# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import glob
import os
import pickle
import shutil
from itertools import product
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
)
from mne import (
grow_labels,
labels_to_stc,
morph_labels,
random_parcellation,
read_label,
read_labels_from_annot,
read_source_estimate,
read_source_spaces,
read_surface,
spatial_tris_adjacency,
split_label,
stc_to_label,
write_labels_to_annot,
)
from mne.datasets import testing
from mne.fixes import _eye_array
from mne.label import (
Label,
_blend_colors,
_load_vert_pos,
_n_colors,
_read_annot,
_read_annot_cands,
label_sign_flip,
select_sources,
)
from mne.source_estimate import mesh_edges
from mne.source_space import SourceSpaces
from mne.surface import _mesh_borders
from mne.utils import _record_warnings, get_subjects_dir
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
src_fname = subjects_dir / "sample" / "bem" / "sample-oct-6-src.fif"
stc_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-lh.stc"
real_label_fname = data_path / "MEG" / "sample" / "labels" / "Aud-lh.label"
v1_label_fname = subjects_dir / "sample" / "label" / "lh.V1.label"
fwd_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-6-fwd.fif"
src_bad_fname = data_path / "subjects" / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
label_dir = subjects_dir / "sample" / "label" / "aparc"
test_path = Path(__file__).parents[1] / "io" / "tests" / "data"
label_fname = test_path / "test-lh.label"
# This code was used to generate the "fake" test labels:
# for hemi in ['lh', 'rh']:
# label = Label(np.unique((np.random.rand(100) * 10242).astype(int)),
# hemi=hemi, comment='Test ' + hemi, subject='fsaverage')
# label.save(op.join(test_path, f'test-{hemi}.label'))
# XXX : this was added for backward compat and keep the old test_label_in_src
def _stc_to_label(stc, src, smooth, subjects_dir=None):
"""Compute a label from the non-zero sources in an stc object.
Parameters
----------
stc : SourceEstimate
The source estimates.
src : SourceSpaces | str | None
The source space over which the source estimates are defined.
If it's a string it should be the subject name (e.g. ``'fsaverage'``').
Can be None if ``stc.subject`` is not None.
smooth : int
Number of smoothing iterations.
subjects_dir : path-like | None
Path to ``SUBJECTS_DIR`` if it is not set in the environment.
Returns
-------
labels : list of Labels | list of list of Labels
The generated labels. If connected is False, it returns
a list of Labels (one per hemisphere). If no Label is available
in a hemisphere, None is returned. If connected is True,
it returns for each hemisphere a list of connected labels
ordered in decreasing order depending of the maximum value in the stc.
If no Label is available in an hemisphere, an empty list is returned.
"""
src = stc.subject if src is None else src
if isinstance(src, str):
subject = src
else:
subject = stc.subject
if isinstance(src, str):
subjects_dir = Path(get_subjects_dir(subjects_dir))
surf_path_from = subjects_dir / src / "surf"
rr_lh, tris_lh = read_surface(surf_path_from / "lh.white")
rr_rh, tris_rh = read_surface(surf_path_from / "rh.white")
rr = [rr_lh, rr_rh]
tris = [tris_lh, tris_rh]
else:
if not isinstance(src, SourceSpaces):
raise TypeError("src must be a string or a set of source spaces")
if len(src) != 2:
raise ValueError("source space should contain the 2 hemispheres")
rr = [1e3 * src[0]["rr"], 1e3 * src[1]["rr"]]
tris = [src[0]["tris"], src[1]["tris"]]
labels = []
cnt = 0
for hemi_idx, (hemi, this_vertno, this_tris, this_rr) in enumerate(
zip(["lh", "rh"], stc.vertices, tris, rr)
):
this_data = stc.data[cnt : cnt + len(this_vertno)]
e = mesh_edges(this_tris)
e.data[e.data == 2] = 1
n_vertices = e.shape[0]
e = e + _eye_array(n_vertices)
clusters = [this_vertno[np.any(this_data, axis=1)]]
cnt += len(this_vertno)
clusters = [c for c in clusters if len(c) > 0]
if len(clusters) == 0:
this_labels = None
else:
this_labels = []
colors = _n_colors(len(clusters))
for c, color in zip(clusters, colors):
idx_use = c
for k in range(smooth):
e_use = e[:, idx_use]
data1 = e_use @ np.ones(len(idx_use))
idx_use = np.where(data1)[0]
label = Label(
idx_use,
this_rr[idx_use],
None,
hemi,
"Label from stc",
subject=subject,
color=color,
)
this_labels.append(label)
this_labels = this_labels[0]
labels.append(this_labels)
return labels
def assert_labels_equal(l0, l1, decimal=5, comment=True, color=True):
"""Assert two labels are equal."""
if comment:
assert_equal(l0.comment, l1.comment)
if color:
assert_equal(l0.color, l1.color)
for attr in ["hemi", "subject"]:
attr0 = getattr(l0, attr)
attr1 = getattr(l1, attr)
msg = f"label.{attr}: {repr(attr0)} != {repr(attr1)}"
assert_equal(attr0, attr1, msg)
for attr in ["vertices", "pos", "values"]:
a0 = getattr(l0, attr)
a1 = getattr(l1, attr)
assert_array_almost_equal(a0, a1, decimal)
def test_copy():
"""Test label copying."""
