# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import copy
import os.path as op
import warnings
import numpy as np
from scipy import sparse
from .fixes import _eye_array, _get_img_fdata
from .morph_map import read_morph_map
from .parallel import parallel_func
from .source_estimate import (
_BaseSourceEstimate,
_BaseSurfaceSourceEstimate,
_BaseVolSourceEstimate,
_get_ico_tris,
)
from .source_space._source_space import SourceSpaces, _ensure_src, _grid_interp
from .surface import _compute_nearest, mesh_edges, read_surface
from .utils import (
BunchConst,
ProgressBar,
_check_fname,
_check_option,
_custom_lru_cache,
_ensure_int,
_import_h5io_funcs,
_import_nibabel,
_validate_type,
check_version,
fill_doc,
get_subjects_dir,
logger,
use_log_level,
verbose,
warn,
)
from .utils import (
warn as warn_,
)
@verbose
def compute_source_morph(
src,
subject_from=None,
subject_to="fsaverage",
subjects_dir=None,
zooms="auto",
niter_affine=(100, 100, 10),
niter_sdr=(5, 5, 3),
spacing=5,
smooth=None,
warn=True,
xhemi=False,
sparse=False,
src_to=None,
precompute=False,
verbose=None,
):
"""Create a SourceMorph from one subject to another.
Method is based on spherical morphing by FreeSurfer for surface
cortical estimates :footcite:`GreveEtAl2013` and
Symmetric Diffeomorphic Registration for volumic data
:footcite:`AvantsEtAl2008`.
Parameters
----------
src : instance of SourceSpaces | instance of SourceEstimate
The SourceSpaces of subject_from (can be a
SourceEstimate if only using a surface source space).
subject_from : str | None
Name of the original subject as named in the SUBJECTS_DIR.
If None (default), then ``src[0]['subject_his_id]'`` will be used.
subject_to : str | None
Name of the subject to which to morph as named in the SUBJECTS_DIR.
Default is ``'fsaverage'``. If None, ``src_to[0]['subject_his_id']``
will be used.
.. versionchanged:: 0.20
Support for subject_to=None.
%(subjects_dir)s
zooms : float | tuple | str | None
The voxel size of volume for each spatial dimension in mm.
If spacing is None, MRIs won't be resliced, and both volumes
must have the same number of spatial dimensions.
Can also be ``'auto'`` to use ``5.`` if ``src_to is None`` and
the zooms from ``src_to`` otherwise.
.. versionchanged:: 0.20
Support for 'auto' mode.
niter_affine : tuple of int
Number of levels (``len(niter_affine)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the affine transform.
Default is niter_affine=(100, 100, 10).
niter_sdr : tuple of int
Number of levels (``len(niter_sdr)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the Symmetric Diffeomorphic Registration (sdr)
transform. Default is niter_sdr=(5, 5, 3).
spacing : int | list | None
The resolution of the icosahedral mesh (typically 5).
If None, all vertices will be used (potentially filling the
surface). If a list, then values will be morphed to the set of
vertices specified in in ``spacing[0]`` and ``spacing[1]``.
This will be ignored if ``src_to`` is supplied.
.. versionchanged:: 0.21
src_to, if provided, takes precedence.
smooth : int | str | None
Number of iterations for the smoothing of the surface data.
If None, smooth is automatically defined to fill the surface
with non-zero values. Can also be ``'nearest'`` to use the nearest
vertices on the surface.
.. versionchanged:: 0.20
Added support for 'nearest'.
warn : bool
If True, warn if not all vertices were used. The default is warn=True.
xhemi : bool
Morph across hemisphere. Currently only implemented for
``subject_to == subject_from``. See notes below.
The default is xhemi=False.
sparse : bool
Morph as a sparse source estimate. Works only with (Vector)
SourceEstimate. If True the only parameters used are subject_to and
subject_from, and spacing has to be None. Default is sparse=False.
src_to : instance of SourceSpaces | None
The destination source space.
- For surface-based morphing, this is the preferred over ``spacing``
for providing the vertices.
- For volumetric morphing, this should be passed so that 1) the
resultingmorph volume is properly constrained to the brain volume,
and 2) STCs from multiple subjects morphed to the same destination
subject/source space have the vertices.
- For mixed (surface + volume) morphing, this is required.
.. versionadded:: 0.20
precompute : bool
If True (default False), compute the sparse matrix representation of
the volumetric morph (if present). This takes a long time to
compute, but can make morphs faster when thousands of points are used.
See :meth:`mne.SourceMorph.compute_vol_morph_mat` (which can be called
later if desired) for more information.
.. versionadded:: 0.22
%(verbose)s
Returns
-------
morph : instance of SourceMorph
The :class:`mne.SourceMorph` object.
Notes
-----
This function can be used to morph surface data between hemispheres by
setting ``xhemi=True``. The full cross-hemisphere morph matrix maps left
to right and right to left. A matrix for cross-mapping only one hemisphere
can be constructed by specifying the appropriate vertices, for example, to
map the right hemisphere to the left::
vertices_from=[[], vert_rh], vertices_to=[vert_lh, []]
Cross-hemisphere mapping requires appropriate ``sphere.left_right``
morph-maps in the subject's directory. These morph maps are included
with the ``fsaverage_sym`` FreeSurfer subject, and can be created for other
subjects with the ``mris_left_right_register`` FreeSurfer command. The
``fsaverage_sym`` subject is included with FreeSurfer > 5.1 and can be
obtained as described `here
<https://surfer.nmr.mgh.harvard.edu/fswiki/Xhemi>`_. For statistical
comparisons between hemispheres, use of the symmetric ``fsaverage_sym``
model is recommended to minimize bias :footcite:`GreveEtAl2013`.
