[7f9fb8]: / mne / tests / test_source_estimate.py

Download this file

2083 lines (1862 with data), 80.2 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
#
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
import re
from contextlib import nullcontext
from copy import deepcopy
from pathlib import Path
from shutil import copyfile
import numpy as np
import pytest
from numpy.fft import fft
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
)
from scipy import sparse
from scipy.optimize import fmin_cobyla
from scipy.spatial.distance import cdist
import mne
from mne import (
Epochs,
EvokedArray,
Label,
MixedSourceEstimate,
MixedVectorSourceEstimate,
SourceEstimate,
SourceSpaces,
VectorSourceEstimate,
VolSourceEstimate,
VolVectorSourceEstimate,
compute_source_morph,
convert_forward_solution,
extract_label_time_course,
find_events,
labels_to_stc,
pick_info,
pick_types,
pick_types_forward,
read_cov,
read_evokeds,
read_forward_solution,
read_source_estimate,
read_source_spaces,
read_trans,
scale_mri,
setup_volume_source_space,
spatial_inter_hemi_adjacency,
spatial_src_adjacency,
spatial_tris_adjacency,
spatio_temporal_src_adjacency,
spatio_temporal_tris_adjacency,
stats,
stc_near_sensors,
write_source_spaces,
)
from mne._fiff.constants import FIFF
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.io import read_info, read_raw_fif
from mne.label import label_sign_flip, read_labels_from_annot
from mne.minimum_norm import (
apply_inverse,
apply_inverse_epochs,
make_inverse_operator,
read_inverse_operator,
)
from mne.morph_map import _make_morph_map_hemi
from mne.source_estimate import _get_vol_mask, _make_stc, grade_to_tris
from mne.source_space._source_space import _get_src_nn
from mne.transforms import apply_trans, invert_transform, transform_surface_to
from mne.utils import (
_record_warnings,
catch_logging,
)
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname_inv = (
data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif"
)
fname_inv_fixed = (
data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-meg-fixed-inv.fif"
)
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-fwd.fif"
fname_cov = data_path / "MEG" / "sample" / "sample_audvis_trunc-cov.fif"
fname_evoked = data_path / "MEG" / "sample" / "sample_audvis_trunc-ave.fif"
fname_raw = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
fname_t1 = data_path / "subjects" / "sample" / "mri" / "T1.mgz"
fname_fs_t1 = data_path / "subjects" / "fsaverage" / "mri" / "T1.mgz"
fname_aseg = data_path / "subjects" / "sample" / "mri" / "aseg.mgz"
fname_src = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-6-fwd.fif"
fname_src_fs = data_path / "subjects" / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
bem_path = data_path / "subjects" / "sample" / "bem"
fname_src_3 = bem_path / "sample-oct-4-src.fif"
fname_src_vol = bem_path / "sample-volume-7mm-src.fif"
fname_stc = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg"
fname_vol = (
data_path / "MEG" / "sample" / "sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w"
)
fname_vsrc = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-vol-7-fwd.fif"
fname_inv_vol = (
data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-vol-7-meg-inv.fif"
)
fname_nirx = data_path / "NIRx" / "nirscout" / "nirx_15_0_recording"
rng = np.random.RandomState(0)
pytest.importorskip("nibabel")
@testing.requires_testing_data
def test_stc_baseline_correction():
"""Test baseline correction for source estimate objects."""
# test on different source estimates
stcs = [read_source_estimate(fname_stc), read_source_estimate(fname_vol, "sample")]
# test on different "baseline" intervals
baselines = [(0.0, 0.1), (None, None)]
for stc in stcs:
times = stc.times
for start, stop in baselines:
# apply baseline correction, then check if it worked
stc = stc.apply_baseline(baseline=(start, stop))
t0 = start or stc.times[0]
t1 = stop or stc.times[-1]
# index for baseline interval (include boundary latencies)
imin = np.abs(times - t0).argmin()
imax = np.abs(times - t1).argmin() + 1
# data matrix from baseline interval
data_base = stc.data[:, imin:imax]
mean_base = data_base.mean(axis=1)
zero_array = np.zeros(mean_base.shape[0])
# test if baseline properly subtracted (mean=zero for all sources)
assert_array_almost_equal(mean_base, zero_array)
@testing.requires_testing_data
def test_spatial_inter_hemi_adjacency():
"""Test spatial adjacency between hemispheres."""
# trivial cases
conn = spatial_inter_hemi_adjacency(fname_src_3, 5e-6)
assert_equal(conn.data.size, 0)
conn = spatial_inter_hemi_adjacency(fname_src_3, 5e6)
assert_equal(conn.data.size, np.prod(conn.shape) // 2)
# actually interesting case (1cm), should be between 2 and 10% of verts
src = read_source_spaces(fname_src_3)
conn = spatial_inter_hemi_adjacency(src, 10e-3)
conn = conn.tocsr()
n_src = conn.shape[0]
assert n_src * 0.02 < conn.data.size < n_src * 0.10
assert_equal(conn[: src[0]["nuse"], : src[0]["nuse"]].data.size, 0)
assert_equal(conn[-src[1]["nuse"] :, -src[1]["nuse"] :].data.size, 0)
c = (conn.T + conn) / 2.0 - conn
c.eliminate_zeros()
assert_equal(c.data.size, 0)
# check locations
upper_right = conn[: src[0]["nuse"], src[0]["nuse"] :].toarray()
assert_equal(upper_right.sum(), conn.sum() // 2)
good_labels = ["S_pericallosal", "Unknown", "G_and_S_cingul-Mid-Post", "G_cuneus"]
for hi, hemi in enumerate(("lh", "rh")):
has_neighbors = src[hi]["vertno"][np.where(np.any(upper_right, axis=1 - hi))[0]]
labels = read_labels_from_annot(
"sample", "aparc.a2009s", hemi, subjects_dir=subjects_dir
)
use_labels = [
label.name[:-3]
for label in labels
if np.isin(label.vertices, has_neighbors).any()
]
assert set(use_labels) - set(good_labels) == set()
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_stc(tmp_path):
"""Test volume STCs."""
h5io = pytest.importorskip("h5io")
N = 100
data = np.arange(N)[:, np.newaxis]
datas = [data, data, np.arange(2)[:, np.newaxis], np.arange(6).reshape(2, 3, 1)]
vertno = np.arange(N)
vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis], np.arange(2)]
vertno_reads = [vertno, vertno, np.arange(2), np.arange(2)]
for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads):
if data.ndim in (1, 2):
stc = VolSourceEstimate(data, [vertno], 0, 1)
ext = "stc"
klass = VolSourceEstimate
else:
assert data.ndim == 3
stc = VolVectorSourceEstimate(data, [vertno], 0, 1)
ext = "h5"
klass = VolVectorSourceEstimate
fname_temp = tmp_path / ("temp-vl." + ext)
stc_new = stc
n = 3 if ext == "h5" else 2
for ii in range(n):
if ii < 2:
stc_new.save(fname_temp, overwrite=True)
else:
# Pass stc.vertices[0], an ndarray, to ensure support for
# the way we used to write volume STCs
h5io.write_hdf5(
str(fname_temp),
dict(
vertices=stc.vertices[0],
data=stc.data,
tmin=stc.tmin,
tstep=stc.tstep,
subject=stc.subject,
src_type=stc._src_type,
),
title="mnepython",
overwrite=True,
)
stc_new = read_source_estimate(fname_temp)
assert isinstance(stc_new, klass)
assert_array_equal(vertno_read, stc_new.vertices[0])
assert_array_almost_equal(stc.data, stc_new.data)
# now let's actually read a MNE-C processed file
stc = read_source_estimate(fname_vol, "sample")
assert isinstance(stc, VolSourceEstimate)
assert "sample" in repr(stc)
assert " KiB" in repr(stc)
stc_new = stc
fname_temp = tmp_path / ("temp-vl.stc")
with pytest.raises(ValueError, match="'ftype' parameter"):
stc.save(fname_vol, ftype="whatever", overwrite=True)
for ftype in ["w", "h5"]:
for _ in range(2):
fname_temp = tmp_path / f"temp-vol.{ftype}"
stc_new.save(fname_temp, ftype=ftype, overwrite=True)
stc_new = read_source_estimate(fname_temp)
assert isinstance(stc_new, VolSourceEstimate)
assert_array_equal(stc.vertices[0], stc_new.vertices[0])
assert_array_almost_equal(stc.data, stc_new.data)
@testing.requires_testing_data
def test_save_stc_as_gifti(tmp_path):
"""Save the stc as a GIFTI file and export."""
nib = pytest.importorskip("nibabel")
surfpath_src = bem_path / "sample-oct-6-src.fif"
surfpath_stc = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg"
src = read_source_spaces(surfpath_src) # need source space
stc = read_source_estimate(surfpath_stc) # need stc
assert isinstance(src, SourceSpaces)
assert isinstance(stc, SourceEstimate)
surf_fname = tmp_path / "stc_write"
stc.save_as_surface(surf_fname, src)
# did structural get written?
img_lh = nib.load(f"{surf_fname}-lh.gii")
img_rh = nib.load(f"{surf_fname}-rh.gii")
assert isinstance(img_lh, nib.gifti.gifti.GiftiImage)
assert isinstance(img_rh, nib.gifti.gifti.GiftiImage)
# did time series get written?
img_timelh = nib.load(f"{surf_fname}-lh.time.gii")
img_timerh = nib.load(f"{surf_fname}-rh.time.gii")
assert isinstance(img_timelh, nib.gifti.gifti.GiftiImage)
assert isinstance(img_timerh, nib.gifti.gifti.GiftiImage)
@testing.requires_testing_data
def test_stc_as_volume():
"""Test previous volume source estimate morph."""
