[7f9fb8]: / mne / preprocessing / interpolate.py

Download this file

232 lines (197 with data), 8.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""Tools for data interpolation."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from itertools import chain
import numpy as np
from scipy.sparse.csgraph import connected_components
from .._fiff.meas_info import create_info
from ..epochs import BaseEpochs, EpochsArray
from ..evoked import Evoked, EvokedArray
from ..io import BaseRaw, RawArray
from ..transforms import _cart_to_sph, _sph_to_cart
from ..utils import _ensure_int, _validate_type
def equalize_bads(insts, interp_thresh=1.0, copy=True):
"""Interpolate or mark bads consistently for a list of instances.
Once called on a list of instances, the instances can be concatenated
as they will have the same list of bad channels.
Parameters
----------
insts : list
The list of instances (Evoked, Epochs or Raw) to consider
for interpolation. Each instance should have marked channels.
interp_thresh : float
A float between 0 and 1 (default) that specifies the fraction of time
a channel should be good to be eventually interpolated for certain
instances. For example if 0.5, a channel which is good at least half
of the time will be interpolated in the instances where it is marked
as bad. If 1 then channels will never be interpolated and if 0 all bad
channels will be systematically interpolated.
copy : bool
If True then the returned instances will be copies.
Returns
-------
insts_bads : list
The list of instances, with the same channel(s) marked as bad in all of
them, possibly with some formerly bad channels interpolated.
"""
if not 0 <= interp_thresh <= 1:
raise ValueError(f"interp_thresh must be between 0 and 1, got {interp_thresh}")
all_bads = list(set(chain.from_iterable([inst.info["bads"] for inst in insts])))
if isinstance(insts[0], BaseEpochs):
durations = [len(inst) * len(inst.times) for inst in insts]
else:
durations = [len(inst.times) for inst in insts]
good_times = []
for ch_name in all_bads:
good_times.append(
sum(
durations[k]
for k, inst in enumerate(insts)
if ch_name not in inst.info["bads"]
)
/ np.sum(durations)
)
bads_keep = [ch for k, ch in enumerate(all_bads) if good_times[k] < interp_thresh]
if copy:
insts = [inst.copy() for inst in insts]
for inst in insts:
if len(set(inst.info["bads"]) - set(bads_keep)):
inst.interpolate_bads(exclude=bads_keep)
inst.info["bads"] = bads_keep
return insts
def interpolate_bridged_electrodes(inst, bridged_idx, bad_limit=4):
"""Interpolate bridged electrode pairs.
Because bridged electrodes contain brain signal, it's just that the
signal is spatially smeared between the two electrodes, we can
make a virtual channel midway between the bridged pairs and use
that to aid in interpolation rather than completely discarding the
data from the two channels.
Parameters
----------
inst : instance of Epochs, Evoked, or Raw
The data object with channels that are to be interpolated.
bridged_idx : list of tuple
The indices of channels marked as bridged with each bridged
pair stored as a tuple.
bad_limit : int
The maximum number of electrodes that can be bridged together
(included) and interpolated. Above this number, an error will be
raised.
.. versionadded:: 1.2
Returns
-------
inst : instance of Epochs, Evoked, or Raw
The modified data object.
See Also
--------
mne.preprocessing.compute_bridged_electrodes
"""
_validate_type(inst, (BaseRaw, BaseEpochs, Evoked))
bad_limit = _ensure_int(bad_limit, "bad_limit")
if bad_limit <= 0:
raise ValueError(
"Argument 'bad_limit' should be a strictly positive "
f"integer. Provided {bad_limit} is invalid."
