[7f9fb8]: / mne / preprocessing / ieeg / tests / test_volume.py

Download this file

130 lines (116 with data), 4.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""Test ieeg volume functions."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from mne.channels import make_dig_montage
from mne.coreg import get_mni_fiducials
from mne.datasets import testing
from mne.preprocessing.ieeg import make_montage_volume, warp_montage
from mne.transforms import apply_trans, compute_volume_registration
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
@pytest.mark.slowtest
@testing.requires_testing_data
def test_warp_montage():
"""Test warping an montage based on intracranial electrode positions."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("dipy")
subject_brain = nib.load(subjects_dir / "sample" / "mri" / "brain.mgz")
template_brain = nib.load(subjects_dir / "fsaverage" / "mri" / "brain.mgz")
zooms = dict(translation=10, rigid=10, sdr=10)
reg_affine, sdr_morph = compute_volume_registration(
subject_brain,
template_brain,
zooms=zooms,
niter=[3, 3, 3],
pipeline=("translation", "rigid", "sdr"),
)
# make an info object with three channels with positions
ch_coords = np.array(
[
[-8.7040273, 17.99938754, 10.29604017],
[-14.03007764, 19.69978401, 12.07236939],
[-21.1130506, 21.98310911, 13.25658887],
]
)
ch_pos = dict(zip(["1", "2", "3"], ch_coords / 1000)) # mm -> m
lpa, nasion, rpa = get_mni_fiducials("sample", subjects_dir)
montage = make_dig_montage(
ch_pos, lpa=lpa["r"], nasion=nasion["r"], rpa=rpa["r"], coord_frame="mri"
)
montage_warped = warp_montage(
montage, subject_brain, template_brain, reg_affine, sdr_morph
)
# checked with nilearn plot from `tut-ieeg-localize`
# check montage in surface RAS
ground_truth_warped = np.array(
[
[-0.009, -0.00133333, -0.033],
[-0.01445455, 0.00127273, -0.03163636],
[-0.022, 0.00285714, -0.031],
]
)
for i, d in enumerate(montage_warped.dig):
assert (
np.linalg.norm(d["r"] - ground_truth_warped[i]) # off by less than 1 cm
< 0.01
)
bad_montage = montage.copy()
for d in bad_montage.dig:
d["coord_frame"] = 99
with pytest.raises(RuntimeError, match="Coordinate frame not supported"):
warp_montage(bad_montage, subject_brain, template_brain, reg_affine, sdr_morph)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_make_montage_volume():
"""Test making a montage image based on intracranial electrodes."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("dipy")
subject_brain = nib.load(subjects_dir / "sample" / "mri" / "brain.mgz")
# make an info object with three channels with positions
ch_coords = np.array(
[
[-8.7040273, 17.99938754, 10.29604017],
[-14.03007764, 19.69978401, 12.07236939],
[-21.1130506, 21.98310911, 13.25658887],
]
)
ch_pos = dict(zip(["1", "2", "3"], ch_coords / 1000)) # mm -> m
lpa, nasion, rpa = get_mni_fiducials("sample", subjects_dir)
montage = make_dig_montage(
ch_pos, lpa=lpa["r"], nasion=nasion["r"], rpa=rpa["r"], coord_frame="mri"
)
# make fake image based on the info
CT_data = np.zeros(subject_brain.shape)
# convert to voxels
ch_coords_vox = apply_trans(
np.linalg.inv(subject_brain.header.get_vox2ras_tkr()), ch_coords
)
for x, y, z in ch_coords_vox.round().astype(int):
# make electrode contact hyperintensities
# first, make the surrounding voxels high intensity
CT_data[x - 1 : x + 2, y - 1 : y + 2, z - 1 : z + 2] = 500
# then, make the center even higher intensity
CT_data[x, y, z] = 1000
CT = nib.Nifti1Image(CT_data, subject_brain.affine)
elec_image = make_montage_volume(montage, CT, thresh=0.25)
elec_image_data = np.array(elec_image.dataobj)
# check elec image, center should be no more than half a voxel away
for i in range(len(montage.ch_names)):
assert (
np.linalg.norm(
np.array(np.where(elec_image_data == i + 1)).mean(axis=1)
- ch_coords_vox[i]
)
< 0.5
)
# test inputs
with pytest.raises(ValueError, match="`thresh` must be between 0 and 1"):
make_montage_volume(montage, CT, thresh=11.0)
bad_montage = montage.copy()
for d in bad_montage.dig:
d["coord_frame"] = 99
with pytest.raises(RuntimeError, match="Coordinate frame not supported"):
make_montage_volume(bad_montage, CT)