# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from collections import defaultdict
from functools import partial
import numpy as np
from scipy.optimize import minimize
from .._fiff.pick import pick_info, pick_types
from .._fiff.tag import _coil_trans_to_loc, _loc_to_coil_trans
from ..bem import _check_origin
from ..io import BaseRaw
from ..transforms import _find_vector_rotation
from ..utils import (
_check_fname,
_check_option,
_clean_names,
_ensure_int,
_pl,
_reg_pinv,
_validate_type,
check_fname,
logger,
verbose,
)
from .maxwell import (
_col_norm_pinv,
_get_grad_point_coilsets,
_prep_fine_cal,
_prep_mf_coils,
_read_cross_talk,
_trans_sss_basis,
)
@verbose
def compute_fine_calibration(
raw,
n_imbalance=3,
t_window=10.0,
ext_order=2,
origin=(0.0, 0.0, 0.0),
cross_talk=None,
calibration=None,
*,
angle_limit=5.0,
err_limit=5.0,
verbose=None,
):
"""Compute fine calibration from empty-room data.
Parameters
----------
raw : instance of Raw
The raw data to use. Should be from an empty-room recording,
and all channels should be good.
n_imbalance : int
Can be 1 or 3 (default), indicating the number of gradiometer
imbalance components. Only used if gradiometers are present.
t_window : float
Time window to use for surface normal rotation in seconds.
Default is 10.
%(ext_order_maxwell)s
Default is 2, which is lower than the default (3) for
:func:`mne.preprocessing.maxwell_filter` because it tends to yield
more stable parameter estimates.
%(origin_maxwell)s
%(cross_talk_maxwell)s
calibration : dict | None
Dictionary with existing calibration. If provided, the magnetometer
imbalances and adjusted normals will be used and only the gradiometer
imbalances will be estimated (see step 2 in Notes below).
angle_limit : float
The maximum permitted angle in degrees between the original and adjusted
magnetometer normals. If the angle is exceeded, the segment is treated as
an outlier and discarded.
.. versionadded:: 1.9
err_limit : float
The maximum error (in percent) for each channel in order for a segment to
be used.
.. versionadded:: 1.9
%(verbose)s
Returns
-------
calibration : dict
Fine calibration data.
count : int
The number of good segments used to compute the magnetometer
parameters.
See Also
--------
mne.preprocessing.maxwell_filter
Notes
-----
This algorithm proceeds in two steps, both optimizing the fit between the
data and a reconstruction of the data based only on an external multipole
expansion:
1. Estimate magnetometer normal directions and scale factors. All
coils (mag and matching grad) are rotated by the adjusted normal
direction.
2. Estimate gradiometer imbalance factors. These add point magnetometers
in just the gradiometer difference direction or in all three directions
(depending on ``n_imbalance``).
Magnetometer normal and coefficient estimation (1) is typically the most
time consuming step. Gradiometer imbalance parameters (2) can be
iteratively reestimated (for example, first using ``n_imbalance=1`` then
subsequently ``n_imbalance=3``) by passing the previous ``calibration``
output to the ``calibration`` input in the second call.
MaxFilter processes at most 120 seconds of data, so consider cropping
your raw instance prior to processing. It also checks to make sure that
there were some minimal usable ``count`` number of segments (default 5)
that were included in the estimate.