nib = pytest.importorskip("nibabel")
inverse_operator_vol = read_inverse_operator(fname_inv_vol)
# Apply inverse operator
stc_vol = read_source_estimate(fname_vol, "sample")
img = stc_vol.as_volume(inverse_operator_vol["src"], mri_resolution=True, dest="42")
t1_img = nib.load(fname_t1)
# always assure nifti and dimensionality
assert isinstance(img, nib.Nifti1Image)
assert img.header.get_zooms()[:3] == t1_img.header.get_zooms()[:3]
img = stc_vol.as_volume(inverse_operator_vol["src"], mri_resolution=False)
assert isinstance(img, nib.Nifti1Image)
assert img.shape[:3] == inverse_operator_vol["src"][0]["shape"][:3]
with pytest.raises(ValueError, match="Invalid value.*output.*"):
stc_vol.as_volume(inverse_operator_vol["src"], format="42")
@testing.requires_testing_data
def test_save_vol_stc_as_nifti(tmp_path):
"""Save the stc as a nifti file and export."""
nib = pytest.importorskip("nibabel")
src = read_source_spaces(fname_vsrc)
vol_fname = tmp_path / "stc.nii.gz"
# now let's actually read a MNE-C processed file
stc = read_source_estimate(fname_vol, "sample")
assert isinstance(stc, VolSourceEstimate)
stc.save_as_volume(vol_fname, src, dest="surf", mri_resolution=False)
with _record_warnings(): # nib<->numpy
img = nib.load(str(vol_fname))
assert img.shape == src[0]["shape"] + (len(stc.times),)
with _record_warnings(): # nib<->numpy
t1_img = nib.load(fname_t1)
stc.save_as_volume(vol_fname, src, dest="mri", mri_resolution=True, overwrite=True)
with _record_warnings(): # nib<->numpy
img = nib.load(str(vol_fname))
assert img.shape == t1_img.shape + (len(stc.times),)
assert_allclose(img.affine, t1_img.affine, atol=1e-5)
# export without saving
img = stc.as_volume(src, dest="mri", mri_resolution=True)
assert img.shape == t1_img.shape + (len(stc.times),)
assert_allclose(img.affine, t1_img.affine, atol=1e-5)
src = SourceSpaces([src[0], src[0]])
stc = VolSourceEstimate(
np.r_[stc.data, stc.data],
[stc.vertices[0], stc.vertices[0]],
tmin=stc.tmin,
tstep=stc.tstep,
subject="sample",
)
img = stc.as_volume(src, dest="mri", mri_resolution=False)
assert img.shape == src[0]["shape"] + (len(stc.times),)
@testing.requires_testing_data
def test_expand():
"""Test stc expansion."""
stc_ = read_source_estimate(fname_stc, "sample")
vec_stc_ = VectorSourceEstimate(
np.zeros((stc_.data.shape[0], 3, stc_.data.shape[1])),
stc_.vertices,
stc_.tmin,
stc_.tstep,
stc_.subject,
)
for stc in [stc_, vec_stc_]:
assert "sample" in repr(stc)
labels_lh = read_labels_from_annot(
"sample", "aparc", "lh", subjects_dir=subjects_dir
)
new_label = labels_lh[0] + labels_lh[1]
stc_limited = stc.in_label(new_label)
stc_new = stc_limited.copy()
stc_new.data.fill(0)
for label in labels_lh[:2]:
stc_new += stc.in_label(label).expand(stc_limited.vertices)
pytest.raises(TypeError, stc_new.expand, stc_limited.vertices[0])
pytest.raises(ValueError, stc_new.expand, [stc_limited.vertices[0]])
# make sure we can't add unless vertno agree
pytest.raises(ValueError, stc.__add__, stc.in_label(labels_lh[0]))
def _fake_stc(n_time=10, is_complex=False):
np.random.seed(7)
verts = [np.arange(10), np.arange(90)]
data = np.random.rand(100, n_time)
if is_complex:
data.astype(complex)
return SourceEstimate(data, verts, 0, 1e-1, "foo")
def _fake_vec_stc(n_time=10, is_complex=False):
np.random.seed(7)
verts = [np.arange(10), np.arange(90)]
data = np.random.rand(100, 3, n_time)
if is_complex:
data.astype(complex)
return VectorSourceEstimate(data, verts, 0, 1e-1, "foo")
@testing.requires_testing_data
def test_stc_snr():
"""Test computing SNR from a STC."""
inv = read_inverse_operator(fname_inv_fixed)
fwd = read_forward_solution(fname_fwd)
cov = read_cov(fname_cov)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
stc = apply_inverse(evoked, inv)
assert (stc.data < 0).any()
with pytest.warns(RuntimeWarning, match="nAm"):
stc.estimate_snr(evoked.info, fwd, cov) # dSPM
with _record_warnings(), pytest.warns(RuntimeWarning, match="free ori"):
abs(stc).estimate_snr(evoked.info, fwd, cov)
stc = apply_inverse(evoked, inv, method="MNE")
snr = stc.estimate_snr(evoked.info, fwd, cov)
assert_allclose(snr.times, evoked.times)
snr = snr.data
assert snr.max() < -10
assert snr.min() > -120
def test_stc_attributes():
"""Test STC attributes."""
stc = _fake_stc(n_time=10)
vec_stc = _fake_vec_stc(n_time=10)
n_times = len(stc.times)
assert_equal(stc._data.shape[-1], n_times)
assert_array_equal(stc.times, stc.tmin + np.arange(n_times) * stc.tstep)
assert_array_almost_equal(
stc.times, [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
)
def attempt_times_mutation(stc):
stc.times -= 1
def attempt_assignment(stc, attr, val):
setattr(stc, attr, val)
# .times is read-only
pytest.raises(ValueError, attempt_times_mutation, stc)
pytest.raises(ValueError, attempt_assignment, stc, "times", [1])
# Changing .tmin or .tstep re-computes .times
stc.tmin = 1
assert isinstance(stc.tmin, float)
assert_array_almost_equal(
stc.times, [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]
)
stc.tstep = 1
assert isinstance(stc.tstep, float)
assert_array_almost_equal(
stc.times, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
)
# tstep <= 0 is not allowed
pytest.raises(ValueError, attempt_assignment, stc, "tstep", 0)
pytest.raises(ValueError, attempt_assignment, stc, "tstep", -1)
# Changing .data re-computes .times
stc.data = np.random.rand(100, 5)
assert_array_almost_equal(stc.times, [1.0, 2.0, 3.0, 4.0, 5.0])
# .data must match the number of vertices
pytest.raises(ValueError, attempt_assignment, stc, "data", [[1]])
pytest.raises(ValueError, attempt_assignment, stc, "data", None)
# .data much match number of dimensions
pytest.raises(ValueError, attempt_assignment, stc, "data", np.arange(100))
pytest.raises(ValueError, attempt_assignment, vec_stc, "data", [np.arange(100)])
pytest.raises(ValueError, attempt_assignment, vec_stc, "data", [[[np.arange(100)]]])
# .shape attribute must also work when ._data is None
stc._kernel = np.zeros((2, 2))
stc._sens_data = np.zeros((2, 3))
stc._data = None
assert_equal(stc.shape, (2, 3))
# bad size of data
stc = _fake_stc()
data = stc.data[:, np.newaxis, :]
with pytest.raises(ValueError, match="2 dimensions for SourceEstimate"):
SourceEstimate(data, stc.vertices, 0, 1)
stc = SourceEstimate(data[:, 0, 0], stc.vertices, 0, 1)
assert stc.data.shape == (len(data), 1)
def test_io_stc(tmp_path):
"""Test IO for STC files."""
stc = _fake_stc()
stc.save(tmp_path / "tmp.stc")
stc2 = read_source_estimate(tmp_path / "tmp.stc")
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.tmin, stc2.tmin)
assert_equal(len(stc.vertices), len(stc2.vertices))
for v1, v2 in zip(stc.vertices, stc2.vertices):
assert_array_almost_equal(v1, v2)
assert_array_almost_equal(stc.tstep, stc2.tstep)
# test warning for complex data
stc2.data = stc2.data.astype(np.complex128)
with pytest.raises(ValueError, match="Cannot save complex-valued STC"):
stc2.save(tmp_path / "complex.stc")
@pytest.mark.parametrize("is_complex", (True, False))
@pytest.mark.parametrize("vector", (True, False))
def test_io_stc_h5(tmp_path, is_complex, vector):
"""Test IO for STC files using HDF5."""
pytest.importorskip("h5io")
if vector:
stc = _fake_vec_stc(is_complex=is_complex)
else:
stc = _fake_stc(is_complex=is_complex)
match = "can only be written" if vector else "Invalid value for the 'ftype"
with pytest.raises(ValueError, match=match):
stc.save(tmp_path / "tmp.h5", ftype="foo")
out_name = tmp_path / "tmp"
stc.save(out_name, ftype="h5")
# test overwrite
assert out_name.with_name(out_name.name + "-stc.h5").is_file()
with pytest.raises(FileExistsError, match="Destination file exists"):
stc.save(out_name, ftype="h5")
stc.save(out_name, ftype="h5", overwrite=True)
stc3 = read_source_estimate(out_name)
stc4 = read_source_estimate(out_name.with_name(out_name.name + "-stc"))
stc5 = read_source_estimate(out_name.with_name(out_name.name + "-stc.h5"))
pytest.raises(RuntimeError, read_source_estimate, out_name, subject="bar")
for stc_new in stc3, stc4, stc5:
assert_equal(stc_new.subject, stc.subject)
assert_array_equal(stc_new.data, stc.data)
assert_array_equal(stc_new.tmin, stc.tmin)
assert_array_equal(stc_new.tstep, stc.tstep)
assert_equal(len(stc_new.vertices), len(stc.vertices))
for v1, v2 in zip(stc_new.vertices, stc.vertices):
assert_array_equal(v1, v2)
def test_io_w(tmp_path):
"""Test IO for w files."""
stc = _fake_stc(n_time=1)
w_fname = tmp_path / "fake"
stc.save(w_fname, ftype="w")
src = read_source_estimate(w_fname)
src.save(tmp_path / "tmp", ftype="w")
src2 = read_source_estimate(tmp_path / "tmp-lh.w")
assert_array_almost_equal(src.data, src2.data)
assert_array_almost_equal(src.lh_vertno, src2.lh_vertno)
assert_array_almost_equal(src.rh_vertno, src2.rh_vertno)
def test_stc_arithmetic():
"""Test arithmetic for STC files."""