.. versionadded:: 0.17.0
.. versionadded:: 0.21.0
Support for morphing mixed source estimates.
References
----------
.. footbibliography::
"""
src_data, kind, src_subject = _get_src_data(src)
subject_from = _check_subject_src(subject_from, src_subject, warn_none=True)
del src
_validate_type(src_to, (SourceSpaces, None), "src_to")
_validate_type(subject_to, (str, None), "subject_to")
if src_to is None and subject_to is None:
raise ValueError("subject_to cannot be None when src_to is None")
subject_to = _check_subject_src(subject_to, src_to, "subject_to")
# Params
warn = False if sparse else warn
if kind not in "surface" and xhemi:
raise ValueError(
"Inter-hemispheric morphing can only be used with surface source estimates."
)
if sparse and kind != "surface":
raise ValueError("Only surface source estimates can compute a sparse morph.")
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
shape = affine = pre_affine = sdr_morph = morph_mat = None
vertices_to_surf, vertices_to_vol = list(), list()
if kind in ("volume", "mixed"):
_check_dep(nibabel="2.1.0", dipy="0.10.1")
nib = _import_nibabel("work with a volume source space")
logger.info("Volume source space(s) present...")
# load moving MRI
mri_subpath = op.join("mri", "brain.mgz")
mri_path_from = op.join(subjects_dir, subject_from, mri_subpath)
logger.info(f' Loading {mri_path_from} as "from" volume')
with warnings.catch_warnings():
mri_from = nib.load(mri_path_from)
# eventually we could let this be some other volume, but for now
# let's KISS and use `brain.mgz`, too
mri_path_to = op.join(subjects_dir, subject_to, mri_subpath)
if not op.isfile(mri_path_to):
raise OSError(f"cannot read file: {mri_path_to}")
logger.info(f' Loading {mri_path_to} as "to" volume')
with warnings.catch_warnings():
mri_to = nib.load(mri_path_to)
# deal with `src_to` subsampling
zooms_src_to = None
if src_to is None:
if kind == "mixed":
raise ValueError(
"src_to must be provided when using a mixed source space"
)
else:
surf_offset = 2 if src_to.kind == "mixed" else 0
# All of our computations are in RAS (like img.affine), so we need
# to get the transformation from RAS to the source space
# subsampling of vox (src), not MRI (FreeSurfer surface RAS) to src
src_ras_t = np.dot(
src_to[-1]["mri_ras_t"]["trans"], src_to[-1]["src_mri_t"]["trans"]
)
src_ras_t[:3] *= 1e3
src_data["to_vox_map"] = (src_to[-1]["shape"], src_ras_t)
vertices_to_vol = [s["vertno"] for s in src_to[surf_offset:]]
zooms_src_to = np.diag(src_to[-1]["src_mri_t"]["trans"])[:3] * 1000
zooms_src_to = tuple(zooms_src_to)
# pre-compute non-linear morph
zooms = _check_zooms(mri_from, zooms, zooms_src_to)
shape, zooms, affine, pre_affine, sdr_morph = _compute_morph_sdr(
mri_from, mri_to, niter_affine, niter_sdr, zooms
)
if kind in ("surface", "mixed"):
logger.info("surface source space present ...")
vertices_from = src_data["vertices_from"]
if sparse:
if spacing is not None:
raise ValueError("spacing must be set to None if sparse=True.")
if xhemi:
raise ValueError("xhemi=True can only be used with sparse=False")
vertices_to_surf, morph_mat = _compute_sparse_morph(
vertices_from, subject_from, subject_to, subjects_dir
)
else:
if src_to is not None:
assert src_to.kind in ("surface", "mixed")
vertices_to_surf = [s["vertno"].copy() for s in src_to[:2]]
else:
vertices_to_surf = grade_to_vertices(
subject_to, spacing, subjects_dir, 1
)
morph_mat = _compute_morph_matrix(
subject_from=subject_from,
subject_to=subject_to,
vertices_from=vertices_from,
vertices_to=vertices_to_surf,
subjects_dir=subjects_dir,
smooth=smooth,
warn=warn,
xhemi=xhemi,
)
n_verts = sum(len(v) for v in vertices_to_surf)
assert morph_mat.shape[0] == n_verts
vertices_to = vertices_to_surf + vertices_to_vol
if src_to is not None:
assert len(vertices_to) == len(src_to)
morph = SourceMorph(
subject_from,
subject_to,
kind,
zooms,
niter_affine,
niter_sdr,
spacing,
smooth,
xhemi,
morph_mat,
vertices_to,
shape,
affine,
pre_affine,
sdr_morph,
src_data,
None,
)
if precompute:
morph.compute_vol_morph_mat()
logger.info("[done]")
return morph
def _compute_sparse_morph(vertices_from, subject_from, subject_to, subjects_dir=None):
"""Get nearest vertices from one subject to another."""
from scipy import sparse
maps = read_morph_map(subject_to, subject_from, subjects_dir)
cnt = 0
vertices = list()
cols = list()
for verts, map_hemi in zip(vertices_from, maps):
vertno_h = _sparse_argmax_nnz_row(map_hemi[verts])
order = np.argsort(vertno_h)
cols.append(cnt + order)
vertices.append(vertno_h[order])
cnt += len(vertno_h)
cols = np.concatenate(cols)
rows = np.arange(len(cols))
data = np.ones(len(cols))
morph_mat = sparse.coo_array(
(data, (rows, cols)), shape=(len(cols), len(cols))
).tocsr()
return vertices, morph_mat
_SOURCE_MORPH_ATTRIBUTES = [ # used in writing
"subject_from",
"subject_to",
"kind",
"zooms",
"niter_affine",
"niter_sdr",
"spacing",
"smooth",
"xhemi",
"morph_mat",
"vertices_to",
"shape",
"affine",
"pre_affine",
"sdr_morph",
"src_data",
"vol_morph_mat",
]
@fill_doc
class SourceMorph:
"""Morph source space data from one subject to another.