.. versionadded:: 0.21
"""
n_imbalance = _ensure_int(n_imbalance, "n_imbalance")
_check_option("n_imbalance", n_imbalance, (1, 3))
_validate_type(raw, BaseRaw, "raw")
ext_order = _ensure_int(ext_order, "ext_order")
origin = _check_origin(origin, raw.info, "meg", disp=True)
_check_option("raw.info['bads']", raw.info["bads"], ([],))
_validate_type(err_limit, "numeric", "err_limit")
_validate_type(angle_limit, "numeric", "angle_limit")
for key, val in dict(err_limit=err_limit, angle_limit=angle_limit).items():
if val < 0:
raise ValueError(f"{key} must be greater than or equal to 0, got {val}")
# Fine cal should not include ref channels
picks = pick_types(raw.info, meg=True, ref_meg=False)
if raw.info["dev_head_t"] is not None:
raise ValueError(
'info["dev_head_t"] is not None, suggesting that the '
"data are not from an empty-room recording"
)
info = pick_info(raw.info, picks) # make a copy and pick MEG channels
mag_picks = pick_types(info, meg="mag", exclude=())
grad_picks = pick_types(info, meg="grad", exclude=())
# Get cross-talk
ctc, _ = _read_cross_talk(cross_talk, info["ch_names"])
# Check fine cal
_validate_type(calibration, (dict, None), "calibration")
#
# 1. Rotate surface normals using magnetometer information (if present)
#
cals = np.ones(len(info["ch_names"]))
end = len(raw.times) + 1
time_idxs = np.arange(0, end, int(round(t_window * raw.info["sfreq"])))
if len(time_idxs) == 1:
time_idxs = np.concatenate([time_idxs, [end]])
if time_idxs[-1] != end:
time_idxs[-1] = end
count = 0
locs = np.array([ch["loc"] for ch in info["chs"]])
zs = locs[mag_picks, -3:].copy()
if calibration is not None:
_, calibration, _ = _prep_fine_cal(info, calibration, ignore_ref=True)
for pi, pick in enumerate(mag_picks):
idx = calibration["ch_names"].index(info["ch_names"][pick])
cals[pick] = calibration["imb_cals"][idx].item()
zs[pi] = calibration["locs"][idx][-3:]
elif len(mag_picks) > 0:
cal_list = list()
z_list = list()
logger.info(
f"Adjusting normals for {len(mag_picks)} magnetometers "
f"(averaging over {len(time_idxs) - 1} time intervals)"
)
for start, stop in zip(time_idxs[:-1], time_idxs[1:]):
logger.info(
f" Processing interval {start / info['sfreq']:0.3f} - "
f"{stop / info['sfreq']:0.3f} s"
)
data = raw[picks, start:stop][0]
if ctc is not None:
data = ctc.dot(data)
z, cal, good = _adjust_mag_normals(
info,
data,
origin,
ext_order,
angle_limit=angle_limit,
err_limit=err_limit,
)
if good:
z_list.append(z)
cal_list.append(cal)
count = len(cal_list)
if count == 0:
raise RuntimeError("No usable segments found")
cals[:] = np.mean(cal_list, axis=0)
zs[:] = np.mean(z_list, axis=0)
if len(mag_picks) > 0:
for ii, new_z in enumerate(zs):
z_loc = locs[mag_picks[ii]]
# Find sensors with same NZ and R0 (should be three for VV)
idxs = _matched_loc_idx(z_loc, locs)
# Rotate the direction vectors to the plane defined by new normal
_rotate_locs(locs, idxs, new_z)
for ci, loc in enumerate(locs):
info["chs"][ci]["loc"][:] = loc
del calibration, zs
#
# 2. Estimate imbalance parameters (always done)
#
if len(grad_picks) > 0:
extra = "X direction" if n_imbalance == 1 else ("XYZ directions")
logger.info(f"Computing imbalance for {len(grad_picks)} gradimeters ({extra})")
imb_list = list()
for start, stop in zip(time_idxs[:-1], time_idxs[1:]):
logger.info(
f" Processing interval {start / info['sfreq']:0.3f} - "
f"{stop / info['sfreq']:0.3f} s"
)
data = raw[picks, start:stop][0]
if ctc is not None:
data = ctc.dot(data)
out = _estimate_imbalance(info, data, cals, n_imbalance, origin, ext_order)
imb_list.append(out)
imb = np.mean(imb_list, axis=0)
else:
imb = np.zeros((len(info["ch_names"]), n_imbalance))
#
# Put in output structure
#
assert len(np.intersect1d(mag_picks, grad_picks)) == 0
imb_cals = [
cals[ii : ii + 1] if ii in mag_picks else imb[ii]
for ii in range(len(info["ch_names"]))
]
ch_names = _clean_names(info["ch_names"], remove_whitespace=True)
calibration = dict(ch_names=ch_names, locs=locs, imb_cals=imb_cals)
return calibration, count
def _matched_loc_idx(mag_loc, all_loc):
return np.where(
[
np.allclose(mag_loc[-3:], loc[-3:]) and np.allclose(mag_loc[:3], loc[:3])
for loc in all_loc
]
)[0]
def _rotate_locs(locs, idxs, new_z):
new_z = new_z / np.linalg.norm(new_z)
old_z = locs[idxs[0]][-3:]
old_z = old_z / np.linalg.norm(old_z)
rot = _find_vector_rotation(old_z, new_z)
for ci in idxs:
this_trans = _loc_to_coil_trans(locs[ci])
this_trans[:3, :3] = np.dot(rot, this_trans[:3, :3])
locs[ci][:] = _coil_trans_to_loc(this_trans)
np.testing.assert_allclose(locs[ci][-3:], new_z, atol=1e-4)
def _vector_angle(x, y):
"""Get the angle between two vectors in degrees."""