stc = _fake_stc()
data = stc.data.copy()
vec_stc = _fake_vec_stc()
vec_data = vec_stc.data.copy()
out = list()
for a in [data, stc, vec_data, vec_stc]:
a = a + a * 3 + 3 * a - a**2 / 2
a += a
a -= a
with np.errstate(invalid="ignore"):
a /= 2 * a
a *= -a
a += 2
a -= 1
a *= -1
a /= 2
b = 2 + a
b = 2 - a
b = +a
assert_array_equal(b.data, a.data)
with np.errstate(invalid="ignore"):
a **= 3
out.append(a)
assert_array_equal(out[0], out[1].data)
assert_array_equal(out[2], out[3].data)
assert_array_equal(stc.sqrt().data, np.sqrt(stc.data))
assert_array_equal(vec_stc.sqrt().data, np.sqrt(vec_stc.data))
assert_array_equal(abs(stc).data, abs(stc.data))
assert_array_equal(abs(vec_stc).data, abs(vec_stc.data))
stc_sum = stc.sum()
assert_array_equal(stc_sum.data, stc.data.sum(1, keepdims=True))
stc_mean = stc.mean()
assert_array_equal(stc_mean.data, stc.data.mean(1, keepdims=True))
vec_stc_mean = vec_stc.mean()
assert_array_equal(vec_stc_mean.data, vec_stc.data.mean(2, keepdims=True))
@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize("kind", ("scalar", "vector"))
@pytest.mark.parametrize("method", ("fft", "polyphase"))
def test_stc_methods(kind, method):
"""Test stc methods lh_data, rh_data, bin(), resample()."""
stc = read_source_estimate(fname_stc)
if kind == "vector":
# Make a vector version of the above source estimate
x = stc.data[:, np.newaxis, :]
yz = np.zeros((x.shape[0], 2, x.shape[2]))
stc = VectorSourceEstimate(
np.concatenate((x, yz), 1),
stc.vertices,
stc.tmin,
stc.tstep,
stc.subject,
)
# lh_data / rh_data
assert_array_equal(stc.lh_data, stc.data[: len(stc.lh_vertno)])
assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno) :])
# bin
binned = stc.bin(0.12)
a = np.mean(stc.data[..., : np.searchsorted(stc.times, 0.12)], axis=-1)
assert_array_equal(a, binned.data[..., 0])
stc = read_source_estimate(fname_stc)
stc.subject = "sample"
label_lh = read_labels_from_annot(
"sample", "aparc", "lh", subjects_dir=subjects_dir
)[0]
label_rh = read_labels_from_annot(
"sample", "aparc", "rh", subjects_dir=subjects_dir
)[0]
label_both = label_lh + label_rh
for label in (label_lh, label_rh, label_both):
assert isinstance(stc.shape, tuple) and len(stc.shape) == 2
stc_label = stc.in_label(label)
if label.hemi != "both":
if label.hemi == "lh":
verts = stc_label.vertices[0]
else: # label.hemi == 'rh':
verts = stc_label.vertices[1]
n_vertices_used = len(label.get_vertices_used(verts))
assert_equal(len(stc_label.data), n_vertices_used)
stc_lh = stc.in_label(label_lh)
pytest.raises(ValueError, stc_lh.in_label, label_rh)
label_lh.subject = "foo"
pytest.raises(RuntimeError, stc.in_label, label_lh)
stc_new = deepcopy(stc)
o_sfreq = 1.0 / stc.tstep
# note that using no padding for this STC reduces edge ringing...
stc_new.resample(2 * o_sfreq, npad=0, method=method)
assert stc_new.data.shape[1] == 2 * stc.data.shape[1]
assert stc_new.tstep == stc.tstep / 2
stc_new.resample(o_sfreq, npad=0, method=method)
assert stc_new.data.shape[1] == stc.data.shape[1]
assert stc_new.tstep == stc.tstep
if method == "fft":
# no low-passing so survives round-trip
assert_allclose(stc_new.data, stc.data, atol=1e-5)
else:
# low-passing means we need something more flexible
corr = np.corrcoef(stc_new.data.ravel(), stc.data.ravel())[0, 1]
assert 0.99 < corr < 1
@testing.requires_testing_data
def test_stc_resamp_noop():
"""Tests resampling doesn't affect data if sfreq is identical."""
stc = read_source_estimate(fname_stc)
data_before = stc.data
data_after = stc.resample(sfreq=1.0 / stc.tstep).data
assert_array_equal(data_before, data_after)
@testing.requires_testing_data
def test_center_of_mass():
"""Test computing the center of mass on an stc."""
stc = read_source_estimate(fname_stc)
pytest.raises(ValueError, stc.center_of_mass, "sample")
stc.lh_data[:] = 0
vertex, hemi, t = stc.center_of_mass("sample", subjects_dir=subjects_dir)
assert hemi == 1
# XXX Should design a fool-proof test case, but here were the
# results:
assert_equal(vertex, 124791)
assert_equal(np.round(t, 2), 0.12)
@testing.requires_testing_data
@pytest.mark.parametrize("kind", ("surface", "mixed"))
@pytest.mark.parametrize("vector", (False, True))
def test_extract_label_time_course(kind, vector):
"""Test extraction of label time courses from (Mixed)SourceEstimate."""
n_stcs = 3
n_times = 50
src = read_inverse_operator(fname_inv)["src"]
if kind == "mixed":
pytest.importorskip("nibabel")
label_names = ("Left-Cerebellum-Cortex", "Right-Cerebellum-Cortex")
src += setup_volume_source_space(
"sample",
pos=20.0,
volume_label=label_names,
subjects_dir=subjects_dir,
add_interpolator=False,
)
klass = MixedVectorSourceEstimate
else:
klass = VectorSourceEstimate
if not vector:
klass = klass._scalar_class
vertices = [s["vertno"] for s in src]
n_verts = np.array([len(v) for v in vertices])
vol_means = np.arange(-1, 1 - len(src), -1)
vol_means_t = np.repeat(vol_means[:, np.newaxis], n_times, axis=1)
# get some labels
labels_lh = read_labels_from_annot("sample", hemi="lh", subjects_dir=subjects_dir)
labels_rh = read_labels_from_annot("sample", hemi="rh", subjects_dir=subjects_dir)
labels = list()
labels.extend(labels_lh[:5])
labels.extend(labels_rh[:4])
n_labels = len(labels)
label_tcs = dict(mean=np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)))
label_tcs["max"] = label_tcs["mean"]
label_tcs[None] = label_tcs["mean"]
# compute the mean with sign flip
label_tcs["mean_flip"] = np.zeros_like(label_tcs["mean"])
for i, label in enumerate(labels):
label_tcs["mean_flip"][i] = i * np.mean(label_sign_flip(label, src[:2]))
# compute pca_flip
label_flip = []
for i, label in enumerate(labels):
this_flip = i * label_sign_flip(label, src[:2])
label_flip.append(this_flip)
# compute pca_flip
label_tcs["pca_flip"] = np.zeros_like(label_tcs["mean"])
for i, (label, flip) in enumerate(zip(labels, label_flip)):
sign = np.sign(np.dot(np.full((flip.shape[0]), i), flip))
label_tcs["pca_flip"][i] = sign * label_tcs["mean"][i]
# generate some stc's with known data
stcs = list()
pad = (((0, 0), (2, 0), (0, 0)), "constant")
for i in range(n_stcs):
data = np.zeros((n_verts.sum(), n_times))
# set the value of the stc within each label
for j, label in enumerate(labels):
if label.hemi == "lh":
idx = np.intersect1d(vertices[0], label.vertices)
idx = np.searchsorted(vertices[0], idx)
elif label.hemi == "rh":
idx = np.intersect1d(vertices[1], label.vertices)
idx = len(vertices[0]) + np.searchsorted(vertices[1], idx)
data[idx] = label_tcs["mean"][j]
for j in range(len(vol_means)):
offset = n_verts[: 2 + j].sum()
data[offset : offset + n_verts[j]] = vol_means[j]
if vector:
# the values it on the Z axis
data = np.pad(data[:, np.newaxis], *pad)
this_stc = klass(data, vertices, 0, 1)
stcs.append(this_stc)
if vector:
for key in label_tcs:
label_tcs[key] = np.pad(label_tcs[key][:, np.newaxis], *pad)
vol_means_t = np.pad(vol_means_t[:, np.newaxis], *pad)
# test some invalid inputs
with pytest.raises(ValueError, match="Invalid value for the 'mode'"):
extract_label_time_course(stcs, labels, src, mode="notamode")
# have an empty label
empty_label = labels[0].copy()
empty_label.vertices += 1000000
with pytest.raises(ValueError, match="does not contain any vertices"):
extract_label_time_course(stcs, empty_label, src)
# but this works:
with pytest.warns(RuntimeWarning, match="does not contain any vertices"):
tc = extract_label_time_course(stcs, empty_label, src, allow_empty=True)
end_shape = (3, n_times) if vector else (n_times,)
for arr in tc:
assert arr.shape == (1 + len(vol_means),) + end_shape
assert_array_equal(arr[:1], np.zeros((1,) + end_shape))
if len(vol_means):
assert_array_equal(arr[1:], vol_means_t)
# test the different modes
modes = ["mean", "mean_flip", "pca_flip", "max", "auto", None]
for mode in modes:
if vector and mode not in ("mean", "max", "auto"):
with pytest.raises(ValueError, match="when using a vector"):
extract_label_time_course(stcs, labels, src, mode=mode)
continue
with _record_warnings(): # SVD convergence on arm64
label_tc = extract_label_time_course(stcs, labels, src, mode=mode)
label_tc_method = [
stc.extract_label_time_course(labels, src, mode=mode) for stc in stcs
]
assert len(label_tc) == n_stcs
assert len(label_tc_method) == n_stcs
for j, (tc1, tc2) in enumerate(zip(label_tc, label_tc_method)):
if mode is None:
assert all(arr.shape[1] == tc1[0].shape[1] for arr in tc1)
assert all(arr.shape[1] == tc2[0].shape[1] for arr in tc2)
assert (len(tc1), tc1[0].shape[1]) == (n_labels,) + end_shape
assert (len(tc2), tc2[0].shape[1]) == (n_labels,) + end_shape
for arr1, arr2 in zip(tc1, tc2): # list of arrays
assert_allclose(arr1, arr2, rtol=1e-8, atol=1e-16)
else:
assert tc1.shape == (n_labels + len(vol_means),) + end_shape
assert tc2.shape == (n_labels + len(vol_means),) + end_shape
assert_allclose(tc1, tc2, rtol=1e-8, atol=1e-16)
if mode == "auto":
use_mode = "mean" if vector else "mean_flip"
else:
use_mode = mode
if mode == "pca_flip":
for arr1, arr2 in zip(tc1, label_tcs[use_mode]):
assert_array_almost_equal(arr1, arr2)
elif use_mode is None:
for arr1, arr2 in zip(
tc1[:n_labels], label_tcs[use_mode]
): # list of arrays
assert_allclose(
arr1, np.tile(arr2, (arr1.shape[0], 1)), rtol=1e-8, atol=1e-16
)
elif use_mode in ("mean", "max", "mean_flip"):
assert_array_almost_equal(tc1[:n_labels], label_tcs[use_mode])
if mode is not None:
assert_array_almost_equal(tc1[n_labels:], vol_means_t)
# test label with very few vertices (check SVD conditionals)
label = Label(vertices=src[0]["vertno"][:2], hemi="lh")
x = label_sign_flip(label, src[:2])
assert len(x) == 2
label = Label(vertices=[], hemi="lh")
x = label_sign_flip(label, src[:2])
assert x.size == 0
@testing.requires_testing_data
@pytest.mark.parametrize(
"label_type, mri_res, vector, test_label, cf, call",
[
(str, False, False, False, "head", "meth"), # head frame
(str, False, False, str, "mri", "func"), # fastest, default for testing
(str, False, True, int, "mri", "func"), # vector
(str, True, False, False, "mri", "func"), # mri_resolution
(list, True, False, False, "mri", "func"), # volume label as list
(dict, True, False, False, "mri", "func"), # volume label as dict
],
)
def test_extract_label_time_course_volume(
src_volume_labels, label_type, mri_res, vector, test_label, cf, call
):
"""Test extraction of label time courses from Vol(Vector)SourceEstimate."""
