def __len__(self): # noqa: D105
"""Return number of frequencies.
Returns
-------
n_freqs : int
The number of frequencies.
"""
return len(self.frequencies)
def __repr__(self): # noqa: D105
# Make a pretty string representation of the frequencies
freq_strs = []
for f in self.frequencies:
if isinstance(f, numbers.Number):
freq_strs.append(str(f))
elif len(f) == 1:
freq_strs.append(str(f[0]))
else:
freq_strs.append(f"{np.min(f)}-{np.max(f)}")
freq_str = ", ".join(freq_strs) + " Hz."
if self.tmin is not None and self.tmax is not None:
time_str = f"{self.tmin} to {self.tmax} s"
else:
time_str = "unknown"
return (
"<CrossSpectralDensity | "
f"n_channels={self.n_channels}, time={time_str}, frequencies={freq_str}>"
)
def sum(self, fmin=None, fmax=None):
"""Calculate the sum CSD in the given frequency range(s).
If the exact given frequencies are not available, the nearest
frequencies will be chosen.
Parameters
----------
fmin : float | list of float | None
Lower bound of the frequency range in Hertz. Defaults to the lowest
frequency available. When a list of frequencies is given, these are
used as the lower bounds (inclusive) of frequency bins and the sum
is taken for each bin.
fmax : float | list of float | None
Upper bound of the frequency range in Hertz. Defaults to the
highest frequency available. When a list of frequencies is given,
these are used as the upper bounds (inclusive) of frequency bins
and the sum is taken for each bin.
Returns
-------
csd : instance of CrossSpectralDensity
The CSD matrix, summed across the given frequency range(s).
"""
if self._is_sum:
raise RuntimeError(
"This CSD matrix already represents a mean or sum across frequencies."
)
# Deal with the various ways in which fmin and fmax can be specified
if fmin is None and fmax is None:
fmin = [self.frequencies[0]]
fmax = [self.frequencies[-1]]
else:
if isinstance(fmin, numbers.Number):
fmin = [fmin]
if isinstance(fmax, numbers.Number):
fmax = [fmax]
if fmin is None:
fmin = [self.frequencies[0]] * len(fmax)
if fmax is None:
fmax = [self.frequencies[-1]] * len(fmin)
if any(fmin_ > fmax_ for fmin_, fmax_ in zip(fmin, fmax)):
raise ValueError(
"Some lower bounds are higher than the corresponding upper bounds."
)
# Find the index of the lower bound of each frequency bin
fmin_inds = [self._get_frequency_index(f) for f in fmin]
fmax_inds = [self._get_frequency_index(f) + 1 for f in fmax]
if len(fmin_inds) != len(fmax_inds):
raise ValueError("The length of fmin does not match the length of fmax.")
# Sum across each frequency bin
n_bins = len(fmin_inds)
new_data = np.zeros((self._data.shape[0], n_bins), dtype=self._data.dtype)
new_frequencies = []
for i, (min_ind, max_ind) in enumerate(zip(fmin_inds, fmax_inds)):
new_data[:, i] = self._data[:, min_ind:max_ind].sum(axis=1)
new_frequencies.append(self.frequencies[min_ind:max_ind])
csd_out = CrossSpectralDensity(
data=new_data,
ch_names=self.ch_names,
tmin=self.tmin,
tmax=self.tmax,
frequencies=new_frequencies,
n_fft=self.n_fft,
projs=self.projs,
)
return csd_out
def mean(self, fmin=None, fmax=None):
"""Calculate the mean CSD in the given frequency range(s).
Parameters
----------
fmin : float | list of float | None
Lower bound of the frequency range in Hertz. Defaults to the lowest
frequency available. When a list of frequencies is given, these are
used as the lower bounds (inclusive) of frequency bins and the mean
is taken for each bin.
fmax : float | list of float | None
Upper bound of the frequency range in Hertz. Defaults to the
highest frequency available. When a list of frequencies is given,
these are used as the upper bounds (inclusive) of frequency bins
and the mean is taken for each bin.
Returns
-------
csd : instance of CrossSpectralDensity
The CSD matrix, averaged across the given frequency range(s).
"""
csd = self.sum(fmin, fmax)
for i, f in enumerate(csd.frequencies):
csd._data[:, i] /= len(f)
return csd
def _get_frequency_index(self, freq):
"""Find the index of the given frequency in ``self.frequencies``.
If the exact given frequency is not available, the nearest frequencies
will be chosen, up to a difference of 1 Hertz.
Parameters
----------
freq : float
The frequency to find the index for
Returns
-------
index : int
The index of the frequency nearest to the requested frequency.
"""
if self._is_sum:
raise ValueError(
"This CSD object represents a mean across "
"frequencies. Cannot select a specific "
"frequency."
)
distance = np.abs(np.asarray(self.frequencies) - freq)
index = np.argmin(distance)
min_dist = distance[index]
if min_dist > 1:
raise IndexError(f"Frequency {freq:f} is not available.")
return index
def pick_frequency(self, freq=None, index=None):
"""Get a CrossSpectralDensity object with only the given frequency.