return np.abs(
np.arccos(
np.clip(
(x * y).sum(axis=-1)
/ (np.linalg.norm(x, axis=-1) * np.linalg.norm(y, axis=-1)),
-1,
1.0,
)
)
)
def _adjust_mag_normals(info, data, origin, ext_order, *, angle_limit, err_limit):
"""Adjust coil normals using magnetometers and empty-room data."""
# in principle we could allow using just mag or mag+grad, but MF uses
# just mag so let's follow suit
mag_scale = 100.0
picks_use = pick_types(info, meg="mag", exclude="bads")
picks_meg = pick_types(info, meg=True, exclude=())
picks_mag_orig = pick_types(info, meg="mag", exclude="bads")
info = pick_info(info, picks_use) # copy
data = data[picks_use]
cals = np.ones((len(data), 1))
angles = np.zeros(len(cals))
picks_mag = pick_types(info, meg="mag")
data[picks_mag] *= mag_scale
# Transform variables so we're only dealing with good mags
exp = dict(int_order=0, ext_order=ext_order, origin=origin)
all_coils = _prep_mf_coils(info, ignore_ref=True)
S_tot = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale)
first_err = _data_err(data, S_tot, cals)
count = 0
# two passes: first do the worst, then do all in order
zs = np.array([ch["loc"][-3:] for ch in info["chs"]])
zs /= np.linalg.norm(zs, axis=-1, keepdims=True)
orig_zs = zs.copy()
match_idx = dict()
locs = np.array([ch["loc"] for ch in info["chs"]])
for pick in picks_mag:
match_idx[pick] = _matched_loc_idx(locs[pick], locs)
counts = defaultdict(lambda: 0)
for ki, kind in enumerate(("worst first", "in order")):
logger.info(f" Magnetometer normal adjustment ({kind}) ...")
S_tot = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale)
for pick in picks_mag:
err = _data_err(data, S_tot, cals, axis=1)
# First pass: do worst; second pass: do all in order (up to 3x/sen)
if ki == 0:
order = list(np.argsort(err[picks_mag]))
cal_idx = 0
while len(order) > 0:
cal_idx = picks_mag[order.pop(-1)]
if counts[cal_idx] < 3:
break
if err[cal_idx] < 2.5:
break # move on to second loop
else:
cal_idx = pick
counts[cal_idx] += 1
assert cal_idx in picks_mag
count += 1
old_z = zs[cal_idx].copy()
objective = partial(
_cal_sss_target,
old_z=old_z,
all_coils=all_coils,
cal_idx=cal_idx,
data=data,
cals=cals,
match_idx=match_idx,
S_tot=S_tot,
origin=origin,
ext_order=ext_order,
)
# Figure out the additive term for z-component
zs[cal_idx] = minimize(
objective,
old_z,
bounds=[(-2, 2)] * 3,
# BFGS is the default for minimize but COBYLA converges faster
method="COBYLA",
# Start with a small relative step because nominal geometry information
# should be fairly accurate to begin with
options=dict(rhobeg=1e-1),
).x
# Do in-place adjustment to all_coils
cals[cal_idx] = 1.0 / np.linalg.norm(zs[cal_idx])
zs[cal_idx] *= cals[cal_idx]
for idx in match_idx[cal_idx]:
_rotate_coil(zs[cal_idx], old_z, all_coils, idx, inplace=True)
# Recalculate S_tot, taking into account rotations
S_tot = _trans_sss_basis(exp, all_coils)
# Reprt results
old_err = err[cal_idx]
new_err = _data_err(data, S_tot, cals, idx=cal_idx)
angles[cal_idx] = np.abs(