.. note::
This class should not be instantiated directly via
``mne.SourceMorph(...)``. Instead, use one of the functions
listed in the See Also section below.
Parameters
----------
subject_from : str | None
Name of the subject from which to morph as named in the SUBJECTS_DIR.
subject_to : str | array | list of array
Name of the subject on which to morph as named in the SUBJECTS_DIR.
The default is 'fsaverage'. If morphing a volume source space,
subject_to can be the path to a MRI volume. Can also be a list of
two arrays if morphing to hemisphere surfaces.
kind : str | None
Kind of source estimate. E.g. ``'volume'`` or ``'surface'``.
zooms : float | tuple
See :func:`mne.compute_source_morph`.
niter_affine : tuple of int
Number of levels (``len(niter_affine)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the affine transform.
niter_sdr : tuple of int
Number of levels (``len(niter_sdr)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the Symmetric Diffeomorphic Registration (sdr)
transform :footcite:`AvantsEtAl2008`.
spacing : int | list | None
See :func:`mne.compute_source_morph`.
smooth : int | str | None
See :func:`mne.compute_source_morph`.
xhemi : bool
Morph across hemisphere.
morph_mat : scipy.sparse.csr_array
The sparse surface morphing matrix for spherical surface
based morphing :footcite:`GreveEtAl2013`.
vertices_to : list of ndarray
The destination surface vertices.
shape : tuple
The volume MRI shape.
affine : ndarray
The volume MRI affine.
pre_affine : instance of dipy.align.AffineMap
The transformation that is applied before the before ``sdr_morph``.
sdr_morph : instance of dipy.align.DiffeomorphicMap
The class that applies the the symmetric diffeomorphic registration
(SDR) morph.
src_data : dict
Additional source data necessary to perform morphing.
vol_morph_mat : scipy.sparse.csr_array | None
The volumetric morph matrix, if :meth:`compute_vol_morph_mat`
was used.
%(verbose)s
See Also
--------
compute_source_morph
read_source_morph
Notes
-----
.. versionadded:: 0.17
References
----------
.. footbibliography::
"""
@verbose
def __init__(
self,
subject_from,
subject_to,
kind,
zooms,
niter_affine,
niter_sdr,
spacing,
smooth,
xhemi,
morph_mat,
vertices_to,
shape,
affine,
pre_affine,
sdr_morph,
src_data,
vol_morph_mat,
*,
verbose=None,
):
# universal
self.subject_from = subject_from
self.subject_to = subject_to
self.kind = kind
# vol input
self.zooms = zooms
self.niter_affine = niter_affine
self.niter_sdr = niter_sdr
# surf input
self.spacing = spacing
self.smooth = smooth
self.xhemi = xhemi
# surf computed
self.morph_mat = morph_mat
# vol computed
self.shape = shape
self.affine = affine
self.sdr_morph = sdr_morph
self.pre_affine = pre_affine
# used by both
self.src_data = src_data
self.vol_morph_mat = vol_morph_mat
# compute vertices_to here (partly for backward compat and no src
# provided)
if vertices_to is None or len(vertices_to) == 0 and kind == "volume":
assert src_data["to_vox_map"] is None
vertices_to = self._get_vol_vertices_to_nz()
self.vertices_to = vertices_to
@property
def _vol_vertices_from(self):
assert isinstance(self.src_data["inuse"], list)
vertices_from = [np.where(in_)[0] for in_ in self.src_data["inuse"]]
return vertices_from
@property
def _vol_vertices_to(self):
return self.vertices_to[0 if self.kind == "volume" else 2 :]
def _get_vol_vertices_to_nz(self):
logger.info("Computing nonzero vertices after morph ...")
n_vertices = sum(len(v) for v in self._vol_vertices_from)
ones = np.ones((n_vertices, 1))
with use_log_level(False):
return [np.where(self._morph_vols(ones, "", subselect=False))[0]]
@verbose
def apply(
self, stc_from, output="stc", mri_resolution=False, mri_space=None, verbose=None
):
"""Morph source space data.
Parameters
----------
stc_from : VolSourceEstimate | VolVectorSourceEstimate | SourceEstimate | VectorSourceEstimate
The source estimate to morph.
output : str
Can be ``'stc'`` (default) or possibly ``'nifti1'``, or
``'nifti2'`` when working with a volume source space defined on a
regular grid.
mri_resolution : bool | tuple | int | float
If True the image is saved in MRI resolution. Default False.
.. warning: If you have many time points the file produced can be
huge. The default is ``mri_resolution=False``.
mri_space : bool | None
Whether the image to world registration should be in mri space. The
default (None) is mri_space=mri_resolution.
%(verbose)s
Returns
-------
stc_to : VolSourceEstimate | SourceEstimate | VectorSourceEstimate | Nifti1Image | Nifti2Image
The morphed source estimates.