Parameters
----------
freq : float | None
Return the CSD matrix for a specific frequency. Only available
when no averaging across frequencies has been done.
index : int | None
Return the CSD matrix for the frequency or frequency-bin with the
given index.
Returns
-------
csd : instance of CrossSpectralDensity
A CSD object containing a single CSD matrix that corresponds to the
requested frequency or frequency-bin.
See Also
--------
get_data
"""
if freq is None and index is None:
raise ValueError(
'Use either the "freq" or "index" parameter to '
"select the desired frequency."
)
elif freq is not None:
if index is not None:
raise ValueError("Cannot specify both a frequency and index.")
index = self._get_frequency_index(freq)
return self[index]
def get_data(self, frequency=None, index=None, as_cov=False):
"""Get the CSD matrix for a given frequency as NumPy array.
If there is only one matrix defined in the CSD object, calling this
method without any parameters will return it. If multiple matrices are
defined, use either the ``frequency`` or ``index`` parameter to select
one.
Parameters
----------
frequency : float | None
Return the CSD matrix for a specific frequency. Only available when
no averaging across frequencies has been done.
index : int | None
Return the CSD matrix for the frequency or frequency-bin with the
given index.
as_cov : bool
Whether to return the data as a numpy array (`False`, the default),
or pack it in a :class:`mne.Covariance` object (`True`).
.. versionadded:: 0.20
Returns
-------
csd : ndarray, shape (n_channels, n_channels) | instance of Covariance
The CSD matrix corresponding to the requested frequency.
See Also
--------
pick_frequency
"""
if frequency is None and index is None:
if self._data.shape[1] > 1:
raise ValueError(
"Specify either the frequency or index of "
"the frequency bin for which to obtain the "
"CSD matrix."
)
index = 0
elif frequency is not None:
if index is not None:
raise ValueError("Cannot specify both a frequency and index.")
index = self._get_frequency_index(frequency)
data = _vector_to_sym_mat(self._data[:, index])
if as_cov:
# Pack the data into a Covariance object
from ..cov import Covariance # to avoid circular import
return Covariance(
data, self.ch_names, bads=[], projs=self.projs, nfree=self.n_fft
)
else:
return data
@copy_function_doc_to_method_doc(plot_csd)
def plot(
self,
info=None,
mode="csd",
colorbar=True,
cmap="viridis",
n_cols=None,
show=True,
):
return plot_csd(
self,
info=info,
mode=mode,
colorbar=colorbar,
cmap=cmap,
n_cols=n_cols,
show=show,
)
def __setstate__(self, state): # noqa: D105
# Avoid circular import
from ..proj import Projection
self._data = state["data"]
self.tmin = state["tmin"]
self.tmax = state["tmax"]
self.ch_names = state["ch_names"]
self.frequencies = state["frequencies"]
self.n_fft = state["n_fft"]
self.projs = [Projection(**proj) for proj in state["projs"]]
def __getstate__(self): # noqa: D105
return dict(
data=self._data,
tmin=self.tmin,
tmax=self.tmax,
ch_names=self.ch_names,
frequencies=self.frequencies,
n_fft=self.n_fft,
projs=self.projs,
)
def __getitem__(self, sel): # noqa: D105
"""Subselect frequencies.
Parameters
----------
sel : ndarray
Array of frequency indices to subselect.
Returns
-------
csd : instance of CrossSpectralDensity
A new CSD instance with the subset of frequencies.
"""
return CrossSpectralDensity(
data=self._data[:, sel],
ch_names=self.ch_names,
tmin=self.tmin,
tmax=self.tmax,
frequencies=np.atleast_1d(self.frequencies)[sel].tolist(),
n_fft=self.n_fft,
projs=self.projs,
)
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save the CSD to an HDF5 file.
Parameters
----------
fname : path-like
The name of the file to save the CSD to. The extension ``'.h5'``
will be appended if the given filename doesn't have it already.
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
.. versionadded:: 1.0
See Also
--------
read_csd : For reading CSD objects from a file.
"""
_, write_hdf5 = _import_h5io_funcs()
fname = _check_fname(fname, overwrite=True)
if fname.suffix != ".h5":
fname = fname.with_name(f"{fname.name}.h5")
fname = _check_fname(fname, overwrite=overwrite)
write_hdf5(fname, self.__getstate__(), overwrite=True, title="conpy")
def copy(self):
"""Return copy of the CrossSpectralDensity object.
Returns
-------
copy : instance of CrossSpectralDensity
A copy of the object.
"""
return cp.deepcopy(self)
def pick_channels(self, ch_names, ordered=False):
"""Pick channels from this cross-spectral density matrix.
Parameters
----------
ch_names : list of str
List of channels to keep. All other channels are dropped.
ordered : bool
If True (default False), ensure that the order of the channels
matches the order of ``ch_names``.
Returns
-------
csd : instance of CrossSpectralDensity.
