[7f9fb8]: / mne / preprocessing / tests / test_interpolate.py

Download this file

205 lines (180 with data), 7.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import itertools
from pathlib import Path
import numpy as np
import pytest
from mne import Epochs, create_info, io, pick_types, read_events
from mne.channels import make_standard_montage
from mne.preprocessing import equalize_bads, interpolate_bridged_electrodes
from mne.preprocessing.interpolate import _find_centroid_sphere
from mne.transforms import _cart_to_sph
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = base_dir / "test_raw.fif"
event_name = base_dir / "test-eve.fif"
raw_fname_ctf = base_dir / "test_ctf_raw.fif"
event_id, tmin, tmax = 1, -0.2, 0.5
event_id_2 = 2
def _load_data():
"""Load data."""
# It is more memory efficient to load data in a separate
# function so it's loaded on-demand
raw = io.read_raw_fif(raw_fname).pick(["eeg", "stim"])
events = read_events(event_name)
# subselect channels for speed
picks = pick_types(raw.info, meg=False, eeg=True, exclude=[])[:15]
epochs = Epochs(
raw,
events,
event_id,
tmin,
tmax,
picks=picks,
preload=True,
reject=dict(eeg=80e-6),
)
evoked = epochs.average()
return raw.load_data(), epochs.load_data(), evoked
@pytest.mark.parametrize("interp_thresh", [0.0, 0.5, 1.0])
@pytest.mark.parametrize("inst_type", ["raw", "epochs", "evoked"])
def test_equalize_bads(interp_thresh, inst_type):
"""Test equalize_bads function."""
raw, epochs, evoked = _load_data()
if inst_type == "raw":
insts = [raw.copy().crop(0, 1), raw.copy().crop(0, 2)]
elif inst_type == "epochs":
insts = [epochs.copy()[:1], epochs.copy()[:2]]
else:
insts = [evoked.copy().crop(0, 0.1), raw.copy().crop(0, 0.2)]
with pytest.raises(ValueError, match="between 0"):
equalize_bads(insts, interp_thresh=2.0)
bads = insts[0].copy().pick("eeg").ch_names[:3]
insts[0].info["bads"] = bads[:2]
insts[1].info["bads"] = bads[1:]
insts_ok = equalize_bads(insts, interp_thresh=interp_thresh)
if interp_thresh == 0:
bads_ok = []
elif interp_thresh == 1:
bads_ok = bads
else: # interp_thresh == 0.5
bads_ok = bads[1:]
for inst in insts_ok:
assert set(inst.info["bads"]) == set(bads_ok)
def test_interpolate_bridged_electrodes():
"""Test interpolate_bridged_electrodes function."""
raw, epochs, evoked = _load_data()
for inst in (raw, epochs, evoked):
idx0 = inst.ch_names.index("EEG 001")
idx1 = inst.ch_names.index("EEG 002")
ch_names_orig = inst.ch_names.copy()
bads_orig = inst.info["bads"].copy()
inst2 = inst.copy()
inst2.info["bads"] = ["EEG 001", "EEG 002"]
inst2.interpolate_bads()
data_interp_reg = inst2.get_data(picks=["EEG 001", "EEG 002"])
inst = interpolate_bridged_electrodes(inst, [(idx0, idx1)])
data_interp = inst.get_data(picks=["EEG 001", "EEG 002"])
assert not any(["virtual" in ch for ch in inst.ch_names])
assert inst.ch_names == ch_names_orig
assert inst.info["bads"] == bads_orig
# check closer to regular interpolation than original data
assert 1e-6 < np.mean(np.abs(data_interp - data_interp_reg)) < 5.4e-5
for inst in (raw, epochs, evoked):
idx0 = inst.ch_names.index("EEG 001")
idx1 = inst.ch_names.index("EEG 002")
idx2 = inst.ch_names.index("EEG 003")
ch_names_orig = inst.ch_names.copy()
bads_orig = inst.info["bads"].copy()
inst2 = inst.copy()
inst2.info["bads"] = ["EEG 001", "EEG 002", "EEG 003"]
inst2.interpolate_bads()