""" # noqa: E501
_validate_type(output, str, "output")
_validate_type(stc_from, _BaseSourceEstimate, "stc_from", "source estimate")
if isinstance(stc_from, _BaseSurfaceSourceEstimate):
allowed_kinds = ("stc",)
extra = "when stc is a surface source estimate"
else:
allowed_kinds = ("stc", "nifti1", "nifti2")
extra = ""
_check_option("output", output, allowed_kinds, extra)
stc = copy.deepcopy(stc_from)
mri_space = mri_resolution if mri_space is None else mri_space
if stc.subject is None:
stc.subject = self.subject_from
if self.subject_from is None:
self.subject_from = stc.subject
if stc.subject != self.subject_from:
raise ValueError(
"stc_from.subject and "
"morph.subject_from "
f"must match. ({stc.subject} != {self.subject_from})"
)
out = _apply_morph_data(self, stc)
if output != "stc": # convert to volume
out = _morphed_stc_as_volume(
self,
out,
mri_resolution=mri_resolution,
mri_space=mri_space,
output=output,
)
return out
@verbose
def compute_vol_morph_mat(self, *, verbose=None):
"""Compute the sparse matrix representation of the volumetric morph.
Parameters
----------
%(verbose)s
Returns
-------
morph : instance of SourceMorph
The instance (modified in-place).
Notes
-----
For a volumetric morph, this will compute the morph for an identity
source volume, i.e., with one source vertex active at a time, and store
the result as a :class:`sparse <scipy.sparse.csr_array>`
morphing matrix. This takes a long time (minutes) to compute initially,
but drastically speeds up :meth:`apply` for STCs, so it can be
beneficial when many time points or many morphs (i.e., greater than
the number of volumetric ``src_from`` vertices) will be performed.
When calling :meth:`save`, this sparse morphing matrix is saved with
the instance, so this only needs to be called once. This function does
nothing if the morph matrix has already been computed, or if there is
no volume morphing necessary.
.. versionadded:: 0.22
"""
if self.affine is None or self.vol_morph_mat is not None:
return
logger.info("Computing sparse volumetric morph matrix (will take some time...)")
self.vol_morph_mat = self._morph_vols(None, "Vertex")
return self
def _morph_vols(self, vols, mesg, subselect=True):
from dipy.align.reslice import reslice
interp = self.src_data["interpolator"].tocsc()[
:, np.concatenate(self._vol_vertices_from)
]
n_vols = interp.shape[1] if vols is None else vols.shape[1]
attrs = ("real", "imag") if np.iscomplexobj(vols) else ("real",)
dtype = np.complex128 if len(attrs) == 2 else np.float64
if vols is None: # sparse -> sparse mode
img_to = (list(), list(), [0]) # data, indices, indptr
assert subselect
else: # dense -> dense mode
img_to = None
if subselect:
vol_verts = np.concatenate(self._vol_vertices_to)
else:
vol_verts = slice(None)
# morph data
from_affine = np.dot(
self.src_data["src_affine_ras"], # mri_ras_t
self.src_data["src_affine_vox"],
) # vox_mri_t
from_affine[:3] *= 1000.0
# equivalent of:
# _resample_from_to(img_real, from_affine,
# (self.pre_affine.codomain_shape,
# (self.pre_affine.codomain_grid2world))
src_shape = self.src_data["src_shape_full"][::-1]
resamp_0 = _grid_interp(
src_shape,
self.pre_affine.codomain_shape,
np.linalg.inv(from_affine) @ self.pre_affine.codomain_grid2world,
)
# reslice to match what was used during the morph
# (brain.mgz and whatever was used to create the source space
# will not necessarily have the same domain/zooms)
# equivalent of:
# pre_affine.transform(img_real)
resamp_1 = _grid_interp(
self.pre_affine.codomain_shape,
self.pre_affine.domain_shape,
np.linalg.inv(self.pre_affine.codomain_grid2world)
@ self.pre_affine.affine
@ self.pre_affine.domain_grid2world,
)
resamp_0_1 = resamp_1 @ resamp_0
resamp_2 = None
for ii in ProgressBar(list(range(n_vols)), mesg=mesg):
for attr in attrs:
# transform from source space to mri_from resolution/space
if vols is None:
img_real = interp[:, [ii]]
else:
img_real = interp @ getattr(vols[:, ii], attr)
_debug_img(img_real, from_affine, "From", src_shape)
img_real = resamp_0_1 @ img_real
if sparse.issparse(img_real):
img_real = img_real.toarray()
img_real = img_real.reshape(self.pre_affine.domain_shape, order="F")
if self.sdr_morph is not None:
img_real = self.sdr_morph.transform(img_real)
_debug_img(img_real, self.affine, "From-reslice-transform")
# subselect the correct cube if src_to is provided
if self.src_data["to_vox_map"] is not None:
affine = self.affine
to_zooms = np.diag(self.src_data["to_vox_map"][1])[:3]
# There might be some sparse equivalent to this but
# not sure...
if not np.allclose(self.zooms, to_zooms, atol=1e-3):
img_real, affine = reslice(
img_real, self.affine, self.zooms, to_zooms
)
_debug_img(img_real, affine, "From-reslice-transform-src")
if resamp_2 is None:
resamp_2 = _grid_interp(
img_real.shape,
self.src_data["to_vox_map"][0],
np.linalg.inv(affine) @ self.src_data["to_vox_map"][1],
)
# Equivalent to:
# _resample_from_to(
# img_real, affine, self.src_data['to_vox_map'])
img_real = resamp_2 @ img_real.ravel(order="F")
_debug_img(
img_real,
self.src_data["to_vox_map"][1],
"From-reslice-transform-src-subselect",
self.src_data["to_vox_map"][0],
)