The modified cross-spectral density object.
Notes
-----
Operates in-place.
.. versionadded:: 0.20.0
"""
return pick_channels_csd(
self, include=ch_names, exclude=[], ordered=ordered, copy=False
)
def _n_dims_from_triu(n):
"""Compute matrix dims from number of elements in the upper triangle.
Parameters
----------
n : int
Number of elements in the upper triangle of the symmetric matrix.
Returns
-------
dim : int
The dimensions of the symmetric matrix.
"""
return int(np.ceil(np.sqrt(n * 2))) - 1
def _vector_to_sym_mat(vec):
"""Convert vector to a symmetric matrix.
The upper triangle of the matrix (including the diagonal) will be filled
with the values of the vector.
Parameters
----------
vec : list or 1d-array
The vector to convert to a symmetric matrix.
Returns
-------
mat : 2d-array
The symmetric matrix.
See Also
--------
_sym_mat_to_vector
"""
dim = _n_dims_from_triu(len(vec))
mat = np.zeros((dim, dim) + vec.shape[1:], dtype=vec.dtype)
# Fill the upper triangle of the matrix
mat[np.triu_indices(dim)] = vec
# Fill out the lower tri (make conjugate to ensure matrix is hermitian)
mat = mat + np.rollaxis(mat, 1).conj()
# We counted the diagonal twice
if np.issubdtype(mat.dtype, np.integer):
mat[np.diag_indices(dim)] //= 2
else:
mat[np.diag_indices(dim)] /= 2
return mat
def _sym_mat_to_vector(mat):
"""Convert a symmetric matrix to a vector.
The upper triangle of the matrix (including the diagonal) will be used
as the values of the vector.
Parameters
----------
mat : 2d-array
The symmetric matrix to convert to a vector
Returns
-------
vec : 1d-array
A vector consisting of the values of the upper triangle of the matrix.
See Also
--------
_vector_to_sym_mat
"""
return mat[np.triu_indices_from(mat)]
def read_csd(fname):
"""Read a CrossSpectralDensity object from an HDF5 file.
Parameters
----------
fname : path-like
The name of the file to read the CSD from. The extension ``'.h5'`` will
be appended if the given filename doesn't have it already.
Returns
-------
csd : instance of CrossSpectralDensity
The CSD that was stored in the file.
See Also
--------
CrossSpectralDensity.save : For saving CSD objects.
"""
read_hdf5, _ = _import_h5io_funcs()
if not fname.endswith(".h5"):
fname += ".h5"
csd_dict = read_hdf5(fname, title="conpy")
if csd_dict["projs"] is not None:
# Avoid circular import
from ..proj import Projection
csd_dict["projs"] = [Projection(**proj) for proj in csd_dict["projs"]]
return CrossSpectralDensity(**csd_dict)
@verbose
def csd_fourier(
epochs,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
n_fft=None,
projs=None,
n_jobs=None,
*,
verbose=None,
):
"""Estimate cross-spectral density from an array using short-time fourier.
Parameters
----------
epochs : instance of Epochs
The epochs to compute the CSD for.
fmin : float
Minimum frequency of interest, in Hertz.
fmax : float | np.inf
Maximum frequency of interest, in Hertz.
tmin : float | None
Minimum time instant to consider, in seconds. If ``None`` start at
first sample.
tmax : float | None
Maximum time instant to consider, in seconds. If ``None`` end at last
sample.
%(picks_good_data_noref)s
n_fft : int | None
Length of the FFT. If ``None``, the exact number of samples between
``tmin`` and ``tmax`` will be used.
projs : list of Projection | None
List of projectors to store in the CSD object. Defaults to ``None``,
which means the projectors defined in the Epochs object will be copied.
%(n_jobs)s
%(verbose)s
Returns
-------
csd : instance of CrossSpectralDensity
The computed cross-spectral density.
See Also
--------
csd_array_fourier
csd_array_morlet
csd_array_multitaper
csd_morlet
csd_multitaper
"""
epochs, projs = _prepare_csd(epochs, tmin, tmax, picks, projs)
return csd_array_fourier(
epochs.get_data(copy=False),
sfreq=epochs.info["sfreq"],
t0=epochs.tmin,
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
ch_names=epochs.ch_names,
n_fft=n_fft,
projs=projs,
n_jobs=n_jobs,
verbose=verbose,
)
@verbose
def csd_array_fourier(
X,
sfreq,
t0=0,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
ch_names=None,
n_fft=None,
projs=None,
n_jobs=None,
*,
verbose=None,
):
"""Estimate cross-spectral density from an array using short-time fourier.