label = read_label(label_fname)
label_2 = label.copy()
label_2.pos += 1
assert_array_equal(label.pos, label_2.pos - 1)
def test_label_subject():
"""Test label subject name extraction."""
label = read_label(label_fname)
assert label.subject is None
assert "unknown" in repr(label)
label = read_label(label_fname, subject="fsaverage")
assert label.subject == "fsaverage"
assert "fsaverage" in repr(label)
def test_label_addition():
"""Test label addition."""
pos = np.random.RandomState(0).rand(10, 3)
values = np.arange(10.0) / 10
idx0 = list(range(7))
idx1 = list(range(7, 10)) # non-overlapping
idx2 = list(range(5, 10)) # overlapping
l0 = Label(idx0, pos[idx0], values[idx0], "lh", color="red")
l1 = Label(idx1, pos[idx1], values[idx1], "lh")
l2 = Label(idx2, pos[idx2], values[idx2], "lh", color=(0, 1, 0, 0.5))
assert_equal(len(l0), len(idx0))
l_good = l0.copy()
l_good.subject = "sample"
l_bad = l1.copy()
l_bad.subject = "foo"
pytest.raises(ValueError, l_good.__add__, l_bad)
pytest.raises(TypeError, l_good.__add__, "foo")
pytest.raises(ValueError, l_good.__sub__, l_bad)
pytest.raises(TypeError, l_good.__sub__, "foo")
# adding non-overlapping labels
l01 = l0 + l1
assert_equal(len(l01), len(l0) + len(l1))
assert_array_equal(l01.values[: len(l0)], l0.values)
assert_equal(l01.color, l0.color)
# subtraction
assert_labels_equal(l01 - l0, l1, comment=False, color=False)
assert_labels_equal(l01 - l1, l0, comment=False, color=False)
# adding overlapping labels
l02 = l0 + l2
i0 = np.where(l0.vertices == 6)[0][0]
i2 = np.where(l2.vertices == 6)[0][0]
i = np.where(l02.vertices == 6)[0][0]
assert_equal(l02.values[i], l0.values[i0] + l2.values[i2])
assert_equal(l02.values[0], l0.values[0])
assert_array_equal(np.unique(l02.vertices), np.unique(idx0 + idx2))
assert_equal(l02.color, _blend_colors(l0.color, l2.color))
# adding lh and rh
l2.hemi = "rh"
bhl = l0 + l2
assert_equal(bhl.hemi, "both")
assert_equal(len(bhl), len(l0) + len(l2))
assert_equal(bhl.color, l02.color)
assert "BiHemiLabel" in repr(bhl)
# subtraction
assert_labels_equal(bhl - l0, l2)
assert_labels_equal(bhl - l2, l0)
bhl2 = l1 + bhl
assert_labels_equal(bhl2.lh, l01)
assert_equal(bhl2.color, _blend_colors(l1.color, bhl.color))
assert_array_equal((l2 + bhl).rh.vertices, bhl.rh.vertices) # rh label
assert_array_equal((bhl + bhl).lh.vertices, bhl.lh.vertices)
pytest.raises(TypeError, bhl.__add__, 5)
# subtraction
bhl_ = bhl2 - l1
assert_labels_equal(bhl_.lh, bhl.lh, comment=False, color=False)
assert_labels_equal(bhl_.rh, bhl.rh)
assert_labels_equal(bhl2 - l2, l0 + l1)
assert_labels_equal(bhl2 - l1 - l0, l2)
bhl_ = bhl2 - bhl2
assert_array_equal(bhl_.vertices, [])
@testing.requires_testing_data
@pytest.mark.parametrize("fname", (real_label_fname, v1_label_fname))
def test_label_fill_restrict(fname):
"""Test label in fill and restrict."""
src = read_source_spaces(src_fname)
label = read_label(fname)
# construct label from source space vertices
label_src = label.restrict(src)
vert_in_src = label_src.vertices
values_in_src = label_src.values
if fname == real_label_fname:
# Check that we can auto-fill patch info quickly for one condition
for s in src:
s["nearest"] = None
with _record_warnings():
label_src = label_src.fill(src)
else:
label_src = label_src.fill(src)
assert src[0]["nearest"] is not None
# check label vertices
vertices_status = np.isin(src[0]["nearest"], label.vertices)
vertices_in = np.nonzero(vertices_status)[0]
vertices_out = np.nonzero(np.logical_not(vertices_status))[0]
assert_array_equal(label_src.vertices, vertices_in)
assert_array_equal(np.isin(vertices_out, label_src.vertices), False)
# check values
value_idx = np.digitize(src[0]["nearest"][vertices_in], vert_in_src, True)
assert_array_equal(label_src.values, values_in_src[value_idx])
# test exception
vertices = np.append([-1], vert_in_src)
with pytest.raises(ValueError, match="does not contain all of the label"):
Label(vertices, hemi="lh").fill(src)
# test filling empty label
label = Label([], hemi="lh")
label.fill(src)
assert_array_equal(label.vertices, np.array([], int))
@testing.requires_testing_data
def test_label_io_and_time_course_estimates():
"""Test IO for label + stc files."""
stc = read_source_estimate(stc_fname)
label = read_label(real_label_fname)
stc_label = stc.in_label(label)
assert len(stc_label.times) == stc_label.data.shape[1]
assert len(stc_label.vertices[0]) == stc_label.data.shape[0]
@testing.requires_testing_data
def test_label_io(tmp_path):
"""Test IO of label files."""