# This can be used to help debug, but it really should just
# show the brain filling the volume:
# img_want = np.zeros(np.prod(img_real.shape))
# img_want[np.concatenate(self._vol_vertices_to)] = 1.
# img_want = np.reshape(
# img_want, self.src_data['src_shape'][::-1], order='F')
# _debug_img(img_want, self.src_data['to_vox_map'][1],
# 'To mask')
# raise RuntimeError('Check')
# combine real and complex parts
img_real = img_real.ravel(order="F")[vol_verts]
# initialize output
if img_to is None and vols is not None:
img_to = np.zeros((img_real.size, n_vols), dtype=dtype)
if vols is None:
idx = np.where(img_real)[0]
img_to[0].extend(img_real[idx])
img_to[1].extend(idx)
img_to[2].append(img_to[2][-1] + len(idx))
else:
if attr == "real":
img_to[:, ii] = img_to[:, ii] + img_real
else:
img_to[:, ii] = img_to[:, ii] + 1j * img_real
if vols is None:
img_to = sparse.csc_array(img_to, shape=(len(vol_verts), n_vols)).tocsr()
return img_to
def __repr__(self): # noqa: D105
s = f"{self.kind}"
s += f", {self.subject_from} -> {self.subject_to}"
if self.kind == "volume":
s += f", zooms : {self.zooms}"
s += f", niter_affine : {self.niter_affine}"
s += f", niter_sdr : {self.niter_sdr}"
elif self.kind in ("surface", "vector"):
s += f", spacing : {self.spacing}"
s += f", smooth : {self.smooth}"
s += ", xhemi" if self.xhemi else ""
return f"<SourceMorph | {s}>"
@verbose
def save(self, fname, overwrite=False, verbose=None):
"""Save the morph for source estimates to a file.
Parameters
----------
fname : path-like
The path to the file. ``'-morph.h5'`` will be added if fname does
not end with ``'.h5'``.
%(overwrite)s
%(verbose)s
"""
_, write_hdf5 = _import_h5io_funcs()
fname = _check_fname(fname, overwrite=overwrite, must_exist=False)
if fname.suffix != ".h5":
fname = fname.with_name(f"{fname.name}-morph.h5")
out_dict = {k: getattr(self, k) for k in _SOURCE_MORPH_ATTRIBUTES}
for key in ("pre_affine", "sdr_morph"): # classes
if out_dict[key] is not None:
out_dict[key] = out_dict[key].__dict__
write_hdf5(fname, out_dict, overwrite=overwrite)
_slicers = list()
def _debug_img(data, affine, title, shape=None):
# Uncomment these lines for debugging help with volume morph:
#
# import nibabel as nib
# if sparse.issparse(data):
# data = data.toarray()
# data = np.asarray(data)
# if shape is not None:
# data = np.reshape(data, shape, order='F')
# _slicers.append(nib.viewers.OrthoSlicer3D(
# data, affine, axes=None, title=title))
# _slicers[-1].figs[0].suptitle(title, color='r')
return
def _check_zooms(mri_from, zooms, zooms_src_to):
# use voxel size of mri_from
if isinstance(zooms, str) and zooms == "auto":
zooms = zooms_src_to if zooms_src_to is not None else 5.0
if zooms is None:
zooms = mri_from.header.get_zooms()[:3]
zooms = np.atleast_1d(zooms).astype(float)
if zooms.shape == (1,):
zooms = np.repeat(zooms, 3)
if zooms.shape != (3,):
raise ValueError(
"zooms must be None, a singleton, or have shape (3,),"
f" got shape {zooms.shape}"
)
zooms = tuple(zooms)
return zooms
# def _resample_from_to(img, affine, to_vox_map):
# # Wrap to dipy for speed, equivalent to:
# # from nibabel.processing import resample_from_to
# # from nibabel.spatialimages import SpatialImage
# # return _get_img_fdata(
# # resample_from_to(SpatialImage(img, affine), to_vox_map, order=1))
# import dipy.align.imaffine
#
# return dipy.align.imaffine.AffineMap(
# None, to_vox_map[0], to_vox_map[1], img.shape, affine
# ).transform(img, resample_only=True)
###############################################################################
# I/O
def _check_subject_src(
subject, src, name="subject_from", src_name="src", *, warn_none=False
):
if isinstance(src, str):
subject_check = src
elif src is None: # assume it's correct although dangerous but unlikely
subject_check = subject
else:
subject_check = src._subject
warn_none = True
if subject_check is None and warn_none:
warn(
"The source space does not contain the subject name, we "
"recommend regenerating the source space (and forward / "
"inverse if applicable) for better code reliability"
)
if subject is None:
subject = subject_check
elif subject_check is not None and subject != subject_check:
raise ValueError(
f"{name} does not match {src_name} subject ({subject} != {subject_check})"
)
if subject is None:
raise ValueError(
f"{name} could not be inferred from {src_name}, it must be specified"
)
return subject
def read_source_morph(fname):
"""Load the morph for source estimates from a file.
Parameters
----------
fname : path-like
Path to the file containing the morph source estimates.
Returns
-------
source_morph : instance of SourceMorph
The loaded morph.
"""
read_hdf5, _ = _import_h5io_funcs()
vals = read_hdf5(fname)
if vals["pre_affine"] is not None: # reconstruct
from dipy.align.imaffine import AffineMap
affine = vals["pre_affine"]
vals["pre_affine"] = AffineMap(None)
vals["pre_affine"].__dict__ = affine
if vals["sdr_morph"] is not None:
from dipy.align.imwarp import DiffeomorphicMap
morph = vals["sdr_morph"]
vals["sdr_morph"] = DiffeomorphicMap(None, [])
vals["sdr_morph"].__dict__ = morph
# Backward compat with when it used to be a list
if isinstance(vals["vertices_to"], np.ndarray):
vals["vertices_to"] = [vals["vertices_to"]]
# Backward compat with when it used to be a single array
if isinstance(vals["src_data"].get("inuse", None), np.ndarray):
vals["src_data"]["inuse"] = [vals["src_data"]["inuse"]]
# added with compute_vol_morph_mat in 0.22:
vals["vol_morph_mat"] = vals.get("vol_morph_mat", None)
return SourceMorph(**vals)
###############################################################################
# Helper functions for SourceMorph methods
def _check_dep(nibabel="2.1.0", dipy="0.10.1"):
"""Check dependencies."""