Parameters
----------
X : array-like, shape (n_epochs, n_channels, n_times)
The time series data consisting of n_epochs separate observations
of signals with n_channels time-series of length n_times.
sfreq : float
Sampling frequency of observations.
t0 : float
Time of the first sample relative to the onset of the epoch, in
seconds. Defaults to 0.
fmin : float
Minimum frequency of interest, in Hertz.
fmax : float | np.inf
Maximum frequency of interest, in Hertz.
tmin : float | None
Minimum time instant to consider, in seconds. If ``None`` start at
first sample.
tmax : float | None
Maximum time instant to consider, in seconds. If ``None`` end at last
sample.
ch_names : list of str | None
A name for each time series. If ``None`` (the default), the series will
be named 'SERIES###'.
n_fft : int | None
Length of the FFT. If ``None``, the exact number of samples between
``tmin`` and ``tmax`` will be used.
projs : list of Projection | None
List of projectors to store in the CSD object. Defaults to ``None``,
which means no projectors are stored.
%(n_jobs)s
%(verbose)s
Returns
-------
csd : instance of CrossSpectralDensity
The computed cross-spectral density.
See Also
--------
csd_array_morlet
csd_array_multitaper
csd_fourier
csd_morlet
csd_multitaper
"""
X, times, tmin, tmax, fmin, fmax = _prepare_csd_array(
X, sfreq, t0, tmin, tmax, fmin, fmax
)
# Slice X to the requested time window
tstart = None if tmin is None else np.searchsorted(times, tmin - 1e-10)
tstop = None if tmax is None else np.searchsorted(times, tmax + 1e-10)
X = X[:, :, tstart:tstop]
times = times[tstart:tstop]
n_times = len(times)
n_fft = n_times if n_fft is None else n_fft
# Preparing frequencies of interest
orig_frequencies = rfftfreq(n_fft, 1.0 / sfreq)
freq_mask = (
(orig_frequencies > 0) & (orig_frequencies >= fmin) & (orig_frequencies <= fmax)
)
frequencies = orig_frequencies[freq_mask]
if len(frequencies) == 0:
raise ValueError(
"No discrete fourier transform results within "
"the given frequency window. Please widen either "
"the frequency window or the time window"
)
# Compute the CSD
return _execute_csd_function(
X,
times,
frequencies,
_csd_fourier,
params=[sfreq, n_times, freq_mask, n_fft],
n_fft=n_fft,
ch_names=ch_names,
projs=projs,
n_jobs=n_jobs,
verbose=verbose,
)
@verbose
def csd_multitaper(
epochs,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
n_fft=None,
bandwidth=None,
adaptive=False,
low_bias=True,
projs=None,
n_jobs=None,
*,
verbose=None,
):
"""Estimate cross-spectral density from epochs using a multitaper method.
Parameters
----------
epochs : instance of Epochs
The epochs to compute the CSD for.
fmin : float | None
Minimum frequency of interest, in Hertz.
fmax : float | np.inf
Maximum frequency of interest, in Hertz.
tmin : float
Minimum time instant to consider, in seconds. If ``None`` start at
first sample.
tmax : float | None
Maximum time instant to consider, in seconds. If ``None`` end at last
sample.
%(picks_good_data_noref)s
n_fft : int | None
Length of the FFT. If ``None``, the exact number of samples between
``tmin`` and ``tmax`` will be used.
bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD.
low_bias : bool
Only use tapers with more than 90%% spectral concentration within
bandwidth.
projs : list of Projection | None
List of projectors to store in the CSD object. Defaults to ``None``,
which means the projectors defined in the Epochs object will by copied.
%(n_jobs)s
%(verbose)s
Returns
-------
csd : instance of CrossSpectralDensity
The computed cross-spectral density.
See Also
--------
csd_array_fourier
csd_array_morlet
csd_array_multitaper
csd_fourier
csd_morlet
"""
epochs, projs = _prepare_csd(epochs, tmin, tmax, picks, projs)
return csd_array_multitaper(
epochs.get_data(copy=False),
sfreq=epochs.info["sfreq"],
t0=epochs.tmin,
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
ch_names=epochs.ch_names,
n_fft=n_fft,
bandwidth=bandwidth,
adaptive=adaptive,
low_bias=low_bias,
projs=projs,
n_jobs=n_jobs,
verbose=verbose,
)
@verbose
def csd_array_multitaper(
X,
sfreq,
t0=0,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
ch_names=None,
n_fft=None,
bandwidth=None,
adaptive=False,
low_bias=True,
projs=None,
n_jobs=None,
max_iter=250,
*,
verbose=None,
):
"""Estimate cross-spectral density from an array using a multitaper method.
Parameters
----------
X : array-like, shape (n_epochs, n_channels, n_times)
The time series data consisting of n_epochs separate observations
of signals with n_channels time-series of length n_times.
sfreq : float
Sampling frequency of observations.
t0 : float
Time of the first sample relative to the onset of the epoch, in
seconds. Defaults to 0.
fmin : float
Minimum frequency of interest, in Hertz.
fmax : float | np.inf
Maximum frequency of interest, in Hertz.
tmin : float | None
Minimum time instant to consider, in seconds. If ``None`` start at
first sample.
tmax : float | None
Maximum time instant to consider, in seconds. If ``None`` end at last
sample.
ch_names : list of str | None
A name for each time series. If ``None`` (the default), the series will
be named 'SERIES###'.
n_fft : int | None
Length of the FFT. If ``None``, the exact number of samples between
``tmin`` and ``tmax`` will be used.
bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD.
low_bias : bool
Only use tapers with more than 90%% spectral concentration within
bandwidth.
projs : list of Projection | None
List of projectors to store in the CSD object. Defaults to ``None``,
which means no projectors are stored.