src_labels, volume_labels, lut = src_volume_labels
n_tot = 46
assert n_tot == len(src_labels)
inv = read_inverse_operator(fname_inv_vol)
if cf == "head":
src = inv["src"]
assert src[0]["coord_frame"] == FIFF.FIFFV_COORD_HEAD
rr = apply_trans(invert_transform(inv["mri_head_t"]), src[0]["rr"])
else:
assert cf == "mri"
src = read_source_spaces(fname_src_vol)
assert src[0]["coord_frame"] == FIFF.FIFFV_COORD_MRI
rr = src[0]["rr"]
for s in src_labels:
assert_allclose(s["rr"], rr, atol=1e-7)
assert len(src) == 1 and src.kind == "volume"
klass = VolVectorSourceEstimate
if not vector:
klass = klass._scalar_class
vertices = [src[0]["vertno"]]
n_verts = len(src[0]["vertno"])
n_times = 50
data = vertex_values = np.arange(1, n_verts + 1)
end_shape = (n_times,)
if vector:
end_shape = (3,) + end_shape
data = np.pad(data[:, np.newaxis], ((0, 0), (2, 0)), "constant")
data = np.repeat(data[..., np.newaxis], n_times, -1)
stcs = [klass(data.astype(float), vertices, 0, 1)]
def eltc(*args, **kwargs):
if call == "func":
return extract_label_time_course(stcs, *args, **kwargs)
else:
assert call == "meth"
return [stcs[0].extract_label_time_course(*args, **kwargs)]
with pytest.raises(RuntimeError, match="atlas vox_mri_t does not match"):
eltc(fname_fs_t1, src, mri_resolution=mri_res)
assert len(src_labels) == 46 # includes unknown
assert_array_equal(
src[0]["vertno"], # src includes some in "unknown" space
np.sort(np.concatenate([s["vertno"] for s in src_labels])),
)
# spot check
assert src_labels[-1]["seg_name"] == "CC_Anterior"
assert src[0]["nuse"] == 4157
assert len(src[0]["vertno"]) == 4157
assert sum(s["nuse"] for s in src_labels) == 4157
assert_array_equal(src_labels[-1]["vertno"], [8011, 8032, 8557])
assert_array_equal(
np.where(np.isin(src[0]["vertno"], [8011, 8032, 8557]))[0], [2672, 2688, 2995]
)
# triage "labels" argument
if mri_res:
# All should be there
missing = []
else:
# Nearest misses these
missing = [
"Left-vessel",
"Right-vessel",
"5th-Ventricle",
"non-WM-hypointensities",
]
n_want = len(src_labels)
if label_type is str:
labels = fname_aseg
elif label_type is list:
labels = (fname_aseg, volume_labels)
else:
assert label_type is dict
labels = (fname_aseg, {k: lut[k] for k in volume_labels})
assert mri_res
assert len(missing) == 0
# we're going to add one that won't exist
missing = ["intentionally_bad"]
labels[1][missing[0]] = 10000
n_want += 1
n_tot += 1
n_want -= len(missing)
# actually do the testing
if cf == "head" and not mri_res: # some missing
with pytest.warns(RuntimeWarning, match="any vertices"):
eltc(labels, src, allow_empty=True, mri_resolution=mri_res)
for mode in ("mean", "max"):
with catch_logging() as log:
label_tc = eltc(
labels,
src,
mode=mode,
allow_empty="ignore",
mri_resolution=mri_res,
verbose=True,
)
log = log.getvalue()
assert re.search("^Reading atlas.*aseg\\.mgz\n", log) is not None
if len(missing):
# assert that the missing ones get logged
assert "does not contain" in log
assert repr(missing) in log
else:
assert "does not contain" not in log
assert f"\n{n_want}/{n_tot} atlas regions had at least" in log
assert len(label_tc) == 1
label_tc = label_tc[0]
assert label_tc.shape == (n_tot,) + end_shape
if vector:
assert_array_equal(label_tc[:, :2], 0.0)
label_tc = label_tc[:, 2]
assert label_tc.shape == (n_tot, n_times)
# let's test some actual values by trusting the masks provided by
# setup_volume_source_space. mri_resolution=True does some
# interpolation so we should not expect equivalence, False does
# nearest so we should.
if mri_res:
rtol = 0.2 if mode == "mean" else 0.8 # max much more sensitive
else:
rtol = 0.0
for si, s in enumerate(src_labels):
func = dict(mean=np.mean, max=np.max)[mode]
these = vertex_values[np.isin(src[0]["vertno"], s["vertno"])]
assert len(these) == s["nuse"]
if si == 0 and s["seg_name"] == "Unknown":
continue # unknown is crappy
if s["nuse"] == 0:
want = 0.0
if mri_res:
# this one is totally due to interpolation, so no easy
# test here
continue
else:
want = func(these)
assert_allclose(label_tc[si], want, atol=1e-6, rtol=rtol)
# compare with in_label, only on every fourth for speed
if test_label is not False and si % 4 == 0:
label = s["seg_name"]
if test_label is int:
label = lut[label]
in_label = stcs[0].in_label(label, fname_aseg, src).data
assert in_label.shape == (s["nuse"],) + end_shape
if vector:
assert_array_equal(in_label[:, :2], 0.0)
in_label = in_label[:, 2]
if want == 0:
assert in_label.shape[0] == 0
else:
in_label = func(in_label)
assert_allclose(in_label, want, atol=1e-6, rtol=rtol)
if mode == "mean" and not vector: # check the reverse
if label_type is dict:
ctx = pytest.warns(RuntimeWarning, match="does not contain")
else:
ctx = nullcontext()
with ctx:
stc_back = labels_to_stc(labels, label_tc, src=src)
assert stc_back.data.shape == stcs[0].data.shape
corr = np.corrcoef(stc_back.data.ravel(), stcs[0].data.ravel())[0, 1]
assert 0.6 < corr < 0.63
assert_allclose(_varexp(label_tc, label_tc), 1.0)
ve = _varexp(stc_back.data, stcs[0].data)
assert 0.83 < ve < 0.85
with _record_warnings(): # ignore no output
label_tc_rt = extract_label_time_course(
stc_back, labels, src=src, mri_resolution=mri_res, allow_empty=True
)
assert label_tc_rt.shape == label_tc.shape
corr = np.corrcoef(label_tc.ravel(), label_tc_rt.ravel())[0, 1]
lower, upper = (0.99, 0.999) if mri_res else (0.95, 0.97)
assert lower < corr < upper
ve = _varexp(label_tc_rt, label_tc)
lower, upper = (0.99, 0.999) if mri_res else (0.97, 0.99)
assert lower < ve < upper
def _varexp(got, want):
return max(
1 - np.linalg.norm(got.ravel() - want.ravel()) ** 2 / np.linalg.norm(want) ** 2,
0.0,
)
@testing.requires_testing_data
def test_extract_label_time_course_equiv():
"""Test extraction of label time courses from stc equivalences."""
label = read_labels_from_annot(
"sample", "aparc", "lh", regexp="transv", subjects_dir=subjects_dir
)
assert len(label) == 1
label = label[0]
inv = read_inverse_operator(fname_inv)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
stc = apply_inverse(evoked, inv, pick_ori="normal", label=label)
stc_full = apply_inverse(evoked, inv, pick_ori="normal")
stc_in_label = stc_full.in_label(label)
mean = stc.extract_label_time_course(label, inv["src"])
mean_2 = stc_in_label.extract_label_time_course(label, inv["src"])
assert_allclose(mean, mean_2)
inv["src"][0]["vertno"] = np.array([], int)
assert len(stc_in_label.vertices[0]) == 22
with pytest.raises(ValueError, match="22/22 left hemisphere.*missing"):
stc_in_label.extract_label_time_course(label, inv["src"])
def _my_trans(data):
"""FFT that adds an additional dimension by repeating result."""
data_t = fft(data)
data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2)
return data_t, None
def test_transform_data():
"""Test applying linear (time) transform to data."""