label = read_label(label_fname)
# label attributes
assert_equal(label.name, "test-lh")
assert label.subject is None
assert label.color is None
# save and reload
label.save(tmp_path / "foo")
label2 = read_label(tmp_path / "foo-lh.label")
assert_labels_equal(label, label2)
# pickling
dest = tmp_path / "foo.pickled"
with open(dest, "wb") as fid:
pickle.dump(label, fid, pickle.HIGHEST_PROTOCOL)
with open(dest, "rb") as fid:
label2 = pickle.load(fid) # nosec B301
assert_labels_equal(label, label2)
def _assert_labels_equal(labels_a, labels_b, ignore_pos=False):
"""Ensure two sets of labels are equal."""
for label_a, label_b in zip(labels_a, labels_b):
assert_array_equal(label_a.vertices, label_b.vertices)
assert label_a.name == label_b.name
assert label_a.hemi == label_b.hemi
if not ignore_pos:
assert_array_equal(label_a.pos, label_b.pos)
@testing.requires_testing_data
def test_annot_io(tmp_path):
"""Test I/O from and to *.annot files."""
# copy necessary files from fsaverage to tempdir
pytest.importorskip("nibabel")
subject = "fsaverage"
label_src = subjects_dir / "fsaverage" / "label"
surf_src = subjects_dir / "fsaverage" / "surf"
label_dir = tmp_path / subject / "label"
surf_dir = tmp_path / subject / "surf"
os.makedirs(label_dir)
os.mkdir(surf_dir)
shutil.copy(label_src / "lh.PALS_B12_Lobes.annot", label_dir)
shutil.copy(label_src / "rh.PALS_B12_Lobes.annot", label_dir)
shutil.copy(surf_src / "lh.white", surf_dir)
shutil.copy(surf_src / "rh.white", surf_dir)
# read original labels
with pytest.raises(OSError, match="\nPALS_B12_Lobes$"):
read_labels_from_annot(subject, "PALS_B12_Lobesey", subjects_dir=tmp_path)
labels = read_labels_from_annot(subject, "PALS_B12_Lobes", subjects_dir=tmp_path)
# test saving parcellation only covering one hemisphere
parc = [label for label in labels if label.name == "LOBE.TEMPORAL-lh"]
write_labels_to_annot(parc, subject, "myparc", subjects_dir=tmp_path)
parc1 = read_labels_from_annot(subject, "myparc", subjects_dir=tmp_path)
parc1 = [label for label in parc1 if not label.name.startswith("unknown")]
assert_equal(len(parc1), len(parc))
for lt, rt in zip(parc1, parc):
assert_labels_equal(lt, rt)
# test saving only one hemisphere
parc = [label for label in labels if label.name.startswith("LOBE")]
write_labels_to_annot(parc, subject, "myparc2", hemi="lh", subjects_dir=tmp_path)
annot_fname = tmp_path / subject / "label" / "%sh.myparc2.annot"
assert Path(str(annot_fname) % "l").is_file()
assert not Path(str(annot_fname) % "r").is_file()
parc1 = read_labels_from_annot(
subject, "myparc2", annot_fname=str(annot_fname) % "l", subjects_dir=tmp_path
)
parc_lh = [label for label in parc if label.name.endswith("lh")]
for lt, rt in zip(parc1, parc_lh):
assert_labels_equal(lt, rt)
# test that the annotation is complete (test Label() support)
rr = read_surface(surf_dir / "lh.white")[0]
label = sum(labels, Label(hemi="lh", subject="fsaverage")).lh
assert_array_equal(label.vertices, np.arange(len(rr)))
@testing.requires_testing_data
def test_morph_labels():
"""Test morph_labels."""
pytest.importorskip("nibabel")
# Just process the first 5 labels for speed
parc_fsaverage = read_labels_from_annot(
"fsaverage", "aparc", subjects_dir=subjects_dir
)[:5]
parc_sample = read_labels_from_annot("sample", "aparc", subjects_dir=subjects_dir)[
:5
]
parc_fssamp = morph_labels(parc_fsaverage, "sample", subjects_dir=subjects_dir)
for lf, ls, lfs in zip(parc_fsaverage, parc_sample, parc_fssamp):
assert lf.hemi == ls.hemi == lfs.hemi
assert lf.name == ls.name == lfs.name
perc_1 = np.isin(lfs.vertices, ls.vertices).mean() * 100
perc_2 = np.isin(ls.vertices, lfs.vertices).mean() * 100
# Ideally this would be 100%, but we do not use the same algorithm
# as FreeSurfer ...
assert perc_1 > 92
assert perc_2 > 88
with pytest.raises(ValueError, match="wrong and fsaverage"):
morph_labels(
parc_fsaverage, "sample", subjects_dir=subjects_dir, subject_from="wrong"
)
with pytest.raises(RuntimeError, match="Number of surface vertices"):
_load_vert_pos("sample", subjects_dir, "white", "lh", 1)
for label in parc_fsaverage:
label.subject = None
with pytest.raises(ValueError, match="subject_from must be provided"):
morph_labels(parc_fsaverage, "sample", subjects_dir=subjects_dir)
@testing.requires_testing_data
def test_labels_to_stc():
"""Test labels_to_stc."""