%(n_jobs)s
%(max_iter_multitaper)s
%(verbose)s
Returns
-------
csd : instance of CrossSpectralDensity
The computed cross-spectral density.
See Also
--------
csd_array_fourier
csd_array_morlet
csd_fourier
csd_morlet
csd_multitaper
"""
X, times, tmin, tmax, fmin, fmax = _prepare_csd_array(
X, sfreq, t0, tmin, tmax, fmin, fmax
)
# Slice X to the requested time window
tstart = None if tmin is None else np.searchsorted(times, tmin - 1e-10)
tstop = None if tmax is None else np.searchsorted(times, tmax + 1e-10)
X = X[:, :, tstart:tstop]
times = times[tstart:tstop]
n_times = len(times)
n_fft = n_times if n_fft is None else n_fft
window_fun, eigvals, adaptive = _compute_mt_params(
n_times, sfreq, bandwidth, low_bias, adaptive
)
# Preparing frequencies of interest
orig_frequencies = rfftfreq(n_fft, 1.0 / sfreq)
freq_mask = (
(orig_frequencies > 0) & (orig_frequencies >= fmin) & (orig_frequencies <= fmax)
)
frequencies = orig_frequencies[freq_mask]
if len(frequencies) == 0:
raise ValueError(
"No discrete fourier transform results within "
"the given frequency window. Please widen either "
"the frequency window or the time window"
)
# Compute the CSD
return _execute_csd_function(
X,
times,
frequencies,
_csd_multitaper,
params=[
sfreq,
n_times,
window_fun,
eigvals,
freq_mask,
n_fft,
adaptive,
max_iter,
],
n_fft=n_fft,
ch_names=ch_names,
projs=projs,
n_jobs=n_jobs,
verbose=verbose,
)
@verbose
def csd_morlet(
epochs,
frequencies,
tmin=None,
tmax=None,
picks=None,
n_cycles=7,
use_fft=True,
decim=1,
projs=None,
n_jobs=None,
*,
verbose=None,
):
"""Estimate cross-spectral density from epochs using Morlet wavelets.
Parameters
----------
epochs : instance of Epochs
The epochs to compute the CSD for.
frequencies : list of float
The frequencies of interest, in Hertz.
tmin : float | None
Minimum time instant to consider, in seconds. If ``None`` start at
first sample.
tmax : float | None
Maximum time instant to consider, in seconds. If ``None`` end at last
sample.
%(picks_good_data_noref)s
n_cycles : float | list of float | None
Number of cycles to use when constructing Morlet wavelets. Fixed number
or one per frequency. Defaults to 7.
use_fft : bool
Whether to use FFT-based convolution to compute the wavelet transform.
Defaults to True.
decim : int | slice
To reduce memory usage, decimation factor during time-frequency
decomposition. Defaults to 1 (no decimation).
If `int`, uses tfr[..., ::decim].
If `slice`, uses tfr[..., decim].
projs : list of Projection | None
List of projectors to store in the CSD object. Defaults to ``None``,
which means the projectors defined in the Epochs object will be copied.
%(n_jobs)s
%(verbose)s
Returns
-------
csd : instance of CrossSpectralDensity
The computed cross-spectral density.
See Also
--------
csd_array_fourier
csd_array_morlet
csd_array_multitaper
csd_fourier
csd_multitaper
"""
epochs, projs = _prepare_csd(epochs, tmin, tmax, picks, projs)
return csd_array_morlet(
epochs.get_data(copy=False),
sfreq=epochs.info["sfreq"],
frequencies=frequencies,
t0=epochs.tmin,
tmin=tmin,
tmax=tmax,
ch_names=epochs.ch_names,
n_cycles=n_cycles,
use_fft=use_fft,
decim=decim,
projs=projs,
n_jobs=n_jobs,
verbose=verbose,
)
@verbose
def csd_array_morlet(
X,
sfreq,
frequencies,
t0=0,
tmin=None,
tmax=None,
ch_names=None,
n_cycles=7,
use_fft=True,
decim=1,
projs=None,
n_jobs=None,
*,
verbose=None,
):
"""Estimate cross-spectral density from an array using Morlet wavelets.