# make up some data
n_sensors, n_vertices, n_times = 10, 20, 4
kernel = rng.randn(n_vertices, n_sensors)
sens_data = rng.randn(n_sensors, n_times)
vertices = [np.arange(n_vertices)]
data = np.dot(kernel, sens_data)
for idx, tmin_idx, tmax_idx in zip(
[None, np.arange(n_vertices // 2, n_vertices)], [None, 1], [None, 3]
):
if idx is None:
idx_use = slice(None, None)
else:
idx_use = idx
data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx])
for stc_data in (data, (kernel, sens_data)):
stc = VolSourceEstimate(stc_data, vertices=vertices, tmin=0.0, tstep=1.0)
stc_data_t = stc.transform_data(
_my_trans, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx
)
assert_allclose(data_f, stc_data_t)
# bad sens_data
sens_data = sens_data[..., np.newaxis]
with pytest.raises(ValueError, match="sensor data must have 2"):
VolSourceEstimate((kernel, sens_data), vertices, 0, 1)
def test_transform():
"""Test applying linear (time) transform to data."""
# make up some data
n_verts_lh, n_verts_rh, n_times = 10, 10, 10
vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)]
data = rng.randn(n_verts_lh + n_verts_rh, n_times)
stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1)
# data_t.ndim > 2 & copy is True
stcs_t = stc.transform(_my_trans, copy=True)
assert isinstance(stcs_t, list)
assert_array_equal(stc.times, stcs_t[0].times)
assert_equal(stc.vertices, stcs_t[0].vertices)
data = np.concatenate(
(stcs_t[0].data[:, :, None], stcs_t[1].data[:, :, None]), axis=2
)
data_t = stc.transform_data(_my_trans)
assert_array_equal(data, data_t) # check against stc.transform_data()
# data_t.ndim > 2 & copy is False
pytest.raises(ValueError, stc.transform, _my_trans, copy=False)
# data_t.ndim = 2 & copy is True
tmp = deepcopy(stc)
stc_t = stc.transform(np.abs, copy=True)
assert isinstance(stc_t, SourceEstimate)
assert_array_equal(stc.data, tmp.data) # xfrm doesn't modify original?
# data_t.ndim = 2 & copy is False
times = np.round(1000 * stc.times)
verts = np.arange(len(stc.lh_vertno), len(stc.lh_vertno) + len(stc.rh_vertno), 1)
verts_rh = stc.rh_vertno
tmin_idx = np.searchsorted(times, 0)
tmax_idx = np.searchsorted(times, 501) # Include 500ms in the range
data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=tmin_idx, tmax_idx=tmax_idx)
stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False)
assert isinstance(stc, SourceEstimate)
assert_equal(stc.tmin, 0.0)
assert_equal(stc.times[-1], 0.5)
assert_equal(len(stc.vertices[0]), 0)
assert_equal(stc.vertices[1], verts_rh)
assert_array_equal(stc.data, data_t)
times = np.round(1000 * stc.times)
tmin_idx, tmax_idx = np.searchsorted(times, 0), np.searchsorted(times, 250)
data_t = stc.transform_data(np.abs, tmin_idx=tmin_idx, tmax_idx=tmax_idx)
stc.transform(np.abs, tmin=0, tmax=250, copy=False)
assert_equal(stc.tmin, 0.0)
assert_equal(stc.times[-1], 0.2)
assert_array_equal(stc.data, data_t)
def test_spatio_temporal_tris_adjacency():
"""Test spatio-temporal adjacency from triangles."""
pytest.importorskip("sklearn")
tris = np.array([[0, 1, 2], [3, 4, 5]])
adjacency = spatio_temporal_tris_adjacency(tris, 2)
x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
components = stats.cluster_level._get_components(np.array(x), adjacency)
# _get_components works differently now...
old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1]
new_fmt = np.array(old_fmt)
new_fmt = [np.nonzero(new_fmt == v)[0] for v in np.unique(new_fmt[new_fmt >= 0])]
assert len(new_fmt) == len(components)
for c, n in zip(components, new_fmt):
assert_array_equal(c, n)
@testing.requires_testing_data
def test_spatio_temporal_src_adjacency():
"""Test spatio-temporal adjacency from source spaces."""
tris = np.array([[0, 1, 2], [3, 4, 5]])
src = [dict(), dict()]
adjacency = spatio_temporal_tris_adjacency(tris, 2).todense()
assert_allclose(np.diag(adjacency), 1.0)
src[0]["use_tris"] = np.array([[0, 1, 2]])
src[1]["use_tris"] = np.array([[0, 1, 2]])
src[0]["vertno"] = np.array([0, 1, 2])
src[1]["vertno"] = np.array([0, 1, 2])
src[0]["type"] = "surf"
src[1]["type"] = "surf"
adjacency2 = spatio_temporal_src_adjacency(src, 2)
assert_array_equal(adjacency2.todense(), adjacency)
# add test for dist adjacency
src[0]["dist"] = np.ones((3, 3)) - np.eye(3)
src[1]["dist"] = np.ones((3, 3)) - np.eye(3)
src[0]["vertno"] = [0, 1, 2]
src[1]["vertno"] = [0, 1, 2]
src[0]["type"] = "surf"
src[1]["type"] = "surf"
adjacency3 = spatio_temporal_src_adjacency(src, 2, dist=2)
assert_array_equal(adjacency3.todense(), adjacency)
# add test for source space adjacency with omitted vertices
inverse_operator = read_inverse_operator(fname_inv)
src_ = inverse_operator["src"]
with pytest.warns(RuntimeWarning, match="will have holes"):
adjacency = spatio_temporal_src_adjacency(src_, n_times=2)
a = adjacency.shape[0] / 2
b = sum([s["nuse"] for s in inverse_operator["src"]])
assert a == b
assert_equal(grade_to_tris(5).shape, [40960, 3])
def test_to_data_frame():
"""Test stc Pandas exporter."""
pytest.importorskip("pandas")
n_vert, n_times = 10, 5
vertices = [np.arange(n_vert, dtype=np.int64), np.empty(0, dtype=np.int64)]
data = rng.randn(n_vert, n_times)
stc_surf = SourceEstimate(
data, vertices=vertices, tmin=0, tstep=1, subject="sample"
)
stc_vol = VolSourceEstimate(
data, vertices=vertices[:1], tmin=0, tstep=1, subject="sample"
)
for stc in [stc_surf, stc_vol]:
df = stc.to_data_frame()
# test data preservation (first 2 dataframe elements are subj & time)
assert_array_equal(df.values.T[2:], stc.data)
# test long format
df_long = stc.to_data_frame(long_format=True)
assert len(df_long) == stc.data.size
expected = ("subject", "time", "source", "value")
assert set(expected) == set(df_long.columns)
@pytest.mark.parametrize("index", ("time", ["time", "subject"], None))
def test_to_data_frame_index(index):
"""Test index creation in stc Pandas exporter."""
pytest.importorskip("pandas")
n_vert, n_times = 10, 5
vertices = [np.arange(n_vert, dtype=np.int64), np.empty(0, dtype=np.int64)]
data = rng.randn(n_vert, n_times)
stc = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject="sample")
df = stc.to_data_frame(index=index)
# test index setting
if not isinstance(index, list):
index = [index]
assert list(df.index.names) == index
# test that non-indexed data were present as columns
non_index = list(set(["time", "subject"]) - set(index))
if len(non_index):
assert all(np.isin(non_index, df.columns))
@pytest.mark.parametrize("kind", ("surface", "mixed", "volume"))
@pytest.mark.parametrize("vector", (False, True))
@pytest.mark.parametrize("n_times", (5, 1))
def test_get_peak(kind, vector, n_times):
"""Test peak getter."""
n_vert = 10
vertices = [np.arange(n_vert)]
if kind == "surface":
klass = VectorSourceEstimate
vertices += [np.empty(0, int)]
elif kind == "mixed":
klass = MixedVectorSourceEstimate
vertices += [np.empty(0, int), np.empty(0, int)]
else:
assert kind == "volume"
klass = VolVectorSourceEstimate
data = np.zeros((n_vert, n_times))
data[1, -1] = 1
if vector:
data = np.repeat(data[:, np.newaxis], 3, 1)
else:
klass = klass._scalar_class
stc = klass(data, vertices, 0, 1)
with pytest.raises(ValueError, match="out of bounds"):
stc.get_peak(tmin=-100)
with pytest.raises(ValueError, match="out of bounds"):
stc.get_peak(tmax=90)
with pytest.raises(ValueError, match="must be <=" if n_times > 1 else "out of"):
stc.get_peak(tmin=0.002, tmax=0.001)
vert_idx, time_idx = stc.get_peak()
vertno = np.concatenate(stc.vertices)
assert vert_idx in vertno
assert time_idx in stc.times
data_idx, time_idx = stc.get_peak(vert_as_index=True, time_as_index=True)
if vector:
use_data = stc.magnitude().data
else:
use_data = stc.data
assert data_idx == 1
assert time_idx == n_times - 1
assert data_idx == np.argmax(np.abs(use_data[:, time_idx]))
assert time_idx == np.argmax(np.abs(use_data[data_idx, :]))
if kind == "surface":
data_idx_2, time_idx_2 = stc.get_peak(
vert_as_index=True, time_as_index=True, hemi="lh"
)
assert data_idx_2 == data_idx
assert time_idx_2 == time_idx
with pytest.raises(RuntimeError, match="no vertices"):
stc.get_peak(hemi="rh")
@testing.requires_testing_data
def test_mixed_stc(tmp_path):
"""Test source estimate from mixed source space."""
pytest.importorskip("h5io")
N = 90 # number of sources
T = 2 # number of time points
S = 3 # number of source spaces
data = rng.randn(N, T)
vertno = S * [np.arange(N // S)]
# make sure error is raised if vertices are not a list of length >= 2
pytest.raises(ValueError, MixedSourceEstimate, data=data, vertices=[np.arange(N)])
stc = MixedSourceEstimate(data, vertno, 0, 1)
# make sure error is raised for plotting surface with volume source
fname = tmp_path / "mixed-stc.h5"
stc.save(fname)
stc_out = read_source_estimate(fname)
assert_array_equal(stc_out.vertices, vertno)
assert_array_equal(stc_out.data, data)
assert stc_out.tmin == 0
assert stc_out.tstep == 1
assert isinstance(stc_out, MixedSourceEstimate)
@pytest.mark.parametrize(
"klass, kind",
[
(VectorSourceEstimate, "surf"),
(VolVectorSourceEstimate, "vol"),
(VolVectorSourceEstimate, "discrete"),
(MixedVectorSourceEstimate, "mixed"),
],
)
@pytest.mark.parametrize("dtype", [np.float32, np.float64, np.complex64, np.complex128])
def test_vec_stc_basic(tmp_path, klass, kind, dtype):
"""Test (vol)vector source estimate."""