data_interp_reg = inst2.get_data(picks=["EEG 001", "EEG 002", "EEG 003"])
inst = interpolate_bridged_electrodes(
inst, [(idx0, idx1), (idx0, idx2), (idx1, idx2)]
)
data_interp = inst.get_data(picks=["EEG 001", "EEG 002", "EEG 003"])
assert not any(["virtual" in ch for ch in inst.ch_names])
assert inst.ch_names == ch_names_orig
assert inst.info["bads"] == bads_orig
# check closer to regular interpolation than original data
assert 1e-6 < np.mean(np.abs(data_interp - data_interp_reg)) < 5.4e-5
# test bad_limit
montage = make_standard_montage("standard_1020")
ch_names = [
ch
for ch in montage.ch_names
if ch not in ["P7", "P8", "T3", "T4", "T5", "T4", "T6"]
]
info = create_info(ch_names, sfreq=1024, ch_types="eeg")
data = np.random.randn(len(ch_names), 1024)
data[:5, :] = np.ones((5, 1024))
raw = io.RawArray(data, info)
raw.set_montage("standard_1020")
bridged_idx = list(itertools.combinations(range(5), 2))
with pytest.raises(
RuntimeError,
match="The channels Fp1, Fpz, Fp2, AF9, AF7 are bridged "
"together and form a large area of bridged electrodes.",
):
interpolate_bridged_electrodes(raw, bridged_idx, bad_limit=4)
# increase the limit to prevent raising
interpolate_bridged_electrodes(raw, bridged_idx, bad_limit=5)
# invalid argument
with pytest.raises(
ValueError, match="Argument 'bad_limit' should be a strictly positive integer."
):
interpolate_bridged_electrodes(raw, bridged_idx, bad_limit=-4)
def test_find_centroid():
"""Test that the centroid is correct."""
montage = make_standard_montage("standard_1020")
ch_names = [
ch
for ch in montage.ch_names
if ch not in ["P7", "P8", "T3", "T4", "T5", "T4", "T6"]
]
info = create_info(ch_names, sfreq=1024, ch_types="eeg")
info.set_montage(montage)
montage = info.get_montage()
pos = montage.get_positions()
assert pos["coord_frame"] == "head"
# look for centroid between T7 and TP7, an average in spehrical coordinate
# fails and places the average on the wrong side of the head between T8 and
# TP8
ch_names = ["T7", "TP7"]
pos_centroid = _find_centroid_sphere(pos["ch_pos"], ch_names)
_check_centroid_position(pos, ch_names, pos_centroid)
# check other positions
pairs = [
("CPz", "CP2"),
("CPz", "Cz"),
("Fpz", "AFz"),
("AF7", "F7"),
("O1", "O2"),
("M2", "A2"),
("P5", "P9"),
]
for ch_names in pairs:
pos_centroid = _find_centroid_sphere(pos["ch_pos"], ch_names)
_check_centroid_position(pos, ch_names, pos_centroid)
triplets = [("CPz", "Cz", "FCz"), ("AF9", "Fpz", "AF10"), ("FT10", "FT8", "T10")]
for ch_names in triplets:
pos_centroid = _find_centroid_sphere(pos["ch_pos"], ch_names)
_check_centroid_position(pos, ch_names, pos_centroid)
def _check_centroid_position(pos, ch_names, pos_centroid):
"""Check the centroid distance.
The cartesian average should be distanced from pos_centroid by the
difference between the radii.
"""
radii = list()
cartesian_positions = np.zeros((len(ch_names), 3))
for i, ch in enumerate(ch_names):
radii.append(_cart_to_sph(pos["ch_pos"][ch])[0, 0])
cartesian_positions[i, :] = pos["ch_pos"][ch]
avg_radius = np.average(radii)
avg_cartesian_position = np.average(cartesian_positions, axis=0)
avg_cartesian_position_radius = _cart_to_sph(avg_cartesian_position)[0, 0]
radius_diff = np.abs(avg_radius - avg_cartesian_position_radius)
# distance
distance = np.linalg.norm(pos_centroid - avg_cartesian_position)
assert np.isclose(radius_diff, distance, atol=1e-6)