Parameters
----------
X : array-like, shape (n_epochs, n_channels, n_times)
The time series data consisting of n_epochs separate observations
of signals with n_channels time-series of length n_times.
sfreq : float
Sampling frequency of observations.
frequencies : list of float
The frequencies of interest, in Hertz.
t0 : float
Time of the first sample relative to the onset of the epoch, in
seconds. Defaults to 0.
tmin : float | None
Minimum time instant to consider, in seconds. If ``None`` start at
first sample.
tmax : float | None
Maximum time instant to consider, in seconds. If ``None`` end at last
sample.
ch_names : list of str | None
A name for each time series. If ``None`` (the default), the series will
be named 'SERIES###'.
n_cycles : float | list of float | None
Number of cycles to use when constructing Morlet wavelets. Fixed number
or one per frequency. Defaults to 7.
use_fft : bool
Whether to use FFT-based convolution to compute the wavelet transform.
Defaults to True.
decim : int | slice
To reduce memory usage, decimation factor during time-frequency
decomposition. Defaults to 1 (no decimation).
If `int`, uses tfr[..., ::decim].
If `slice`, uses tfr[..., decim].
projs : list of Projection | None
List of projectors to store in the CSD object. Defaults to ``None``,
which means the projectors defined in the Epochs object will be copied.
%(n_jobs)s
%(verbose)s
Returns
-------
csd : instance of CrossSpectralDensity
The computed cross-spectral density.
See Also
--------
csd_array_fourier
csd_array_multitaper
csd_fourier
csd_morlet
csd_multitaper
"""
X, times, tmin, tmax, _, _ = _prepare_csd_array(X, sfreq, t0, tmin, tmax)
n_times = len(times)
# Construct the appropriate Morlet wavelets
wavelets = morlet(sfreq, frequencies, n_cycles)
# Slice X to the requested time window + half the length of the longest
# wavelet.
wave_length = len(wavelets[np.argmin(frequencies)]) // 2
tstart = tstop = None
if tmin is not None:
tstart = np.searchsorted(times, tmin)
tstart = max(0, tstart - wave_length)
if tmax is not None:
tstop = np.searchsorted(times, tmax)
tstop = min(n_times, tstop + wave_length)
X = X[:, :, tstart:tstop]
times = times[tstart:tstop]
# After CSD computation, we slice again to the requested time window.
csd_tstart = None if tmin is None else np.searchsorted(times, tmin - 1e-10)
csd_tstop = None if tmax is None else np.searchsorted(times, tmax + 1e-10)
csd_tslice = slice(csd_tstart, csd_tstop)
times = times[csd_tslice]
# Compute the CSD
nfft = _get_nfft(wavelets, X, use_fft)
return _execute_csd_function(
X,
times,
frequencies,
_csd_morlet,
params=[sfreq, wavelets, nfft, csd_tslice, use_fft, decim],
n_fft=1,
ch_names=ch_names,
projs=projs,
n_jobs=n_jobs,
verbose=verbose,
)
def _prepare_csd(epochs, tmin=None, tmax=None, picks=None, projs=None):
"""Do some checking and preprocessing of common csd_* parameters.
See the csd_* functions for documentation of the parameters.
"""
tstep = epochs.times[1] - epochs.times[0]
if tmin is not None and tmin < epochs.times[0] - tstep:
raise ValueError("tmin should be larger than the smallest data time point")
if tmax is not None and tmax > epochs.times[-1] + tstep:
raise ValueError("tmax should be smaller than the largest data time point")
if tmax is not None and tmin is not None:
if tmax < tmin:
raise ValueError("tmax must be larger than tmin")
if epochs.baseline is None and epochs.info["highpass"] < 0.1:
warn(
"Epochs are not baseline corrected or enough highpass filtered. "
"Cross-spectral density may be inaccurate."
)
picks = _picks_to_idx(epochs.info, picks, "data", with_ref_meg=False)
epochs = epochs.copy().pick(picks)
if projs is None:
projs = epochs.info["projs"]
return epochs, projs
def _prepare_csd_array(X, sfreq, t0, tmin, tmax, fmin=None, fmax=None):
"""Do some checking and preprocessing of common csd_r=array_* parameters.
See the csd_array_* functions for documentation of the parameters.
"""
X = np.asarray(X, dtype=float)
if X.ndim != 3:
raise ValueError("X must be n_epochs x n_channels x n_times.")
n_times = X.shape[2]
tstep = 1.0 / sfreq
times = np.arange(n_times) * tstep + t0
# Check tmin and tmax
if tmax is None:
tmax = times.max()
if tmin is None:
tmin = times.min()
if tmax <= tmin:
raise ValueError("tmax must be larger than tmin")
if tmin < times[0] - tstep:
raise ValueError("tmin should be larger than the smallest data time point")
if tmax > times[-1] + tstep:
raise ValueError("tmax should be smaller than the largest data time point")
# Check fmin and fmax
if fmax is not None and fmin is not None and fmax <= fmin:
raise ValueError("fmax must be larger than fmin")
return X, times, tmin, tmax, fmin, fmax
@verbose
def _execute_csd_function(
X,
times,
frequencies,
csd_function,
params,
n_fft,
ch_names=None,
projs=None,
n_jobs=None,
*,
verbose=None,
):
"""Estimate cross-spectral density with a given function.
This function will apply the given CSD function in parallel across epochs.