pytest.importorskip("h5io")
nn = np.array(
[
[1, 0, 0],
[0, 1, 0],
[np.sqrt(1.0 / 2.0), 0, np.sqrt(1.0 / 2.0)],
[np.sqrt(1 / 3.0)] * 3,
],
np.float32,
)
data = np.array(
[
[1, 0, 0],
[0, 2, 0],
[-3, 0, 0],
[1, 1, 1],
],
dtype,
)[:, :, np.newaxis]
amplitudes = np.array([1, 2, 3, np.sqrt(3)], dtype)
magnitudes = amplitudes.copy()
normals = np.array([1, 2, -3.0 / np.sqrt(2), np.sqrt(3)], dtype)
if dtype in (np.complex64, np.complex128):
data *= 1j
amplitudes *= 1j
normals *= 1j
directions = np.array([[1, 0, 0], [0, 1, 0], [-1, 0, 0], [1.0 / np.sqrt(3)] * 3])
vol_kind = kind if kind in ("discrete", "vol") else "vol"
vol_src = SourceSpaces([dict(nn=nn, type=vol_kind)])
assert vol_src.kind == dict(vol="volume").get(vol_kind, vol_kind)
vol_verts = [np.arange(4)]
surf_src = SourceSpaces(
[dict(nn=nn[:2], type="surf"), dict(nn=nn[2:], type="surf")]
)
assert surf_src.kind == "surface"
surf_verts = [np.array([0, 1]), np.array([0, 1])]
if klass is VolVectorSourceEstimate:
src = vol_src
verts = vol_verts
elif klass is VectorSourceEstimate:
src = surf_src
verts = surf_verts
if klass is MixedVectorSourceEstimate:
src = surf_src + vol_src
verts = surf_verts + vol_verts
assert src.kind == "mixed"
data = np.tile(data, (2, 1, 1))
amplitudes = np.tile(amplitudes, 2)
magnitudes = np.tile(magnitudes, 2)
normals = np.tile(normals, 2)
directions = np.tile(directions, (2, 1))
stc = klass(data, verts, 0, 1, "foo")
amplitudes = amplitudes[:, np.newaxis]
magnitudes = magnitudes[:, np.newaxis]
# Magnitude of the vectors
assert_array_equal(stc.magnitude().data, magnitudes)
# Vector components projected onto the vertex normals
if kind in ("vol", "mixed"):
with pytest.raises(RuntimeError, match="surface or discrete"):
stc.project("normal", src)[0]
else:
normal = stc.project("normal", src)[0]
assert_allclose(normal.data[:, 0], normals)
# Maximal-variance component, either to keep amps pos or to align to src-nn
projected, got_directions = stc.project("pca")
assert_allclose(got_directions, directions)
assert_allclose(projected.data, amplitudes)
projected, got_directions = stc.project("pca", src)
flips = np.array([[1], [1], [-1.0], [1]])
if klass is MixedVectorSourceEstimate:
flips = np.tile(flips, (2, 1))
assert_allclose(got_directions, directions * flips)
assert_allclose(projected.data, amplitudes * flips)
out_name = tmp_path / "temp.h5"
stc.save(out_name)
stc_read = read_source_estimate(out_name)
assert_allclose(stc.data, stc_read.data)
assert len(stc.vertices) == len(stc_read.vertices)
for v1, v2 in zip(stc.vertices, stc_read.vertices):
assert_array_equal(v1, v2)
stc = klass(data[:, :, 0], verts, 0, 1) # upbroadcast
assert stc.data.shape == (len(data), 3, 1)
# Bad data
with pytest.raises(ValueError, match="must have shape.*3"):
klass(data[:, :2], verts, 0, 1)
data = data[:, :, np.newaxis]
with pytest.raises(ValueError, match="3 dimensions for .*VectorSource"):
klass(data, verts, 0, 1)
@pytest.mark.parametrize("real", (True, False))
def test_source_estime_project(real):
"""Test projecting a source estimate onto direction of max power."""
n_src, n_times = 4, 100
rng = np.random.RandomState(0)
data = rng.randn(n_src, 3, n_times)
if not real:
data = data + 1j * rng.randn(n_src, 3, n_times)
assert data.dtype == np.complex128
else:
assert data.dtype == np.float64
# Make sure that the normal we get maximizes the power
# (i.e., minimizes the negative power)
want_nn = np.empty((n_src, 3))
for ii in range(n_src):
x0 = np.ones(3)
def objective(x):
x = x / np.linalg.norm(x)
return -np.linalg.norm(np.dot(x, data[ii]))
want_nn[ii] = fmin_cobyla(objective, x0, (), rhobeg=0.1, rhoend=1e-6)
want_nn /= np.linalg.norm(want_nn, axis=1, keepdims=True)
stc = VolVectorSourceEstimate(data, [np.arange(n_src)], 0, 1)
_, directions = stc.project("pca")
flips = np.sign(np.sum(directions * want_nn, axis=1, keepdims=True))
directions *= flips
assert_allclose(directions, want_nn, atol=2e-6)
@testing.requires_testing_data
def test_source_estime_project_label():
"""Test projecting a source estimate onto direction of max power."""
fwd = read_forward_solution(fname_fwd)
fwd = pick_types_forward(fwd, meg=True, eeg=False)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0]
noise_cov = read_cov(fname_cov)
free = make_inverse_operator(evoked.info, fwd, noise_cov, loose=1.0)
stc_free = apply_inverse(evoked, free, pick_ori="vector")
stc_pca = stc_free.project("pca", fwd["src"])[0]
labels_lh = read_labels_from_annot(
"sample", "aparc", "lh", subjects_dir=subjects_dir
)
new_label = labels_lh[0] + labels_lh[1]
stc_in_label = stc_free.in_label(new_label)
stc_pca_in_label = stc_pca.in_label(new_label)
stc_in_label_pca = stc_in_label.project("pca", fwd["src"])[0]
assert_array_equal(stc_pca_in_label.data, stc_in_label_pca.data)
@pytest.fixture(scope="module", params=[testing._pytest_param()])
def invs():
"""Inverses of various amounts of loose."""
fwd = read_forward_solution(fname_fwd)
fwd = pick_types_forward(fwd, meg=True, eeg=False)
fwd_surf = convert_forward_solution(fwd, surf_ori=True)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0]
noise_cov = read_cov(fname_cov)
free = make_inverse_operator(evoked.info, fwd, noise_cov, loose=1.0)
free_surf = make_inverse_operator(evoked.info, fwd_surf, noise_cov, loose=1.0)
freeish = make_inverse_operator(evoked.info, fwd, noise_cov, loose=0.9999)
fixed = make_inverse_operator(evoked.info, fwd, noise_cov, loose=0.0)
fixedish = make_inverse_operator(evoked.info, fwd, noise_cov, loose=0.0001)
assert_allclose(
free["source_nn"], np.kron(np.ones(fwd["nsource"]), np.eye(3)).T, atol=1e-7
)
# This is the one exception:
assert not np.allclose(free["source_nn"], free_surf["source_nn"])
assert_allclose(
free["source_nn"], np.tile(np.eye(3), (free["nsource"], 1)), atol=1e-7
)
# All others are similar:
for other in (freeish, fixedish):
assert_allclose(free_surf["source_nn"], other["source_nn"], atol=1e-7)
assert_allclose(free_surf["source_nn"][2::3], fixed["source_nn"], atol=1e-7)
expected_nn = np.concatenate([_get_src_nn(s) for s in fwd["src"]])
assert_allclose(fixed["source_nn"], expected_nn, atol=1e-7)
return evoked, free, free_surf, freeish, fixed, fixedish
@pytest.mark.parametrize("pick_ori", [None, "normal", "vector"])
def test_vec_stc_inv_free(invs, pick_ori):
"""Test vector STC behavior with two free-orientation inverses."""
evoked, free, free_surf, _, _, _ = invs
stc_free = apply_inverse(evoked, free, pick_ori=pick_ori)
stc_free_surf = apply_inverse(evoked, free_surf, pick_ori=pick_ori)
assert_allclose(stc_free.data, stc_free_surf.data, atol=1e-5)
@pytest.mark.parametrize("pick_ori", [None, "normal", "vector"])
def test_vec_stc_inv_free_surf(invs, pick_ori):
"""Test vector STC behavior with free and free-ish orientation invs."""
evoked, _, free_surf, freeish, _, _ = invs
stc_free = apply_inverse(evoked, free_surf, pick_ori=pick_ori)
stc_freeish = apply_inverse(evoked, freeish, pick_ori=pick_ori)
assert_allclose(stc_free.data, stc_freeish.data, atol=1e-3)
@pytest.mark.parametrize("pick_ori", (None, "normal", "vector"))
def test_vec_stc_inv_fixed(invs, pick_ori):
"""Test vector STC behavior with fixed-orientation inverses."""
evoked, _, _, _, fixed, fixedish = invs
stc_fixed = apply_inverse(evoked, fixed)
stc_fixed_vector = apply_inverse(evoked, fixed, pick_ori="vector")
assert_allclose(
stc_fixed.data, stc_fixed_vector.project("normal", fixed["src"])[0].data
)
stc_fixedish = apply_inverse(evoked, fixedish, pick_ori=pick_ori)
if pick_ori == "vector":
assert_allclose(stc_fixed_vector.data, stc_fixedish.data, atol=1e-2)
# two ways here: with magnitude...
assert_allclose(abs(stc_fixed).data, stc_fixedish.magnitude().data, atol=1e-2)
# ... and when picking the normal (signed)
stc_fixedish = stc_fixedish.project("normal", fixedish["src"])[0]
elif pick_ori is None:
stc_fixed = abs(stc_fixed)
else:
assert pick_ori == "normal" # no need to modify
assert_allclose(stc_fixed.data, stc_fixedish.data, atol=1e-2)
@testing.requires_testing_data
def test_epochs_vector_inverse():
"""Test vector inverse consistency between evoked and epochs."""