pytest.importorskip("nibabel")
labels = read_labels_from_annot("sample", "aparc", subjects_dir=subjects_dir)
values = np.random.RandomState(0).randn(len(labels))
with pytest.raises(ValueError, match="1 or 2 dim"):
labels_to_stc(labels, values[:, np.newaxis, np.newaxis])
with pytest.raises(ValueError, match=r"values\.shape"):
labels_to_stc(labels, values[np.newaxis])
with pytest.raises(ValueError, match="multiple values of subject"):
labels_to_stc(labels, values, subject="foo")
stc = labels_to_stc(labels, values)
assert stc.subject == "sample"
for value, label in zip(values, labels):
stc_label = stc.in_label(label)
assert (stc_label.data == value).all()
stc = read_source_estimate(stc_fname, "sample")
@testing.requires_testing_data
def test_read_labels_from_annot(tmp_path):
"""Test reading labels from FreeSurfer parcellation."""
pytest.importorskip("nibabel")
# test some invalid inputs
pytest.raises(
ValueError,
read_labels_from_annot,
"sample",
hemi="bla",
subjects_dir=subjects_dir,
)
pytest.raises(
ValueError,
read_labels_from_annot,
"sample",
annot_fname="bla.annot",
subjects_dir=subjects_dir,
)
with pytest.raises(OSError, match="does not exist"):
_read_annot_cands("foo")
with pytest.raises(OSError, match="no candidate"):
_read_annot(str(tmp_path))
# read labels using hemi specification
labels_lh = read_labels_from_annot("sample", hemi="lh", subjects_dir=subjects_dir)
for label in labels_lh:
assert label.name.endswith("-lh")
assert label.hemi == "lh"
assert label.color is not None
# read labels using annot_fname
annot_fname = subjects_dir / "sample" / "label" / "rh.aparc.annot"
labels_rh = read_labels_from_annot(
"sample", annot_fname=annot_fname, subjects_dir=subjects_dir
)
for label in labels_rh:
assert label.name.endswith("-rh")
assert label.hemi == "rh"
assert label.color is not None
# combine the lh, rh, labels and sort them
labels_lhrh = list()
labels_lhrh.extend(labels_lh)
labels_lhrh.extend(labels_rh)
names = [label.name for label in labels_lhrh]
labels_lhrh = [label for (name, label) in sorted(zip(names, labels_lhrh))]
# read all labels at once
labels_both = read_labels_from_annot("sample", subjects_dir=subjects_dir)
# we have the same result
_assert_labels_equal(labels_lhrh, labels_both)
# aparc has 68 cortical labels
assert len(labels_both) == 68
# test regexp
label = read_labels_from_annot(
"sample", parc="aparc.a2009s", regexp="Angu", subjects_dir=subjects_dir
)[0]
assert label.name == "G_pariet_inf-Angular-lh"
# silly, but real regexp:
label = read_labels_from_annot(
"sample", "aparc.a2009s", regexp=".*-.{4,}_.{3,3}-L", subjects_dir=subjects_dir
)[0]
assert label.name == "G_oc-temp_med-Lingual-lh"
with pytest.raises(RuntimeError, match="did not match any of"):
read_labels_from_annot(
"sample",
parc="aparc",
annot_fname=annot_fname,
regexp="foo",
subjects_dir=subjects_dir,
)
@testing.requires_testing_data
def test_read_labels_from_annot_annot2labels():
"""Test reading labels from parc. by comparing with mne_annot2labels."""
pytest.importorskip("nibabel")
label_fnames = glob.glob(str(label_dir) + "/*.label")
label_fnames.sort()
labels_mne = [read_label(fname) for fname in label_fnames]
labels = read_labels_from_annot("sample", subjects_dir=subjects_dir)
# we have the same result, mne does not fill pos, so ignore it
_assert_labels_equal(labels, labels_mne, ignore_pos=True)
@testing.requires_testing_data
def test_write_labels_to_annot(tmp_path):
"""Test writing FreeSurfer parcellation from labels."""
