# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from .._fiff.pick import _picks_to_idx, pick_info
from ..defaults import _BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT, _INTERPOLATION_DEFAULT
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..io import BaseRaw
from ..minimum_norm.inverse import _needs_eeg_average_ref_proj
from ..utils import (
_check_fname,
_check_option,
_check_preload,
_import_h5io_funcs,
_validate_type,
copy_function_doc_to_method_doc,
fill_doc,
verbose,
)
from ..viz import plot_regression_weights
@verbose
def regress_artifact(
inst,
picks=None,
*,
exclude="bads",
picks_artifact="eog",
betas=None,
proj=True,
copy=True,
verbose=None,
):
"""Remove artifacts using regression based on reference channels.
Parameters
----------
inst : instance of Epochs | Raw
The instance to process.
%(picks_good_data)s
exclude : list | 'bads'
List of channels to exclude from the regression, only used when picking
based on types (e.g., exclude="bads" when picks="meg").
Specify ``'bads'`` (the default) to exclude all channels marked as bad.
.. versionadded:: 1.2
picks_artifact : array-like | str
Channel picks to use as predictor/explanatory variables capturing
the artifact of interest (default is "eog").
betas : ndarray, shape (n_picks, n_picks_ref) | None
The regression coefficients to use. If None (default), they will be
estimated from the data.
proj : bool
Whether to automatically apply SSP projection vectors before performing
the regression. Default is ``True``.
copy : bool
If True (default), copy the instance before modifying it.
%(verbose)s
Returns
-------
inst : instance of Epochs | Raw
The processed data.
betas : ndarray, shape (n_picks, n_picks_ref)
The betas used during regression.
Notes
-----
To implement the method outlined in :footcite:`GrattonEtAl1983`,
remove the evoked response from epochs before estimating the
regression coefficients, then apply those regression coefficients to the
original data in two calls like (here for a single-condition ``epochs``
only):
>>> epochs_no_ave = epochs.copy().subtract_evoked() # doctest:+SKIP
>>> _, betas = mne.preprocessing.regress(epochs_no_ave) # doctest:+SKIP
>>> epochs_clean, _ = mne.preprocessing.regress(epochs, betas=betas) # doctest:+SKIP
References
----------
.. footbibliography::
""" # noqa: E501
if betas is None:
model = EOGRegression(
picks=picks, exclude=exclude, picks_artifact=picks_artifact, proj=proj
)
model.fit(inst)
else:
# Create an EOGRegression object and load the given betas into it.
picks = _picks_to_idx(inst.info, picks, exclude=exclude, none="data")
picks_artifact = _picks_to_idx(inst.info, picks_artifact)
want_betas_shape = (len(picks), len(picks_artifact))
_check_option("betas.shape", betas.shape, (want_betas_shape,))
model = EOGRegression(picks, picks_artifact, proj=proj)
model.info_ = inst.info.copy()
model.coef_ = betas
return model.apply(inst, copy=copy), model.coef_
@fill_doc
class EOGRegression:
"""Remove EOG artifact signals from other channels by regression.
Employs linear regression to remove signals captured by some channels,
typically EOG, as described in :footcite:`GrattonEtAl1983`. You can also
choose to fit the regression coefficients on evoked blink/saccade data and
then apply them to continuous data, as described in
:footcite:`CroftBarry2000`.
Parameters
----------
%(picks_good_data)s
exclude : list | 'bads'
List of channels to exclude from the regression, only used when picking
based on types (e.g., exclude="bads" when picks="meg").
Specify ``'bads'`` (the default) to exclude all channels marked as bad.
picks_artifact : array-like | str
Channel picks to use as predictor/explanatory variables capturing
the artifact of interest (default is "eog").
proj : bool
Whether to automatically apply SSP projection vectors before fitting
and applying the regression. Default is ``True``.
Attributes
----------
coef_ : ndarray, shape (n, n)
The regression coefficients. Only available after fitting.
info_ : Info
Channel information corresponding to the regression weights.
Only available after fitting.
picks : array-like | str
Channels to perform the regression on.
exclude : list | 'bads'
Channels to exclude from the regression.
picks_artifact : array-like | str
The channels designated as containing the artifacts of interest.
proj : bool
Whether projections will be applied before performing the regression.
Notes
-----
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
def __init__(self, picks=None, exclude="bads", picks_artifact="eog", proj=True):
self.picks = picks
self.exclude = exclude
self.picks_artifact = picks_artifact
self.proj = proj
def fit(self, inst):
"""Fit EOG regression coefficients.
Parameters
----------
inst : Raw | Epochs | Evoked
The data on which the EOG regression weights should be fitted.
Returns
-------
self : EOGRegression
The fitted ``EOGRegression`` object. The regression coefficients
are available as the ``.coef_`` and ``.intercept_`` attributes.
Notes
-----
If your data contains EEG channels, make sure to apply the desired
reference (see :func:`mne.set_eeg_reference`) before performing EOG
regression.