raw = read_raw_fif(fname_raw)
events = find_events(raw, stim_channel="STI 014")[:2]
reject = dict(grad=2000e-13, mag=4e-12, eog=150e-6)
epochs = Epochs(
raw, events, None, 0, 0.01, baseline=None, reject=reject, preload=True
)
assert_equal(len(epochs), 2)
evoked = epochs.average(picks=range(len(epochs.ch_names)))
inv = read_inverse_operator(fname_inv)
method = "MNE"
snr = 3.0
lambda2 = 1.0 / snr**2
stcs_epo = apply_inverse_epochs(
epochs, inv, lambda2, method=method, pick_ori="vector", return_generator=False
)
stc_epo = np.mean(stcs_epo)
stc_evo = apply_inverse(evoked, inv, lambda2, method=method, pick_ori="vector")
assert_allclose(stc_epo.data, stc_evo.data, rtol=1e-9, atol=0)
@testing.requires_testing_data
def test_vol_adjacency():
"""Test volume adjacency."""
pytest.importorskip("sklearn")
vol = read_source_spaces(fname_vsrc)
pytest.raises(ValueError, spatial_src_adjacency, vol, dist=1.0)
adjacency = spatial_src_adjacency(vol)
n_vertices = vol[0]["inuse"].sum()
assert_equal(adjacency.shape, (n_vertices, n_vertices))
assert np.all(adjacency.data == 1)
assert isinstance(adjacency, sparse.coo_array)
adjacency2 = spatio_temporal_src_adjacency(vol, n_times=2)
assert_equal(adjacency2.shape, (2 * n_vertices, 2 * n_vertices))
assert np.all(adjacency2.data == 1)
@testing.requires_testing_data
def test_spatial_src_adjacency():
"""Test spatial adjacency functionality."""
# oct
src = read_source_spaces(fname_src)
assert src[0]["dist"] is not None # distance info
with pytest.warns(RuntimeWarning, match="will have holes"):
con = spatial_src_adjacency(src).toarray()
con_dist = spatial_src_adjacency(src, dist=0.01).toarray()
assert (con == con_dist).mean() > 0.75
# ico
src = read_source_spaces(fname_src_fs)
con = spatial_src_adjacency(src).tocsr()
con_tris = spatial_tris_adjacency(grade_to_tris(5)).tocsr()
assert con.shape == con_tris.shape
assert_array_equal(con.data, con_tris.data)
assert_array_equal(con.indptr, con_tris.indptr)
assert_array_equal(con.indices, con_tris.indices)
# one hemi
con_lh = spatial_src_adjacency(src[:1]).tocsr()
con_lh_tris = spatial_tris_adjacency(grade_to_tris(5)).tocsr()
con_lh_tris = con_lh_tris[:10242, :10242].tocsr()
assert_array_equal(con_lh.data, con_lh_tris.data)
assert_array_equal(con_lh.indptr, con_lh_tris.indptr)
assert_array_equal(con_lh.indices, con_lh_tris.indices)
@testing.requires_testing_data
def test_vol_mask():
"""Test extraction of volume mask."""
pytest.importorskip("nibabel")
pytest.importorskip("sklearn")
src = read_source_spaces(fname_vsrc)
mask = _get_vol_mask(src)
# Let's use an alternative way that should be equivalent
vertices = [src[0]["vertno"]]
n_vertices = len(vertices[0])
data = (1 + np.arange(n_vertices))[:, np.newaxis]
stc_tmp = VolSourceEstimate(data, vertices, tmin=0.0, tstep=1.0)
img = stc_tmp.as_volume(src, mri_resolution=False)
img_data = _get_img_fdata(img)[:, :, :, 0].T
mask_nib = img_data != 0
assert_array_equal(img_data[mask_nib], data[:, 0])
assert_array_equal(np.where(mask_nib.ravel())[0], src[0]["vertno"])
assert_array_equal(mask, mask_nib)
assert_array_equal(img_data.shape, mask.shape)
@testing.requires_testing_data
def test_stc_near_sensors(tmp_path):
"""Test stc_near_sensors."""
info = read_info(fname_evoked)
# pick the left EEG sensors
picks = pick_types(info, meg=False, eeg=True, exclude=())
picks = [pick for pick in picks if info["chs"][pick]["loc"][0] < 0]
pick_info(info, picks, copy=False)
with info._unlock():
info["projs"] = []
info["bads"] = []
assert info["nchan"] == 33
evoked = EvokedArray(np.eye(info["nchan"]), info)
trans = read_trans(fname_fwd)
assert trans["to"] == FIFF.FIFFV_COORD_HEAD
# testing does not have pial, so fake it
os.makedirs(tmp_path / "sample" / "surf")
for hemi in ("lh", "rh"):
copyfile(
subjects_dir / "sample" / "surf" / f"{hemi}.white",
tmp_path / "sample" / "surf" / f"{hemi}.pial",
)
# here we use a distance is smaller than the inter-sensor distance
kwargs = dict(
subject="sample",
trans=trans,
subjects_dir=tmp_path,
verbose=True,
distance=0.005,
)
with pytest.raises(ValueError, match="No appropriate channels"):
stc_near_sensors(evoked, **kwargs)
evoked.set_channel_types({ch_name: "ecog" for ch_name in evoked.ch_names})
with catch_logging() as log:
stc = stc_near_sensors(evoked, **kwargs)
log = log.getvalue()
assert "Minimum projected intra-sensor distance: 7." in log # 7.4
# this should be left-hemisphere dominant
assert 5000 > len(stc.vertices[0]) > 4000
assert 200 > len(stc.vertices[1]) > 100
# and at least one vertex should have the channel values
dists = cdist(stc.data, evoked.data)
assert np.isclose(dists, 0.0, atol=1e-6).any(0).all()
src = read_source_spaces(fname_src) # uses "white" but should be okay
for s in src:
transform_surface_to(s, "head", trans, copy=False)
assert src[0]["coord_frame"] == FIFF.FIFFV_COORD_HEAD
stc_src = stc_near_sensors(evoked, src=src, **kwargs)
assert len(stc_src.data) == 7928
with pytest.warns(RuntimeWarning, match="not included"): # some removed
stc_src_full = compute_source_morph(
stc_src,
"sample",
"sample",
smooth=5,
spacing=None,
subjects_dir=subjects_dir,
).apply(stc_src)
lh_idx = np.searchsorted(stc_src_full.vertices[0], stc.vertices[0])
rh_idx = np.searchsorted(stc_src_full.vertices[1], stc.vertices[1])
rh_idx += len(stc_src_full.vertices[0])
sub_data = stc_src_full.data[np.concatenate([lh_idx, rh_idx])]
assert sub_data.shape == stc.data.shape
corr = np.corrcoef(stc.data.ravel(), sub_data.ravel())[0, 1]
assert 0.6 < corr < 0.7
# now single-weighting mode
stc_w = stc_near_sensors(evoked, mode="single", **kwargs)
assert_array_less(stc_w.data, stc.data + 1e-3) # some tol
assert len(stc_w.data) == len(stc.data)
# at least one for each sensor should have projected right on it
dists = cdist(stc_w.data, evoked.data)
assert np.isclose(dists, 0.0, atol=1e-6).any(0).all()
# finally, nearest mode: all should match
stc_n = stc_near_sensors(evoked, mode="nearest", **kwargs)
assert len(stc_n.data) == len(stc.data)
# at least one for each sensor should have projected right on it
dists = cdist(stc_n.data, evoked.data)
assert np.isclose(dists, 0.0, atol=1e-6).any(1).all() # all vert eq some ch
# these are EEG electrodes, so the distance 0.01 is too small for the
# scalp+skull. Even at a distance of 33 mm EEG 060 is too far:
with pytest.warns(RuntimeWarning, match="Channel missing in STC: EEG 060"):
stc = stc_near_sensors(
evoked,
trans,
"sample",
subjects_dir=tmp_path,
project=False,
distance=0.033,
)
assert stc.data.any(0).sum() == len(evoked.ch_names) - 1
# and now with volumetric projection
src = read_source_spaces(fname_vsrc)
with catch_logging() as log:
stc_vol = stc_near_sensors(
evoked,
trans,
"sample",
src=src,
surface=None,
subjects_dir=subjects_dir,
distance=0.033,
verbose=True,
)
assert isinstance(stc_vol, VolSourceEstimate)
log = log.getvalue()
assert "4157 volume vertices" in log
@testing.requires_testing_data
def test_stc_near_sensors_picks():
"""Test using picks with stc_near_sensors."""
pytest.importorskip("pymatreader")
info = mne.io.read_raw_nirx(fname_nirx).info
evoked = mne.EvokedArray(np.ones((len(info["ch_names"]), 1)), info)
src = mne.read_source_spaces(fname_src_fs)
kwargs = dict(
evoked=evoked,
subject="fsaverage",
trans="fsaverage",
subjects_dir=subjects_dir,
src=src,
surface=None,
project=True,
)
with pytest.raises(ValueError, match="No appropriate channels"):
stc_near_sensors(**kwargs)
picks = np.arange(len(info["ch_names"]))
data = stc_near_sensors(picks=picks, **kwargs).data
assert len(data) == 20484
assert (data >= 0).all()
data = data[data > 0]
n_pts = len(data)
assert 500 < n_pts < 600
lo, hi = np.percentile(data, (5, 95))
assert 0.01 < lo < 0.1
assert 1.3 < hi < 1.7 # > 1
data = stc_near_sensors(picks=picks, mode="weighted", **kwargs).data
assert (data >= 0).all()
data = data[data > 0]
assert len(data) == n_pts
assert_array_equal(data, 1.0) # values preserved
def _make_morph_map_hemi_same(subject_from, subject_to, subjects_dir, reg_from, reg_to):
return _make_morph_map_hemi(
subject_from, subject_from, subjects_dir, reg_from, reg_from
)
@testing.requires_testing_data
@pytest.mark.parametrize(
"kind",
(
pytest.param("volume", marks=[pytest.mark.slowtest]),
"surface",
),
)
@pytest.mark.parametrize("scale", ((1.0, 0.8, 1.2), 1.0, 0.9))
def test_scale_morph_labels(kind, scale, monkeypatch, tmp_path):
"""Test label extraction, morphing, and MRI scaling relationships."""