pytest.importorskip("nibabel")
labels = read_labels_from_annot("sample", subjects_dir=subjects_dir)
# create temporary subjects-dir skeleton
surf_dir = subjects_dir / "sample" / "surf"
temp_surf_dir = tmp_path / "sample" / "surf"
os.makedirs(temp_surf_dir)
shutil.copy(surf_dir / "lh.white", temp_surf_dir)
shutil.copy(surf_dir / "rh.white", temp_surf_dir)
os.makedirs(tmp_path / "sample" / "label")
# test automatic filenames
dst = tmp_path / "sample" / "label" / "%s.%s.annot"
write_labels_to_annot(labels, "sample", "test1", subjects_dir=tmp_path)
assert Path(str(dst) % ("lh", "test1")).exists()
assert Path(str(dst) % ("rh", "test1")).exists()
# lh only
for label in labels:
if label.hemi == "lh":
break
write_labels_to_annot([label], "sample", "test2", subjects_dir=tmp_path)
assert Path(str(dst) % ("lh", "test2")).exists()
assert Path(str(dst) % ("rh", "test2")).exists()
# rh only
for label in labels:
if label.hemi == "rh":
break
write_labels_to_annot([label], "sample", "test3", subjects_dir=tmp_path)
assert Path(str(dst) % ("lh", "test3")).exists()
assert Path(str(dst) % ("rh", "test3")).exists()
# label alone
pytest.raises(
TypeError,
write_labels_to_annot,
labels[0],
"sample",
"test4",
subjects_dir=tmp_path,
)
# write left and right hemi labels with filenames:
fnames = [tmp_path / (hemi + "-myparc") for hemi in ["lh", "rh"]]
for fname in fnames:
with pytest.warns(RuntimeWarning, match="subjects_dir"):
write_labels_to_annot(labels, annot_fname=fname)
# read it back
labels2 = read_labels_from_annot(
"sample", subjects_dir=subjects_dir, annot_fname=fnames[0]
)
labels22 = read_labels_from_annot(
"sample", subjects_dir=subjects_dir, annot_fname=fnames[1]
)
labels2.extend(labels22)
names = [label.name for label in labels2]
for label in labels:
idx = names.index(label.name)
assert_labels_equal(label, labels2[idx])
# same with label-internal colors
for fname in fnames:
write_labels_to_annot(
labels,
"sample",
annot_fname=fname,
overwrite=True,
subjects_dir=subjects_dir,
)
labels3 = read_labels_from_annot(
"sample", subjects_dir=subjects_dir, annot_fname=fnames[0]
)
labels33 = read_labels_from_annot(
"sample", subjects_dir=subjects_dir, annot_fname=fnames[1]
)
labels3.extend(labels33)
names3 = [label.name for label in labels3]
for label in labels:
idx = names3.index(label.name)
assert_labels_equal(label, labels3[idx])
# make sure we can't overwrite things
pytest.raises(
ValueError,
write_labels_to_annot,
labels,
"sample",
annot_fname=fnames[0],
subjects_dir=subjects_dir,
)
# however, this works
write_labels_to_annot(
labels,
"sample",
annot_fname=fnames[0],
overwrite=True,
subjects_dir=subjects_dir,
)
# label without color
labels_ = labels[:]
labels_[0] = labels_[0].copy()
labels_[0].color = None
write_labels_to_annot(
labels_,
"sample",
annot_fname=fnames[0],
overwrite=True,
subjects_dir=subjects_dir,
)
# duplicate color
labels_[0].color = labels_[2].color
pytest.raises(
ValueError,
write_labels_to_annot,
labels_,
"sample",
annot_fname=fnames[0],
overwrite=True,
subjects_dir=subjects_dir,
)
# invalid color inputs
labels_[0].color = (1.1, 1.0, 1.0, 1.0)
pytest.raises(
ValueError,
write_labels_to_annot,
labels_,
"sample",
annot_fname=fnames[0],
overwrite=True,
subjects_dir=subjects_dir,
)
# overlapping labels
labels_ = labels[:]
cuneus_lh = labels[6]
precuneus_lh = labels[50]
labels_.append(precuneus_lh + cuneus_lh)
pytest.raises(
ValueError,
write_labels_to_annot,
labels_,
"sample",
annot_fname=fnames[0],
overwrite=True,
subjects_dir=subjects_dir,
)
# unlabeled vertices
labels_lh = [label for label in labels if label.name.endswith("lh")]
write_labels_to_annot(
labels_lh[1:],
"sample",
annot_fname=fnames[0],
overwrite=True,
subjects_dir=subjects_dir,
)
labels_reloaded = read_labels_from_annot(
"sample", annot_fname=fnames[0], subjects_dir=subjects_dir
)
assert_equal(len(labels_lh), len(labels_reloaded))
label0 = labels_lh[0]
label1 = labels_reloaded[-1]
assert_equal(label1.name, "unknown-lh")
assert np.all(np.isin(label0.vertices, label1.vertices))
# unnamed labels
labels4 = labels[:]
labels4[0].name = None
pytest.raises(ValueError, write_labels_to_annot, labels4, annot_fname=fnames[0])
@testing.requires_testing_data
def test_split_label():
"""Test splitting labels."""
pytest.importorskip("nibabel")
pytest.importorskip("sklearn")
aparc = read_labels_from_annot(
"fsaverage", "aparc", "lh", regexp="lingual", subjects_dir=subjects_dir
)
lingual = aparc[0]
# Test input error
pytest.raises(ValueError, lingual.split, "bad_input_string")
# split with names
parts = ("lingual_post", "lingual_ant")
post, ant = split_label(lingual, parts, subjects_dir=subjects_dir)
# check output names
assert_equal(post.name, parts[0])
assert_equal(ant.name, parts[1])
# check vertices add up
lingual_reconst = post + ant
lingual_reconst.name = lingual.name
lingual_reconst.comment = lingual.comment
lingual_reconst.color = lingual.color
assert_labels_equal(lingual_reconst, lingual)
# compare output of Label.split() method
post1, ant1 = lingual.split(parts, subjects_dir=subjects_dir)
assert_labels_equal(post1, post)
assert_labels_equal(ant1, ant)
# compare fs_like split with freesurfer split
antmost = split_label(lingual, 40, None, subjects_dir, True)[-1]
fs_vert = [
210,
4401,
7405,
12079,
16276,
18956,
26356,
32713,
32716,
32719,
36047,
36050,
42797,
42798,
42799,
59281,
59282,
59283,
71864,
71865,
71866,
71874,
71883,
79901,
79903,
79910,
103024,
107849,
107850,
122928,
139356,
139357,
139373,
139374,
139375,
139376,
139377,
139378,
139381,
149117,
149118,
149120,
149127,
]
assert_array_equal(antmost.vertices, fs_vert)
# check default label name
assert_equal(antmost.name, "lingual_div40-lh")
# Apply contiguous splitting to DMN label from parcellation in Yeo, 2011
label_default_mode = read_label(
subjects_dir / "fsaverage" / "label" / "lh.7Networks_7.label"
)
DMN_sublabels = label_default_mode.split(
parts="contiguous", subject="fsaverage", subjects_dir=subjects_dir
)
assert_equal(
[len(label.vertices) for label in DMN_sublabels],
[16181, 7022, 5965, 5300, 823] + [1] * 23,
)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_stc_to_label():
"""Test stc_to_label."""