for lib, ver in zip(["nibabel", "dipy"], [nibabel, dipy]):
passed = True if not ver else check_version(lib, ver)
if not passed:
raise ImportError(
f"{lib} {ver} or higher must be correctly "
"installed and accessible from Python"
)
def _morphed_stc_as_volume(morph, stc, mri_resolution, mri_space, output):
"""Return volume source space as Nifti1Image and/or save to disk."""
assert isinstance(stc, _BaseVolSourceEstimate) # should be guaranteed
if stc._data_ndim == 3:
stc = stc.magnitude()
_check_dep(nibabel="2.1.0", dipy=False)
NiftiImage, NiftiHeader = _triage_output(output)
# if MRI resolution is set manually as a single value, convert to tuple
if isinstance(mri_resolution, int | float):
# use iso voxel size
new_zooms = (float(mri_resolution),) * 3
elif isinstance(mri_resolution, tuple):
new_zooms = mri_resolution
# if full MRI resolution, compute zooms from shape and MRI zooms
if isinstance(mri_resolution, bool):
new_zooms = _get_zooms_orig(morph) if mri_resolution else None
# create header
hdr = NiftiHeader()
hdr.set_xyzt_units("mm", "msec")
hdr["pixdim"][4] = 1e3 * stc.tstep
# setup empty volume
if morph.src_data["to_vox_map"] is not None:
shape = morph.src_data["to_vox_map"][0]
affine = morph.src_data["to_vox_map"][1]
else:
shape = morph.shape
affine = morph.affine
assert stc.data.ndim == 2
n_times = stc.data.shape[1]
img = np.zeros((np.prod(shape), n_times))
img[stc.vertices[0], :] = stc.data
img = img.reshape(shape + (n_times,), order="F") # match order='F' above
del shape
# make nifti from data
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, affine, header=hdr)
# reslice in case of manually defined voxel size
zooms = morph.zooms[:3]
if new_zooms is not None:
from dipy.align.reslice import reslice
new_zooms = new_zooms[:3]
img, affine = reslice(
_get_img_fdata(img),
img.affine, # MRI to world registration
zooms, # old voxel size in mm
new_zooms,
) # new voxel size in mm
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, affine)
zooms = new_zooms
# set zooms in header
img.header.set_zooms(tuple(zooms) + (1,))
return img
def _get_src_data(src, mri_resolution=True):
# copy data to avoid conflicts
_validate_type(
src,
(_BaseSurfaceSourceEstimate, "path-like", SourceSpaces),
"src",
"source space or surface source estimate",
)
if isinstance(src, _BaseSurfaceSourceEstimate):
src_t = [dict(vertno=src.vertices[0]), dict(vertno=src.vertices[1])]
src_kind = "surface"
src_subject = src.subject
else:
src_t = _ensure_src(src).copy()
src_kind = src_t.kind
src_subject = src_t._subject
del src
_check_option("src kind", src_kind, ("surface", "volume", "mixed"))
# extract all relevant data for volume operations
src_data = dict()
if src_kind in ("volume", "mixed"):
use_src = src_t[-1]
shape = use_src["shape"]
start = 0 if src_kind == "volume" else 2
for si, s in enumerate(src_t[start:], start):
if s.get("interpolator", None) is None:
if mri_resolution:
raise RuntimeError(
f"MRI interpolator not present in src[{si}], "
"cannot use mri_resolution=True"
)
interpolator = None
break
else:
interpolator = sum((s["interpolator"] for s in src_t[start:]), 0.0)
inuses = [s["inuse"] for s in src_t[start:]]
src_data.update(
{
"src_shape": (shape[2], shape[1], shape[0]), # SAR
"src_affine_vox": use_src["vox_mri_t"]["trans"],
"src_affine_src": use_src["src_mri_t"]["trans"],
"src_affine_ras": use_src["mri_ras_t"]["trans"],
"src_shape_full": ( # SAR
use_src["mri_height"],
use_src["mri_depth"],
use_src["mri_width"],
),
"interpolator": interpolator,
"inuse": inuses,
"to_vox_map": None,
}
)
if src_kind in ("surface", "mixed"):
src_data.update(vertices_from=[s["vertno"].copy() for s in src_t[:2]])
# delete copy
return src_data, src_kind, src_subject
def _triage_output(output):
_check_option("output", output, ["nifti", "nifti1", "nifti2"])
if output in ("nifti", "nifti1"):
from nibabel import Nifti1Header as NiftiHeader
from nibabel import Nifti1Image as NiftiImage
else:
assert output == "nifti2"
from nibabel import Nifti2Header as NiftiHeader
from nibabel import Nifti2Image as NiftiImage
return NiftiImage, NiftiHeader
def _interpolate_data(stc, morph, mri_resolution, mri_space, output):
"""Interpolate source estimate data to MRI."""