pytest.importorskip("nibabel")
if kind == "volume":
pytest.importorskip("dipy")
subject_from = "sample"
subject_to = "small"
testing_dir = subjects_dir / subject_from
from_dir = tmp_path / subject_from
for root in ("mri", "surf", "label", "bem"):
os.makedirs(from_dir / root, exist_ok=True)
for hemi in ("lh", "rh"):
for root, fname in (
("surf", "sphere"),
("surf", "white"),
("surf", "sphere.reg"),
("label", "aparc.annot"),
):
use_fname = Path(root) / f"{hemi}.{fname}"
copyfile(testing_dir / use_fname, from_dir / use_fname)
for root, fname in (("mri", "aseg.mgz"), ("mri", "brain.mgz")):
use_fname = Path(root) / fname
copyfile(testing_dir / use_fname, from_dir / use_fname)
del testing_dir
if kind == "surface":
src_from = read_source_spaces(fname_src_3)
assert src_from[0]["dist"] is None
assert src_from[0]["nearest"] is not None
# avoid patch calc
src_from[0]["nearest"] = src_from[1]["nearest"] = None
assert len(src_from) == 2
assert src_from[0]["nuse"] == src_from[1]["nuse"] == 258
klass = SourceEstimate
labels_from = read_labels_from_annot(subject_from, subjects_dir=tmp_path)
n_labels = len(labels_from)
write_source_spaces(
tmp_path / subject_from / "bem" / f"{subject_from}-oct-4-src.fif",
src_from,
)
else:
assert kind == "volume"
pytest.importorskip("dipy")
src_from = read_source_spaces(fname_src_vol)
src_from[0]["subject_his_id"] = subject_from
labels_from = tmp_path / subject_from / "mri" / "aseg.mgz"
n_labels = 46
assert labels_from.is_file()
klass = VolSourceEstimate
assert len(src_from) == 1
assert src_from[0]["nuse"] == 4157
write_source_spaces(from_dir / "bem" / "sample-vol20-src.fif", src_from)
scale_mri(
subject_from,
subject_to,
scale,
subjects_dir=tmp_path,
annot=True,
skip_fiducials=True,
verbose=True,
overwrite=True,
)
if kind == "surface":
src_to = read_source_spaces(
tmp_path / subject_to / "bem" / f"{subject_to}-oct-4-src.fif"
)
labels_to = read_labels_from_annot(subject_to, subjects_dir=tmp_path)
# Save time since we know these subjects are identical
monkeypatch.setattr(
mne.morph_map, "_make_morph_map_hemi", _make_morph_map_hemi_same
)
else:
src_to = read_source_spaces(
tmp_path / subject_to / "bem" / f"{subject_to}-vol20-src.fif"
)
labels_to = tmp_path / subject_to / "mri" / "aseg.mgz"
# 1. Label->STC->Label for the given subject should be identity
# (for surfaces at least; for volumes it's not as clean as this
# due to interpolation)
n_times = 50
rng = np.random.RandomState(0)
label_tc = rng.randn(n_labels, n_times)
# check that a random permutation of our labels yields a terrible
# correlation
corr = np.corrcoef(label_tc.ravel(), rng.permutation(label_tc).ravel())[0, 1]
assert -0.06 < corr < 0.06
# project label activations to full source space
with pytest.raises(ValueError, match="subject"):
labels_to_stc(labels_from, label_tc, src=src_from, subject="foo")
stc = labels_to_stc(labels_from, label_tc, src=src_from)
assert stc.subject == "sample"
assert isinstance(stc, klass)
label_tc_from = extract_label_time_course(stc, labels_from, src_from, mode="mean")
if kind == "surface":
assert_allclose(label_tc, label_tc_from, rtol=1e-12, atol=1e-12)
else:
corr = np.corrcoef(label_tc.ravel(), label_tc_from.ravel())[0, 1]
assert 0.93 < corr < 0.95
#
# 2. Changing STC subject to the surrogate and then extracting
#
stc.subject = subject_to
label_tc_to = extract_label_time_course(stc, labels_to, src_to, mode="mean")
assert_allclose(label_tc_from, label_tc_to, rtol=1e-12, atol=1e-12)
stc.subject = subject_from
#
# 3. Morphing STC to new subject then extracting
#
if isinstance(scale, tuple) and kind == "volume":
ctx = nullcontext()
test_morph = True
elif kind == "surface":
ctx = pytest.warns(RuntimeWarning, match="not included")
test_morph = True
else:
ctx = nullcontext()
test_morph = True
with ctx: # vertices not included
morph = compute_source_morph(
src_from,
subject_to=subject_to,
src_to=src_to,
subjects_dir=tmp_path,
niter_sdr=(),
smooth=1,
zooms=14.0,
verbose=True,
) # speed up with higher zooms
if kind == "volume":
got_affine = morph.pre_affine.affine
want_affine = np.eye(4)
want_affine.ravel()[::5][:3] = 1.0 / np.array(scale, float)
# just a scaling (to within 1% if zooms=None, 20% with zooms=10)
assert_allclose(want_affine[:, :3], got_affine[:, :3], atol=0.4)
assert got_affine[3, 3] == 1.0
# little translation (to within `limit` mm)
move = np.linalg.norm(got_affine[:3, 3])
limit = 2.0 if scale == 1.0 else 12
assert move < limit, scale
if test_morph:
stc_to = morph.apply(stc)
label_tc_to_morph = extract_label_time_course(
stc_to, labels_to, src_to, mode="mean"
)
if kind == "volume":
corr = np.corrcoef(label_tc.ravel(), label_tc_to_morph.ravel())[0, 1]
if isinstance(scale, tuple):
# some other fixed constant
# min_, max_ = 0.84, 0.855 # zooms='auto' values
min_, max_ = 0.55, 0.67
elif scale == 1:
# min_, max_ = 0.85, 0.875 # zooms='auto' values
min_, max_ = 0.72, 0.76
else:
# min_, max_ = 0.84, 0.855 # zooms='auto' values
min_, max_ = 0.46, 0.63
assert min_ < corr <= max_, scale
else:
assert_allclose(label_tc, label_tc_to_morph, atol=1e-12, rtol=1e-12)
#
# 4. The same round trip from (1) but in the warped space
#
stc = labels_to_stc(labels_to, label_tc, src=src_to)
assert isinstance(stc, klass)
label_tc_to = extract_label_time_course(stc, labels_to, src_to, mode="mean")
if kind == "surface":
assert_allclose(label_tc, label_tc_to, rtol=1e-12, atol=1e-12)
else:
corr = np.corrcoef(label_tc.ravel(), label_tc_to.ravel())[0, 1]
assert 0.93 < corr < 0.96, scale
@testing.requires_testing_data
@pytest.mark.parametrize(
"kind",
[
"surface",
pytest.param("volume", marks=[pytest.mark.slowtest]),
],
)
def test_label_extraction_subject(kind):
"""Test that label extraction subject is treated properly."""
if kind == "surface":
inv = read_inverse_operator(fname_inv)
labels = read_labels_from_annot("sample", subjects_dir=subjects_dir)
labels_fs = read_labels_from_annot("fsaverage", subjects_dir=subjects_dir)
labels_fs = [
label for label in labels_fs if not label.name.startswith("unknown")
]
assert all(label.subject == "sample" for label in labels)
assert all(label.subject == "fsaverage" for label in labels_fs)
assert len(labels) == len(labels_fs) == 68
n_labels = 68
else:
assert kind == "volume"
pytest.importorskip("nibabel")
inv = read_inverse_operator(fname_inv_vol)
inv["src"][0]["subject_his_id"] = "sample" # modernize
labels = subjects_dir / "sample" / "mri" / "aseg.mgz"
labels_fs = subjects_dir / "fsaverage" / "mri" / "aseg.mgz"
n_labels = 46
src = inv["src"]
assert src.kind == kind
assert src._subject == "sample"
ave = read_evokeds(fname_evoked)[0].apply_baseline((None, 0)).crop(0, 0.01)
assert len(ave.times) == 4
stc = apply_inverse(ave, inv)
assert stc.subject == "sample"
ltc = extract_label_time_course(stc, labels, src)
stc.subject = "fsaverage"
with pytest.raises(ValueError, match=r"source spac.*not match.* stc\.sub"):
extract_label_time_course(stc, labels, src)
stc.subject = "sample"
assert ltc.shape == (n_labels, 4)
if kind == "volume":
with pytest.raises(RuntimeError, match="atlas.*not match.*source spa"):
extract_label_time_course(stc, labels_fs, src)
else:
with pytest.raises(ValueError, match=r"label\.sub.*not match.* stc\."):
extract_label_time_course(stc, labels_fs, src)
stc.subject = None
with pytest.raises(ValueError, match=r"label\.sub.*not match.* sour"):
extract_label_time_course(stc, labels_fs, src)
def test_apply_function_stc():
"""Check the apply_function method for source estimate data."""
# Create a sample _BaseSourceEstimate object
n_vertices = 100
n_times = 200
vertices = [np.array(np.arange(50)), np.array(np.arange(50, 100))]
tmin = 0.0
tstep = 0.001
data = np.random.default_rng(0).normal(size=(n_vertices, n_times))
stc = _make_stc(data, vertices, tmin=tmin, tstep=tstep, src_type="surface")
# A sample function to apply to the data
def fun(data_row, **kwargs):
return 2 * data_row
# Test applying the function to all vertices without parallelization
stc_copy = stc.copy()
stc.apply_function(fun)
for idx in range(n_vertices):
assert_allclose(stc.data[idx, :], 2 * stc_copy.data[idx, :])
# Test applying the function with parallelization
stc.apply_function(fun, n_jobs=2)
for idx in range(n_vertices):
assert_allclose(stc.data[idx, :], 4 * stc_copy.data[idx, :])