)
montage = inst.get_montage()
if montage is None:
raise RuntimeError("No channel positions found in ``inst``")
pos = montage.get_positions()
if pos["coord_frame"] != "head":
raise RuntimeError(
f"Montage channel positions must be in ``head`` got {pos['coord_frame']}"
)
# store bads orig to put back at the end
bads_orig = inst.info["bads"]
inst.info["bads"] = list()
# look for group of bad channels
nodes = sorted(set(chain(*bridged_idx)))
G_dense = np.zeros((len(nodes), len(nodes)))
# fill the edges with a weight of 1
for bridge in bridged_idx:
idx0 = np.searchsorted(nodes, bridge[0])
idx1 = np.searchsorted(nodes, bridge[1])
G_dense[idx0, idx1] = 1
G_dense[idx1, idx0] = 1
# look for connected components
_, labels = connected_components(G_dense, directed=False)
groups_idx = [[nodes[j] for j in np.where(labels == k)[0]] for k in set(labels)]
groups_names = [
[inst.info.ch_names[k] for k in group_idx] for group_idx in groups_idx
]
# warn for all bridged areas that include too many electrodes
for group_names in groups_names:
if len(group_names) > bad_limit:
raise RuntimeError(
f"The channels {', '.join(group_names)} are bridged together "
"and form a large area of bridged electrodes. Interpolation "
"might be inaccurate."
)
# make virtual channels
virtual_chs = dict()
bads = set()
for k, group_idx in enumerate(groups_idx):
group_names = [inst.info.ch_names[k] for k in group_idx]
bads = bads.union(group_names)
# compute centroid position in spherical "head" coordinates
pos_virtual = _find_centroid_sphere(pos["ch_pos"], group_names)
# create the virtual channel info and set the position
virtual_info = create_info([f"virtual {k + 1}"], inst.info["sfreq"], "eeg")
virtual_info["chs"][0]["loc"][:3] = pos_virtual
# create virtual channel
data = inst.get_data(picks=group_names)
if isinstance(inst, BaseRaw):
data = np.average(data, axis=0).reshape(1, -1)
virtual_ch = RawArray(data, virtual_info, first_samp=inst.first_samp)
elif isinstance(inst, BaseEpochs):
data = np.average(data, axis=1).reshape(len(data), 1, -1)
virtual_ch = EpochsArray(data, virtual_info, tmin=inst.tmin)
else: # evoked
data = np.average(data, axis=0).reshape(1, -1)
virtual_ch = EvokedArray(
np.average(data, axis=0).reshape(1, -1),
virtual_info,
tmin=inst.tmin,
nave=inst.nave,
kind=inst.kind,
)
virtual_chs[f"virtual {k + 1}"] = virtual_ch
# add the virtual channels
inst.add_channels(list(virtual_chs.values()), force_update_info=True)
# use the virtual channels to interpolate
inst.info["bads"] = list(bads)
inst.interpolate_bads()
# drop virtual channels
inst.drop_channels(list(virtual_chs.keys()))
inst.info["bads"] = bads_orig
return inst
def _find_centroid_sphere(ch_pos, group_names):
"""Compute the centroid position between N electrodes.
The centroid should be determined in spherical "head" coordinates which is
more accurante than cutting through the scalp by averaging in cartesian
coordinates.
A simple way is to average the location in cartesian coordinate, convert
to spehrical coordinate and replace the radius with the average radius of
the N points in spherical coordinates.
Parameters
----------
ch_pos : OrderedDict
The position of all channels in cartesian coordinates.
group_names : list | tuple
The name of the N electrodes used to determine the centroid.
Returns
-------
pos_centroid : array of shape (3,)
The position of the centroid in cartesian coordinates.
"""
cartesian_positions = np.array([ch_pos[ch_name] for ch_name in group_names])
sphere_positions = _cart_to_sph(cartesian_positions)
cartesian_pos_centroid = np.average(cartesian_positions, axis=0)
sphere_pos_centroid = _cart_to_sph(cartesian_pos_centroid)
# average the radius and overwrite it
avg_radius = np.average(sphere_positions, axis=0)[0]
sphere_pos_centroid[0, 0] = avg_radius
# convert back to cartesian
pos_centroid = _sph_to_cart(sphere_pos_centroid)[0, :]
return pos_centroid