pytest.importorskip("nibabel")
pytest.importorskip("sklearn")
src = read_source_spaces(fwd_fname)
src_bad = read_source_spaces(src_bad_fname)
stc = read_source_estimate(stc_fname, "sample")
os.environ["SUBJECTS_DIR"] = str(data_path / "subjects")
labels1 = _stc_to_label(stc, src="sample", smooth=3)
labels2 = _stc_to_label(stc, src=src, smooth=3)
assert_equal(len(labels1), len(labels2))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
with pytest.warns(RuntimeWarning, match="have holes"):
labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True, connected=True)
pytest.raises(ValueError, stc_to_label, stc, "sample", smooth=True, connected=True)
pytest.raises(
RuntimeError, stc_to_label, stc, smooth=True, src=src_bad, connected=True
)
assert_equal(len(labels_lh), 1)
assert_equal(len(labels_rh), 1)
# test getting tris
tris = labels_lh[0].get_tris(src[0]["use_tris"], vertices=stc.vertices[0])
pytest.raises(ValueError, spatial_tris_adjacency, tris, remap_vertices=False)
adjacency = spatial_tris_adjacency(tris, remap_vertices=True)
assert adjacency.shape[0] == len(stc.vertices[0])
# "src" as a subject name
pytest.raises(
TypeError,
stc_to_label,
stc,
src=1,
smooth=False,
connected=False,
subjects_dir=subjects_dir,
)
pytest.raises(
ValueError,
stc_to_label,
stc,
src=SourceSpaces([src[0]]),
smooth=False,
connected=False,
subjects_dir=subjects_dir,
)
pytest.raises(
ValueError,
stc_to_label,
stc,
src="sample",
smooth=False,
connected=True,
subjects_dir=subjects_dir,
)
pytest.raises(
ValueError,
stc_to_label,
stc,
src="sample",
smooth=True,
connected=False,
subjects_dir=subjects_dir,
)
labels_lh, labels_rh = stc_to_label(
stc, src="sample", smooth=False, connected=False, subjects_dir=subjects_dir
)
assert len(labels_lh) > 1
assert len(labels_rh) > 1
# with smooth='patch'
with pytest.warns(RuntimeWarning, match="have holes"):
labels_patch = stc_to_label(stc, src=src, smooth=True)
assert len(labels_patch) == len(labels1)
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_morph():
"""Test inter-subject label morphing."""
pytest.importorskip("nibabel")
label_orig = read_label(real_label_fname)
label_orig.subject = "sample"
# should work for specifying vertices for both hemis, or just the
# hemi of the given label
vals = list()
for grade in [5, [np.arange(10242), np.arange(10242)], np.arange(10242)]:
label = label_orig.copy()
# this should throw an error because the label has all zero values
pytest.raises(ValueError, label.morph, "sample", "fsaverage")
label.values.fill(1)
label = label.morph(None, "fsaverage", 5, grade, subjects_dir, 1)
label = label.morph("fsaverage", "sample", 5, None, subjects_dir, 2)
assert np.isin(label_orig.vertices, label.vertices).all()
assert len(label.vertices) < 3 * len(label_orig.vertices)
vals.append(label.vertices)
assert_array_equal(vals[0], vals[1])
# make sure label smoothing can run
assert_equal(label.subject, "sample")
verts = [np.arange(10242), np.arange(10242)]
for hemi in ["lh", "rh"]:
label.hemi = hemi
with _record_warnings(): # morph map maybe missing
label.morph(None, "fsaverage", 5, verts, subjects_dir, 2)
pytest.raises(TypeError, label.morph, None, 1, 5, verts, subjects_dir, 2)
pytest.raises(
TypeError, label.morph, None, "fsaverage", 5.5, verts, subjects_dir, 2
)
with _record_warnings(): # morph map maybe missing
label.smooth(subjects_dir=subjects_dir) # make sure this runs
@testing.requires_testing_data
def test_grow_labels():
"""Test generation of circular source labels."""