np.rad2deg(_vector_angle(zs[cal_idx], orig_zs[cal_idx]))
)
ch_name = info["ch_names"][cal_idx]
logger.debug(
f" Optimization step {count:3d} | "
f"{ch_name} ({counts[cal_idx]}) | "
f"res {old_err:5.2f}→{new_err:5.2f}% | "
f"×{cals[cal_idx, 0]:0.3f} | {angles[cal_idx]:0.2f}°"
)
last_err = _data_err(data, S_tot, cals)
# Chunk is usable if all angles and errors are both small
reason = list()
max_angle = np.max(angles)
if max_angle >= angle_limit:
reason.append(f"max angle {max_angle:0.2f} >= {angle_limit:0.1f}°")
each_err = _data_err(data, S_tot, cals, axis=-1)[picks_mag]
n_bad = (each_err > err_limit).sum()
if n_bad:
bad_max = np.argmax(each_err)
reason.append(
f"{n_bad} residual{_pl(n_bad)} > {err_limit:0.1f}% "
f"(max: {each_err[bad_max]:0.2f}% @ "
f"{info['ch_names'][picks_mag[bad_max]]})"
)
reason = ", ".join(reason)
if reason:
reason = f" ({reason})"
good = not bool(reason)
assert np.allclose(np.linalg.norm(zs, axis=1), 1.0)
logger.info(f" Fit mismatch {first_err:0.2f}→{last_err:0.2f}%")
logger.info(f" Data segment {'' if good else 'un'}usable{reason}")
# Reformat zs and cals to be the n_mags (including bads)
assert zs.shape == (len(data), 3)
assert cals.shape == (len(data), 1)
imb_cals = np.ones(len(picks_meg))
imb_cals[picks_mag_orig] = cals[:, 0]
return zs, imb_cals, good
def _data_err(data, S_tot, cals, idx=None, axis=None):
if idx is None:
idx = slice(None)
S_tot = S_tot / cals
data_model = np.dot(np.dot(S_tot[idx], _col_norm_pinv(S_tot.copy())[0]), data)
err = 100 * (
np.linalg.norm(data_model - data[idx], axis=axis)
/ np.linalg.norm(data[idx], axis=axis)
)
return err
def _rotate_coil(new_z, old_z, all_coils, idx, inplace=False):
"""Adjust coils."""
# Turn NX and NY to the plane determined by NZ
old_z = old_z / np.linalg.norm(old_z)
new_z = new_z / np.linalg.norm(new_z)
rot = _find_vector_rotation(old_z, new_z) # additional coil rotation
this_sl = all_coils[5][idx]
this_rmag = np.dot(rot, all_coils[0][this_sl].T).T
this_cosmag = np.dot(rot, all_coils[1][this_sl].T).T
if inplace:
all_coils[0][this_sl] = this_rmag
all_coils[1][this_sl] = this_cosmag
subset = (
this_rmag,
this_cosmag,
np.zeros(this_rmag.shape[0], int),
1,
all_coils[4][[idx]],
{0: this_sl},
)
return subset
def _cal_sss_target(
new_z, old_z, all_coils, cal_idx, data, cals, S_tot, origin, ext_order, match_idx
):
"""Evaluate objective function for SSS-based magnetometer calibration."""
cals[cal_idx] = 1.0 / np.linalg.norm(new_z)
exp = dict(int_order=0, ext_order=ext_order, origin=origin)
S_tot = S_tot.copy()
# Rotate necessary coils properly and adjust correct element in c
for idx in match_idx[cal_idx]:
this_coil = _rotate_coil(new_z, old_z, all_coils, idx)
# Replace correct row of S_tot with new value
S_tot[idx] = _trans_sss_basis(exp, this_coil)
# Get the GOF
return _data_err(data, S_tot, cals, idx=cal_idx)
def _estimate_imbalance(info, data, cals, n_imbalance, origin, ext_order):
"""Estimate gradiometer imbalance parameters."""