_check_dep(nibabel="2.1.0", dipy=False)
NiftiImage, NiftiHeader = _triage_output(output)
_validate_type(stc, _BaseVolSourceEstimate, "stc", "volume source estimate")
assert morph.kind in ("volume", "mixed")
voxel_size_defined = False
if isinstance(mri_resolution, int | float) and not isinstance(mri_resolution, bool):
# use iso voxel size
mri_resolution = (float(mri_resolution),) * 3
if isinstance(mri_resolution, tuple):
_check_dep(nibabel=False, dipy="0.10.1") # nibabel was already checked
from dipy.align.reslice import reslice
voxel_size = mri_resolution
voxel_size_defined = True
mri_resolution = True
# if data wasn't morphed yet - necessary for call of
# stc_unmorphed.as_volume. Since only the shape of src is known, it cannot
# be resliced to a given voxel size without knowing the original.
if isinstance(morph, SourceSpaces):
assert morph.kind in ("volume", "mixed")
offset = 2 if morph.kind == "mixed" else 0
if voxel_size_defined:
raise ValueError(
"Cannot infer original voxel size for reslicing... "
"set mri_resolution to boolean value or apply morph first."
)
# Now deal with the fact that we may have multiple sub-volumes
inuse = [s["inuse"] for s in morph[offset:]]
src_shape = [s["shape"] for s in morph[offset:]]
assert len(set(map(tuple, src_shape))) == 1
src_subject = morph._subject
morph = BunchConst(src_data=_get_src_data(morph, mri_resolution)[0])
else:
# Make a list as we may have many inuse when using multiple sub-volumes
inuse = morph.src_data["inuse"]
src_subject = morph.subject_from
assert isinstance(inuse, list)
if stc.subject is not None:
_check_subject_src(stc.subject, src_subject, "stc.subject")
n_times = stc.data.shape[1]
shape = morph.src_data["src_shape"][::-1] + (n_times,) # SAR->RAST
dtype = np.complex128 if np.iscomplexobj(stc.data) else np.float64
# order='F' so that F-order flattening is faster
vols = np.zeros((np.prod(shape[:3]), shape[3]), dtype=dtype, order="F")
n_vertices_seen = 0
for this_inuse in inuse:
this_inuse = this_inuse.astype(bool)
n_vertices = np.sum(this_inuse)
stc_slice = slice(n_vertices_seen, n_vertices_seen + n_vertices)
vols[this_inuse] = stc.data[stc_slice]
n_vertices_seen += n_vertices
# use mri resolution as represented in src
if mri_resolution:
if morph.src_data["interpolator"] is None:
raise RuntimeError(
"Cannot morph with mri_resolution when add_interpolator=False "
"was used with setup_volume_source_space"
)
shape = morph.src_data["src_shape_full"][::-1] + (n_times,)
vols = morph.src_data["interpolator"] @ vols
# reshape back to proper shape
vols = np.reshape(vols, shape, order="F")
# set correct space
if mri_resolution:
affine = morph.src_data["src_affine_vox"]
else:
affine = morph.src_data["src_affine_src"]
if mri_space:
affine = np.dot(morph.src_data["src_affine_ras"], affine)
affine[:3] *= 1e3
# pre-define header
header = NiftiHeader()
header.set_xyzt_units("mm", "msec")
header["pixdim"][4] = 1e3 * stc.tstep
# if a specific voxel size was targeted (only possible after morphing)
if voxel_size_defined:
# reslice mri
vols, affine = reslice(vols, affine, _get_zooms_orig(morph), voxel_size)
with warnings.catch_warnings(): # nibabel<->numpy warning
vols = NiftiImage(vols, affine, header=header)
return vols
###############################################################################
# Morph for VolSourceEstimate
def _compute_morph_sdr(mri_from, mri_to, niter_affine, niter_sdr, zooms):
"""Get a matrix that morphs data from one subject to another."""
from dipy.align.imaffine import AffineMap
from .transforms import _compute_volume_registration
pipeline = "all" if niter_sdr else "affines"
niter = dict(
translation=niter_affine,
rigid=niter_affine,
affine=niter_affine,
sdr=niter_sdr if niter_sdr else (1,),
)
(
pre_affine,
sdr_morph,
to_shape,
to_affine,
from_shape,
from_affine,
) = _compute_volume_registration(
mri_from, mri_to, zooms=zooms, niter=niter, pipeline=pipeline
)
pre_affine = AffineMap(
pre_affine,
domain_grid_shape=to_shape,
domain_grid2world=to_affine,
codomain_grid_shape=from_shape,
codomain_grid2world=from_affine,
)
return to_shape, zooms, to_affine, pre_affine, sdr_morph
def _compute_morph_matrix(
subject_from,
subject_to,
vertices_from,
vertices_to,
smooth=None,
subjects_dir=None,
warn=True,
xhemi=False,
):
"""Compute morph matrix."""
logger.info("Computing morph matrix...")
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
tris = _get_subject_sphere_tris(subject_from, subjects_dir)
maps = read_morph_map(subject_from, subject_to, subjects_dir, xhemi)
# morph the data
morpher = []
for hemi_to in range(2): # iterate over to / block-rows of CSR matrix
hemi_from = (1 - hemi_to) if xhemi else hemi_to
morpher.append(
_hemi_morph(
tris[hemi_from],
vertices_to[hemi_to],
vertices_from[hemi_from],
smooth,
maps[hemi_from],
warn,
)
)
shape = (sum(len(v) for v in vertices_to), sum(len(v) for v in vertices_from))
data = [m.data for m in morpher]
indices = [m.indices.copy() for m in morpher]
indptr = [m.indptr.copy() for m in morpher]
# column indices need to be adjusted
indices[0 if xhemi else 1] += len(vertices_from[0])
indices = np.concatenate(indices)
# row index pointers need to be adjusted
indptr[1] = indptr[1][1:] + len(data[0])
indptr = np.concatenate(indptr)
# data does not need to be adjusted
data = np.concatenate(data)
# this is equivalent to morpher = sparse_block_diag(morpher).tocsr(),
# but works for xhemi mode
morpher = sparse.csr_array((data, indices, indptr), shape=shape)
logger.info("[done]")
return morpher
def _hemi_morph(tris, vertices_to, vertices_from, smooth, maps, warn):
_validate_type(smooth, (str, None, "int-like"), "smoothing steps")
if len(vertices_from) == 0:
return sparse.csr_array((len(vertices_to), 0))
e = mesh_edges(tris)
e.data[e.data == 2] = 1
n_vertices = e.shape[0]
e += _eye_array(n_vertices, format="csr")
if isinstance(smooth, str):
_check_option("smooth", smooth, ("nearest",), extra=" when used as a string.")