pytest.importorskip("nibabel")
seeds = [0, 50000]
# these were chosen manually in mne_analyze
should_be_in = [[49, 227], [51207, 48794]]
hemis = [0, 1]
names = ["aneurism", "tumor"]
labels = grow_labels("sample", seeds, 3, hemis, subjects_dir, names=names)
tgt_names = ["aneurism-lh", "tumor-rh"]
tgt_hemis = ["lh", "rh"]
for label, seed, hemi, sh, name in zip(
labels, seeds, tgt_hemis, should_be_in, tgt_names
):
assert np.any(label.vertices == seed)
assert np.all(np.isin(sh, label.vertices))
assert_equal(label.hemi, hemi)
assert_equal(label.name, name)
# grow labels with and without overlap
seeds = [57532, [58887, 6304]]
l01, l02 = grow_labels("fsaverage", seeds, 20, [0, 0], subjects_dir)
seeds = [57532, [58887, 6304]]
l11, l12 = grow_labels("fsaverage", seeds, 20, [0, 0], subjects_dir, overlap=False)
# test label naming
assert_equal(l01.name, "Label_0-lh")
assert_equal(l02.name, "Label_1-lh")
assert_equal(l11.name, "Label_0-lh")
assert_equal(l12.name, "Label_1-lh")
# test color assignment
l11_c, l12_c = grow_labels(
"fsaverage", seeds, 20, [0, 0], subjects_dir, overlap=False, colors=None
)
assert_equal(l11_c.color, _n_colors(2)[0])
assert_equal(l12_c.color, _n_colors(2)[1])
lab_colors = np.array([[0, 0, 1, 1], [1, 0, 0, 1]])
l11_c, l12_c = grow_labels(
"fsaverage", seeds, 20, [0, 0], subjects_dir, overlap=False, colors=lab_colors
)
assert_array_equal(l11_c.color, lab_colors[0, :])
assert_array_equal(l12_c.color, lab_colors[1, :])
lab_colors = np.array([0.1, 0.2, 0.3, 0.9])
l11_c, l12_c = grow_labels(
"fsaverage", seeds, 20, [0, 0], subjects_dir, overlap=False, colors=lab_colors
)
assert_array_equal(l11_c.color, lab_colors)
assert_array_equal(l12_c.color, lab_colors)
# make sure set 1 does not overlap
overlap = np.intersect1d(l11.vertices, l12.vertices, True)
assert_array_equal(overlap, [])
# make sure both sets cover the same vertices
l0 = l01 + l02
l1 = l11 + l12
assert_array_equal(l1.vertices, l0.vertices)
# non-overlapping (gh-8848)
for overlap in (False, True):
grow_labels("fsaverage", [0], 1, 1, subjects_dir, overlap=overlap)
@testing.requires_testing_data
def test_random_parcellation():
"""Test generation of random cortical parcellation."""
pytest.importorskip("nibabel")
hemi = "both"
n_parcel = 50
surface = "sphere.reg"
subject = "sample_ds"
rng = np.random.RandomState(0)
# Parcellation
labels = random_parcellation(
subject, n_parcel, hemi, subjects_dir, surface=surface, random_state=rng
)
# test number of labels
assert_equal(len(labels), n_parcel)
if hemi == "both":
hemi = ["lh", "rh"]
hemis = np.atleast_1d(hemi)
for hemi in set(hemis):
vertices_total = []
for label in labels:
if label.hemi == hemi:
# test that labels are not empty
assert len(label.vertices) > 0
# vertices of hemi covered by labels
vertices_total = np.append(vertices_total, label.vertices)
# test that labels don't intersect
assert_equal(len(np.unique(vertices_total)), len(vertices_total))
surf_fname = subjects_dir / subject / "surf" / (hemi + "." + surface)
vert, _ = read_surface(surf_fname)
# Test that labels cover whole surface
assert_array_equal(np.sort(vertices_total), np.arange(len(vert)))
@testing.requires_testing_data
def test_label_sign_flip():
"""Test label sign flip computation."""
src = read_source_spaces(src_fname)
label = Label(vertices=src[0]["vertno"][:5], hemi="lh")
src[0]["nn"][label.vertices] = np.array(
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0, 0, 1.0],
[1.0 / np.sqrt(2), 1.0 / np.sqrt(2), 0.0],
[1.0 / np.sqrt(2), 1.0 / np.sqrt(2), 0.0],
]
)
known_flips = np.array([1, 1, np.nan, 1, 1])
idx = [0, 1, 3, 4] # indices that are usable (third row is orthognoal)
flip = label_sign_flip(label, src)
assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), len(idx))
bi_label = label + Label(vertices=src[1]["vertno"][:5], hemi="rh")
src[1]["nn"][src[1]["vertno"][:5]] = -src[0]["nn"][label.vertices]
flip = label_sign_flip(bi_label, src)
known_flips = np.array([1, 1, np.nan, 1, 1, 1, 1, np.nan, 1, 1])
idx = [0, 1, 3, 4, 5, 6, 8, 9]
assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), 0.0)
src[1]["nn"][src[1]["vertno"][:5]] *= -1
flip = label_sign_flip(bi_label, src)
assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), len(idx))
@testing.requires_testing_data
def test_label_center_of_mass():
"""Test computing the center of mass of a label."""