mag_scale = 100.0
n_iterations = 3
mag_picks = pick_types(info, meg="mag", exclude=())
grad_picks = pick_types(info, meg="grad", exclude=())
data = data.copy()
data[mag_picks, :] *= mag_scale
del mag_picks
grad_imb = np.zeros((len(grad_picks), n_imbalance))
exp = dict(origin=origin, int_order=0, ext_order=ext_order)
all_coils = _prep_mf_coils(info, ignore_ref=True)
grad_point_coils = _get_grad_point_coilsets(info, n_imbalance, ignore_ref=True)
S_orig = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale)
S_orig /= cals[:, np.newaxis]
# Compute point gradiometers for each grad channel
this_cs = np.array([mag_scale], float)
S_pt = np.array(
[_trans_sss_basis(exp, coils, None, this_cs) for coils in grad_point_coils]
)
for k in range(n_iterations):
S_tot = S_orig.copy()
# In theory we could zero out the homogeneous components with:
# S_tot[grad_picks, :3] = 0
# But in practice it doesn't seem to matter
S_recon = S_tot[grad_picks]
# Add influence of point magnetometers
S_tot[grad_picks, :] += np.einsum("ij,ijk->jk", grad_imb.T, S_pt)
# Compute multipolar moments
mm = np.dot(_col_norm_pinv(S_tot.copy())[0], data)
# Use good channels to recalculate
prev_imb = grad_imb.copy()
data_recon = np.dot(S_recon, mm)
assert S_pt.shape == (n_imbalance, len(grad_picks), S_tot.shape[1])
khi_pts = (S_pt @ mm).transpose(1, 2, 0)
assert khi_pts.shape == (len(grad_picks), data.shape[1], n_imbalance)
residual = data[grad_picks] - data_recon
assert residual.shape == (len(grad_picks), data.shape[1])
d = (residual[:, np.newaxis, :] @ khi_pts)[:, 0]
assert d.shape == (len(grad_picks), n_imbalance)
dinv, _, _ = _reg_pinv(khi_pts.swapaxes(-1, -2) @ khi_pts, rcond=1e-6)
assert dinv.shape == (len(grad_picks), n_imbalance, n_imbalance)
grad_imb[:] = (d[:, np.newaxis] @ dinv)[:, 0]
# This code is equivalent but hits a np.linalg.pinv bug on old NumPy:
# grad_imb[:] = np.sum( # dot product across the time dim
# np.linalg.pinv(khi_pts) * residual[:, np.newaxis], axis=-1)
deltas = np.linalg.norm(grad_imb - prev_imb) / max(
np.linalg.norm(grad_imb), np.linalg.norm(prev_imb)
)
logger.debug(
f" Iteration {k + 1}/{n_iterations}: "
f"max ∆ = {100 * deltas.max():7.3f}%"
)
imb = np.zeros((len(data), n_imbalance))
imb[grad_picks] = grad_imb
return imb
def read_fine_calibration(fname):
"""Read fine calibration information from a ``.dat`` file.
The fine calibration typically includes improved sensor locations,
calibration coefficients, and gradiometer imbalance information.
Parameters
----------
fname : path-like
The filename.
Returns
-------
calibration : dict
Fine calibration information. Key-value pairs are:
- ``ch_names``
List of str of the channel names.
- ``locs``
Coil location and orientation parameters.
- ``imb_cals``
For magnetometers, the calibration coefficients.
For gradiometers, one or three imbalance parameters.
"""
# Read new sensor locations
fname = _check_fname(fname, overwrite="read", must_exist=True)
check_fname(fname, "cal", (".dat",))
ch_names, locs, imb_cals = list(), list(), list()
with open(fname) as fid:
for line in fid:
if line[0] in "#\n":
continue
vals = line.strip().split()
if len(vals) not in [14, 16]:
raise RuntimeError(
"Error parsing fine calibration file, "
"should have 14 or 16 entries per line "
f"but found {len(vals)} on line:\n{line}"
)
# `vals` contains channel number
ch_name = vals[0]
if len(ch_name) in (3, 4): # heuristic for Neuromag fix
try:
ch_name = int(ch_name)
except ValueError: # something other than e.g. 113 or 2642
pass
else:
ch_name = f"MEG{int(ch_name):04}"
# (x, y, z), x-norm 3-vec, y-norm 3-vec, z-norm 3-vec
# and 1 or 3 imbalance terms
ch_names.append(ch_name)
locs.append(np.array(vals[1:13], float))
imb_cals.append(np.array(vals[13:], float))
locs = np.array(locs)
return dict(ch_names=ch_names, locs=locs, imb_cals=imb_cals)
def write_fine_calibration(fname, calibration):
"""Write fine calibration information to a ``.dat`` file.
Parameters
----------
fname : path-like
The filename to write out.
calibration : dict
Fine calibration information.
"""
fname = _check_fname(fname, overwrite=True)
check_fname(fname, "cal", (".dat",))
keys = ("ch_names", "locs", "imb_cals")
with open(fname, "wb") as cal_file:
for ch_name, loc, imb_cal in zip(*(calibration[key] for key in keys)):
cal_line = np.concatenate([loc, imb_cal]).round(6)
cal_line = " ".join(f"{c:0.6f}" for c in cal_line)
cal_file.write(f"{ch_name} {cal_line}\n".encode("ASCII"))