Parameters
----------
X : array-like, shape (n_epochs, n_channels, n_times)
The time series data consisting of n_epochs separate observations
of signals with n_channels time-series of length n_times.
times : float
Timestamps for each sample.
frequencies : list of float
The frequencies of interest for which the CSD is going to be computed.
csd_function : function
Function that performs the actual CSD computation
params : list
List of parameters to pass the CSD function.
n_fft : int
Number of FFT points. This is stored in the CSD object.
ch_names : list of str | None
A name for each time series. If ``None`` (the default), the series will
be named 'SERIES###'.
projs : list of Projection | None
List of projectors to store in the CSD object. Defaults to ``None``,
which means the projectors defined in the Epochs object will be copied.
%(n_jobs)s
%(verbose)s
Returns
-------
csd : instance of CrossSpectralDensity
The computed cross-spectral density.
"""
n_epochs, n_channels, _ = X.shape
logger.info("Computing cross-spectral density from epochs...")
n_freqs = len(frequencies)
csds_mean = np.zeros(
(n_channels * (n_channels + 1) // 2, n_freqs), dtype=np.complex128
)
# Prepare the function that does the actual CSD computation for parallel
# execution.
parallel, my_csd, n_jobs = parallel_func(csd_function, n_jobs, verbose=verbose)
# Compute CSD for each trial
n_blocks = int(np.ceil(n_epochs / float(n_jobs)))
for i in ProgressBar(range(n_blocks), mesg="CSD epoch blocks"):
epoch_block = X[i * n_jobs : (i + 1) * n_jobs]
csds = parallel(my_csd(this_epoch, *params) for this_epoch in epoch_block)
# Add CSD matrices in-place
csds_mean += np.sum(csds, axis=0)
csds_mean /= n_epochs
logger.info("[done]")
if ch_names is None:
ch_names = [f"SERIES{i + 1:03}" for i in range(n_channels)]
return CrossSpectralDensity(
csds_mean,
ch_names=ch_names,
tmin=times[0],
tmax=times[-1],
frequencies=frequencies,
n_fft=n_fft,
projs=projs,
)
def _csd_fourier(X, sfreq, n_times, freq_mask, n_fft):
"""Compute cross spectral density (CSD) using short-time fourier transform.
Computes the CSD for a single epoch of data.
Parameters
----------
X : ndarray, shape (n_channels, n_times)
The time series data consisting of n_channels time-series of length
n_times.
sfreq : float
The sampling frequency of the data in Hertz.
n_times : int
Number of time samples
freq_mask : ndarray
Which frequencies to use.
n_fft : int
Length of the FFT.
"""
x_mt, _ = _mt_spectra(X, np.hanning(n_times), sfreq, n_fft)
# Hack so we can sum over axis=-2
weights = np.array([1.0])[:, np.newaxis, np.newaxis, np.newaxis]
x_mt = x_mt[:, :, freq_mask]
# Calculating CSD
# Tiling x_mt so that we can easily use _csd_from_mt()
x_mt = x_mt[:, np.newaxis, :, :]
x_mt = np.tile(x_mt, [1, x_mt.shape[0], 1, 1])
y_mt = np.transpose(x_mt, axes=[1, 0, 2, 3])
weights_y = np.transpose(weights, axes=[1, 0, 2, 3])
csds = _csd_from_mt(x_mt, y_mt, weights, weights_y)
# FIXME: don't compute full matrix in the first place
csds = np.array(
[_sym_mat_to_vector(csds[:, :, i]) for i in range(csds.shape[-1])]
).T
# Scaling by number of samples and compensating for loss of power
# due to windowing (see section 11.5.2 in Bendat & Piersol).
csds /= n_times
csds *= 8 / 3.0
# Scaling by sampling frequency for compatibility with Matlab
csds /= sfreq
return csds
def _csd_multitaper(
X, sfreq, n_times, window_fun, eigvals, freq_mask, n_fft, adaptive, max_iter=250
):
"""Compute cross spectral density (CSD) using multitaper module."""
x_mt, _ = _mt_spectra(X, window_fun, sfreq, n_fft)
if adaptive:
# Compute adaptive weights
_, weights = _psd_from_mt_adaptive(
x_mt, eigvals, freq_mask, max_iter, return_weights=True
)
# Tiling weights so that we can easily use _csd_from_mt()
weights = weights[:, np.newaxis, :, :]
weights = np.tile(weights, [1, x_mt.shape[0], 1, 1])
else:
# Do not use adaptive weights
weights = np.sqrt(eigvals)[np.newaxis, np.newaxis, :, np.newaxis]
x_mt = x_mt[:, :, freq_mask]
# Calculating CSD
# Tiling x_mt so that we can easily use _csd_from_mt()
x_mt = x_mt[:, np.newaxis, :, :]
x_mt = np.tile(x_mt, [1, x_mt.shape[0], 1, 1])
y_mt = np.transpose(x_mt, axes=[1, 0, 2, 3])
weights_y = np.transpose(weights, axes=[1, 0, 2, 3])
csds = _csd_from_mt(x_mt, y_mt, weights, weights_y)
# FIXME: don't compute full matrix in the first place
csds = np.array(
[_sym_mat_to_vector(csds[:, :, i]) for i in range(csds.shape[-1])]
).T
# Scaling by sampling frequency for compatibility with Matlab
csds /= sfreq
return csds
def _csd_morlet(data, sfreq, wavelets, nfft, tslice=None, use_fft=True, decim=1):
"""Compute cross spectral density (CSD) using the given Morlet wavelets.