pytest.importorskip("nibabel")
stc = read_source_estimate(stc_fname)
stc.lh_data[:] = 0
vertex_stc = stc.center_of_mass("sample", subjects_dir=subjects_dir)[0]
assert_equal(vertex_stc, 124791)
label = Label(
stc.vertices[1],
pos=None,
values=stc.rh_data.mean(axis=1),
hemi="rh",
subject="sample",
)
vertex_label = label.center_of_mass(subjects_dir=subjects_dir)
assert_equal(vertex_label, vertex_stc)
labels = read_labels_from_annot(
"sample", parc="aparc.a2009s", subjects_dir=subjects_dir
)
src = read_source_spaces(src_fname)
# Try a couple of random ones, one from left and one from right
# Visually verified in about the right place using mne_analyze
for label, expected in zip(
[labels[2], labels[3], labels[-5]], [141162, 145221, 55979]
):
label.values[:] = -1
pytest.raises(ValueError, label.center_of_mass, subjects_dir=subjects_dir)
label.values[:] = 0
pytest.raises(ValueError, label.center_of_mass, subjects_dir=subjects_dir)
label.values[:] = 1
assert_equal(label.center_of_mass(subjects_dir=subjects_dir), expected)
assert_equal(
label.center_of_mass(
subjects_dir=subjects_dir, restrict_vertices=label.vertices
),
expected,
)
# restrict to source space
idx = 0 if label.hemi == "lh" else 1
# this simple nearest version is not equivalent, but is probably
# close enough for many labels (including the test ones):
pos = label.pos[np.where(label.vertices == expected)[0][0]]
pos = src[idx]["rr"][src[idx]["vertno"]] - pos
pos = np.argmin(np.sum(pos * pos, axis=1))
src_expected = src[idx]["vertno"][pos]
# see if we actually get the same one
src_restrict = np.intersect1d(label.vertices, src[idx]["vertno"])
assert_equal(
label.center_of_mass(
subjects_dir=subjects_dir, restrict_vertices=src_restrict
),
src_expected,
)
assert_equal(
label.center_of_mass(subjects_dir=subjects_dir, restrict_vertices=src),
src_expected,
)
# degenerate cases
pytest.raises(
ValueError,
label.center_of_mass,
subjects_dir=subjects_dir,
restrict_vertices="foo",
)
pytest.raises(TypeError, label.center_of_mass, subjects_dir=subjects_dir, surf=1)
pytest.raises(OSError, label.center_of_mass, subjects_dir=subjects_dir, surf="foo")
@testing.requires_testing_data
def test_select_sources():
"""Test the selection of sources for simulation."""
pytest.importorskip("nibabel")
subject = "sample"
label_file = subjects_dir / subject / "label" / "aparc" / "temporalpole-rh.label"
# Regardless of other parameters, using extent 0 should always yield a
# a single source.
tp_label = read_label(label_file)
tp_label.values[:] = 1
labels = ["lh", tp_label]
locations = ["random", "center"]
for label, location in product(labels, locations):
label = select_sources(
subject, label, location, extent=0, subjects_dir=subjects_dir
)
assert len(label.vertices) == 1
# As we increase the extent, the new region should contain the previous
# one.
label = select_sources(subject, "lh", 0, extent=0, subjects_dir=subjects_dir)
for extent in range(1, 3):
new_label = select_sources(
subject, "lh", 0, extent=extent * 2, subjects_dir=subjects_dir
)
assert set(new_label.vertices) > set(label.vertices)
assert new_label.hemi == "lh"
label = new_label
# With a large enough extent and not allowing growing outside the label,
# every vertex of the label should be in the region.
label = select_sources(
subject, tp_label, 0, extent=30, grow_outside=False, subjects_dir=subjects_dir
)
assert set(label.vertices) == set(tp_label.vertices)
# Without this restriction, we should get new vertices.
label = select_sources(
subject, tp_label, 0, extent=30, grow_outside=True, subjects_dir=subjects_dir
)
assert set(label.vertices) > set(tp_label.vertices)
# Other parameters are taken into account.
label = select_sources(
subject,
tp_label,
0,
extent=10,
grow_outside=False,
subjects_dir=subjects_dir,
name="mne",
)
assert label.name == "mne"
assert label.hemi == "rh"
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname, area",
[
(real_label_fname, 0.657e-3),
(v1_label_fname, 3.245e-3),
],
)
def test_label_geometry(fname, area):
"""Test label geometric computations."""
pytest.importorskip("nibabel")
label = read_label(fname, subject="sample")
got_area = label.compute_area(subjects_dir=subjects_dir)
assert_allclose(got_area, area, rtol=1e-3)
# using a sparse label emits a warning
label_sparse = label.restrict(src_fname)
assert 0 < len(label_sparse.vertices) < len(label.vertices)
with pytest.warns(RuntimeWarning, match="No complete triangles"):
assert label_sparse.compute_area(subjects_dir=subjects_dir) == 0.0
dist, outside = label.distances_to_outside(subjects_dir=subjects_dir)
rr, tris = read_surface(subjects_dir / "sample" / "surf" / "lh.white")
mask = np.zeros(len(rr), bool)
mask[label.vertices] = 1
border_mask = np.isin(label.vertices, _mesh_borders(tris, mask))
# The distances of the border vertices is smaller than that of non-border
lo, mi, hi = np.percentile(dist[border_mask], (0, 50, 100))
assert 0.1e-3 < lo < 0.5e-3 < mi < 1.0e-3 < hi < 2.0e-3
lo, mi, hi = np.percentile(dist[~border_mask], (0, 50, 100))
assert 0.5e-3 < lo < 1.0e-3 < mi < 9.0e-3 < hi < 25e-3
# check that the distances are close but uniformly <= than euclidean
assert not np.isin(outside, label.vertices).any()
border_dist = dist[border_mask]
border_euc = 1e-3 * np.linalg.norm(
rr[label.vertices[border_mask]] - rr[outside[border_mask]], axis=1
)
assert_allclose(border_dist, border_euc, atol=1e-4)
inside_dist = dist[~border_mask]
inside_euc = 1e-3 * np.linalg.norm(
rr[label.vertices[~border_mask]] - rr[outside[~border_mask]], axis=1
)
assert_array_less(inside_euc, inside_dist)
assert_array_less(0.25 * inside_dist, inside_euc)