[7f9fb8]: / mne / preprocessing / tests / test_annotate_nan.py

Download this file

52 lines (40 with data), 1.6 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_array_equal
import mne
from mne.preprocessing import annotate_nan
raw_fname = Path(__file__).parents[2] / "io" / "tests" / "data" / "test_raw.fif"
@pytest.mark.parametrize("meas_date", (None, "orig"))
def test_annotate_nan(meas_date):
"""Tests automatic NaN annotation generation."""
# Load data
raw = mne.io.read_raw_fif(raw_fname)
sfreq = 100
raw.resample(sfreq)
if meas_date is None:
raw.set_meas_date(None)
# No Nans, annotate returns empty annots
assert not np.isnan(raw._data).any()
annot_nan = annotate_nan(raw)
assert len(annot_nan) == 0
# but orig_time should be meas_date
assert annot_nan.orig_time == raw.info["meas_date"]
# insert block of NaN from 1s to 3s for one channel
nan_ch_idx = 0
raw._data[nan_ch_idx, 1 * sfreq : 3 * sfreq] = np.nan
# annotate_nan accurately finds this
annot_nan = annotate_nan(raw)
onset = np.array([1.0])
if raw.info["meas_date"]:
onset += raw.first_time
assert_array_equal(annot_nan.onset, onset)
assert_array_equal(annot_nan.duration, np.array([2]))
assert_array_equal(annot_nan.description, np.array(["BAD_NAN"]))
assert len(annot_nan.ch_names) == 1
assert annot_nan.ch_names[0] == (raw.ch_names[nan_ch_idx],)
# Set the NaN annotations to the raw object
raw.set_annotations(annot_nan)