"""
picks, picks_artifact = self._check_inst(inst)
# Calculate regression coefficients. Add a row of ones to also fit the
# intercept.
_check_preload(inst, "artifact regression")
artifact_data = inst._data[..., picks_artifact, :]
ref_data = artifact_data - np.mean(artifact_data, axis=-1, keepdims=True)
if ref_data.ndim == 3:
ref_data = ref_data.transpose(1, 0, 2)
ref_data = ref_data.reshape(len(picks_artifact), -1)
cov_ref = ref_data @ ref_data.T
# Process each channel separately to reduce memory load
coef = np.zeros((len(picks), len(picks_artifact)))
for pi, pick in enumerate(picks):
this_data = inst._data[..., pick, :] # view
# Subtract mean over time from every trial/channel
cov_data = this_data - np.mean(this_data, -1, keepdims=True)
cov_data = cov_data.reshape(1, -1)
# Perform the linear regression
coef[pi] = np.linalg.solve(cov_ref, ref_data @ cov_data.T).T[0]
# Store relevant parameters in the object.
self.coef_ = coef
self.info_ = inst.info.copy()
return self
@fill_doc
def apply(self, inst, copy=True):
"""Apply the regression coefficients to data.
Parameters
----------
inst : Raw | Epochs | Evoked
The data on which to apply the regression.
%(copy_df)s
Returns
-------
inst : Raw | Epochs | Evoked
A version of the data with the artifact channels regressed out.
Notes
-----
Only works after ``.fit()`` has been used.
References
----------
.. footbibliography::
"""
if copy:
inst = inst.copy()
picks, picks_artifact = self._check_inst(inst)
# Check that the channels are compatible with the regression weights.
ref_picks = _picks_to_idx(
self.info_, self.picks, none="data", exclude=self.exclude
)
ref_picks_artifact = _picks_to_idx(self.info_, self.picks_artifact)
if any(
inst.ch_names[ch1] != self.info_["chs"][ch2]["ch_name"]
for ch1, ch2 in zip(picks, ref_picks)
):
raise ValueError(
"Selected data channels are not compatible with "
"the regression weights. Make sure that all data "
"channels are present and in the correct order."
)
if any(
inst.ch_names[ch1] != self.info_["chs"][ch2]["ch_name"]
for ch1, ch2 in zip(picks_artifact, ref_picks_artifact)
):
raise ValueError(
"Selected artifact channels are not compatible "
"with the regression weights. Make sure that all "
"artifact channels are present and in the "
"correct order."
)
_check_preload(inst, "artifact regression")
artifact_data = inst._data[..., picks_artifact, :]
ref_data = artifact_data - np.mean(artifact_data, -1, keepdims=True)
for pi, pick in enumerate(picks):
this_data = inst._data[..., pick, :] # view
this_data -= (self.coef_[pi] @ ref_data).reshape(this_data.shape)
return inst
@copy_function_doc_to_method_doc(plot_regression_weights)
def plot(
self,
ch_type=None,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
axes=None,
colorbar=True,
cbar_fmt="%1.1e",
title=None,
show=True,
):
return plot_regression_weights(
self,
ch_type=ch_type,
sensors=sensors,
show_names=show_names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
axes=axes,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
title=title,
show=show,
)
def _check_inst(self, inst):
"""Perform some sanity checks on the input."""
_validate_type(
inst, (BaseRaw, BaseEpochs, Evoked), "inst", "Raw, Epochs, Evoked"
)
picks = _picks_to_idx(inst.info, self.picks, none="data", exclude=self.exclude)
picks_artifact = _picks_to_idx(inst.info, self.picks_artifact)
all_picks = np.unique(np.concatenate([picks, picks_artifact]))
use_info = pick_info(inst.info, all_picks)
del all_picks
if _needs_eeg_average_ref_proj(use_info):
raise RuntimeError(
"No average reference for the EEG channels has been "
"set. Use inst.set_eeg_reference(projection=True) to do so."
)
if self.proj and not inst.proj:
inst.apply_proj()
if not inst.proj and len(use_info.get("projs", [])) > 0:
raise RuntimeError(
"Projections need to be applied before "
"regression can be performed. Use the "
".apply_proj() method to do so."
)
return picks, picks_artifact
def __repr__(self):
"""Produce a string representation of this object."""
s = "<EOGRegression | "
if hasattr(self, "coef_"):
n_art = self.coef_.shape[1]
plural = "s" if n_art > 1 else ""
s += f"fitted to {n_art} artifact channel{plural}>"
else:
s += "not fitted>"
return s
@fill_doc
def save(self, fname, overwrite=False):
"""Save the regression model to an HDF5 file.
Parameters
----------
fname : path-like
The file to write the regression weights to. Should end in ``.h5``.
%(overwrite)s
"""
_, write_hdf5 = _import_h5io_funcs()
_validate_type(fname, "path-like", "fname")
fname = _check_fname(fname, overwrite=overwrite, name="fname")
write_hdf5(fname, self.__dict__, overwrite=overwrite)
def read_eog_regression(fname):
"""Read an EOG regression model from an HDF5 file.
Parameters
----------
fname : path-like
The file to read the regression model from. Should end in ``.h5``.
Returns
-------
model : EOGRegression
The regression model read from the file.
Notes
-----
.. versionadded:: 1.2
"""
read_hdf5, _ = _import_h5io_funcs()
_validate_type(fname, "path-like", "fname")
fname = _check_fname(fname, overwrite="read", must_exist=True, name="fname")
model = EOGRegression()
model.__dict__.update(read_hdf5(fname))
return model