Computes the CSD for a single epoch of data.
Parameters
----------
data : ndarray, shape (n_channels, n_times)
The time series data consisting of n_channels time-series of length
n_times.
sfreq : float
The sampling frequency of the data in Hertz.
wavelets : list of ndarray
The Morlet wavelets for which to compute the CSD's. These have been
created by the `mne.time_frequency.tfr.morlet` function.
nfft : int
The number of FFT points.
tslice : slice | None
The desired time samples to compute the CSD over. If None, defaults to
including all time samples.
use_fft : bool
Whether to use FFT-based convolution to compute the wavelet transform.
Defaults to True.
decim : int | slice
To reduce memory usage, decimation factor during time-frequency
decomposition. Defaults to 1 (no decimation).
Only used in 'cwt_morlet' mode.
If `int`, uses tfr[..., ::decim].
If `slice`, uses tfr[..., decim].
Returns
-------
csd : ndarray, shape ((n_channels**2 + n_channels) / 2 , n_wavelets)
For each wavelet, the upper triangle of the cross spectral density
matrix.
See Also
--------
_vector_to_sym_mat : For converting the CSD to a full matrix.
"""
# Compute PSD
psds = _cwt_array(data, wavelets, nfft, mode="same", use_fft=use_fft, decim=decim)
if tslice is not None:
tstart = None if tslice.start is None else tslice.start // decim
tstop = None if tslice.stop is None else tslice.stop // decim
tstep = None if tslice.step is None else tslice.step // decim
tslice = slice(tstart, tstop, tstep)
psds = psds[:, :, tslice]
psds_conj = np.conj(psds)
# Compute the spectral density between all pairs of series
n_channels = data.shape[0]
csds = np.vstack(
[np.mean(psds[[i]] * psds_conj[i:], axis=2) for i in range(n_channels)]
)
# Scaling by sampling frequency for compatibility with Matlab
csds /= sfreq
return csds
@verbose
def csd_tfr(epochs_tfr, tmin=None, tmax=None, picks=None, projs=None, verbose=None):
"""Compute covariance matrices across frequencies for TFR epochs.
Parameters
----------
epochs_tfr : EpochsTFR
The time-frequency resolved epochs over which to compute the
covariance.
tmin : float | None
Minimum time instant to consider, in seconds. If ``None`` start at
first sample.
tmax : float | None
Maximum time instant to consider, in seconds. If ``None`` end at last
sample.
%(picks_good_data_noref)s
projs : list of Projection | None
List of projectors to store in the CSD object. Defaults to ``None``,
which means the projectors defined in the EpochsTFR object will be
copied.
%(verbose)s
Returns
-------
res : instance of CrossSpectralDensity
Cross-spectral density restricted to selected channels.
"""
_validate_type(epochs_tfr, EpochsTFR)
epochs_tfr, projs = _prepare_csd(epochs_tfr, tmin, tmax, picks, projs)
X = epochs_tfr.data
times = epochs_tfr.times
n_channels, n_freqs = len(epochs_tfr.ch_names), epochs_tfr.freqs.size
data = np.zeros((n_channels * (n_channels + 1) // 2, n_freqs), dtype=np.complex128)
# Slice X to the requested time window
tstart = None if tmin is None else np.searchsorted(times, tmin - 1e-10)
tstop = None if tmax is None else np.searchsorted(times, tmax + 1e-10)
X = X[:, :, :, tstart:tstop]
for idx, epochs_data in enumerate(X):
# This is equivalent to:
# csds = np.vstack([np.mean(epochs_data[[i]] * epochs_data_conj[i:],
# axis=2) for i in range(n_channels)])
# There is a redundancy in the calculation here because we don't really
# need the lower triangle of the matrix, but it should still be faster
# than a loop (hopefully!).
csds = np.einsum("xft,yft->xyf", epochs_data, np.conj(epochs_data))
csds = csds[np.triu_indices(n_channels) + (slice(None),)]
csds /= epochs_data.shape[-1]
# Scaling by sampling frequency for compatibility with Matlab
csds /= epochs_tfr.info["sfreq"]
data += csds
# scale to compute mean
data /= len(epochs_tfr)
# TO DO: EpochTFR should store n_fft to be consistent
return CrossSpectralDensity(
data=data,
ch_names=epochs_tfr.ch_names,
tmin=tmin,
tmax=tmax,
frequencies=epochs_tfr.freqs,
n_fft=None,
projs=projs,
)