mm = _surf_nearest(vertices_from, e).tocsr()
elif smooth == 0:
mm = sparse.csc_array(
(
np.ones(len(vertices_from)), # data, indices, indptr
vertices_from,
np.arange(len(vertices_from) + 1),
),
shape=(e.shape[0], len(vertices_from)),
).tocsr()
else:
mm, n_missing, n_iter = _surf_upsampling_mat(vertices_from, e, smooth)
if n_missing and warn:
warn_(
f"{n_missing}/{e.shape[0]} vertices not included in "
"smoothing, consider increasing the number of steps"
)
logger.info(f" {n_iter} smooth iterations done.")
assert mm.shape == (n_vertices, len(vertices_from))
if maps is not None:
mm = maps[vertices_to] @ mm
else: # to == from
mm = mm[vertices_to]
assert mm.shape == (len(vertices_to), len(vertices_from))
return mm
@verbose
def grade_to_vertices(subject, grade, subjects_dir=None, n_jobs=None, verbose=None):
"""Convert a grade to source space vertices for a given subject.
Parameters
----------
subject : str
Name of the subject.
grade : int | list
Resolution of the icosahedral mesh (typically 5). If None, all
vertices will be used (potentially filling the surface). If a list,
then values will be morphed to the set of vertices specified in
in grade[0] and grade[1]. Note that specifying the vertices (e.g.,
grade=[np.arange(10242), np.arange(10242)] for fsaverage on a
standard grade 5 source space) can be substantially faster than
computing vertex locations. Note that if subject='fsaverage'
and 'grade=5', this set of vertices will automatically be used
(instead of computed) for speed, since this is a common morph.
%(subjects_dir)s
%(n_jobs)s
%(verbose)s
Returns
-------
vertices : list of array of int
Vertex numbers for LH and RH.
"""
_validate_type(grade, (list, "int-like", None), "grade")
# add special case for fsaverage for speed
if subject == "fsaverage" and isinstance(grade, int) and grade == 5:
return [np.arange(10242), np.arange(10242)]
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
spheres_to = [
subjects_dir / subject / "surf" / (xh + ".sphere.reg") for xh in ["lh", "rh"]
]
lhs, rhs = (read_surface(s)[0] for s in spheres_to)
if grade is not None: # fill a subset of vertices
if isinstance(grade, list):
if not len(grade) == 2:
raise ValueError(
"grade as a list must have two elements (arrays of output vertices)"
)
vertices = grade
else:
grade = _ensure_int(grade)
# find which vertices to use in "to mesh"
ico = _get_ico_tris(grade, return_surf=True)
lhs /= np.sqrt(np.sum(lhs**2, axis=1))[:, None]
rhs /= np.sqrt(np.sum(rhs**2, axis=1))[:, None]
# Compute nearest vertices in high dim mesh
parallel, my_compute_nearest, _ = parallel_func(_compute_nearest, n_jobs)
lhs, rhs, rr = (a.astype(np.float32) for a in [lhs, rhs, ico["rr"]])
vertices = parallel(my_compute_nearest(xhs, rr) for xhs in [lhs, rhs])
# Make sure the vertices are ordered
vertices = [np.sort(verts) for verts in vertices]
for verts in vertices:
if (np.diff(verts) == 0).any():
raise ValueError(
f"Cannot use icosahedral grade {grade} with subject "
f"{subject}, mapping {len(verts)} vertices onto the "
"high-resolution mesh "
"yields repeated vertices, use a lower grade or a "
"list of vertices from an existing source space"
)
else: # potentially fill the surface
vertices = [np.arange(lhs.shape[0]), np.arange(rhs.shape[0])]
return vertices
# Takes ~20 ms to hash, ~100 ms to compute (5x speedup)
@_custom_lru_cache(20)
def _surf_nearest(vertices, adj_mat):
# Vertices can be out of order, so sort them to start ...
order = np.argsort(vertices)
vertices = vertices[order]
# work around https://github.com/scipy/scipy/issues/20904
adj_mat = sparse.csr_array(
(
adj_mat.data,
adj_mat.indices.astype(np.int32),
adj_mat.indptr.astype(np.int32),
),
shape=adj_mat.shape,
)
_, _, sources = sparse.csgraph.dijkstra(
adj_mat, False, indices=vertices, min_only=True, return_predecessors=True
)
col = np.searchsorted(vertices, sources)
# ... then get things back to the correct configuration.
col = order[col]
row = np.arange(len(col))
data = np.ones(len(col))
mat = sparse.coo_array((data, (row, col)))
assert mat.shape == (adj_mat.shape[0], len(vertices)), mat.shape
return mat
def _csr_row_norm(data, row_norm):
assert row_norm.shape == (data.shape[0],)
data.data /= np.where(row_norm, row_norm, 1).repeat(np.diff(data.indptr))
# upsamplers are generally not very big (< 1 MB), and users might have a lot
# For 5 smoothing steps for example:
# smoothing_steps=5 takes ~20 ms to hash, ~100 ms to compute (5x speedup)
# smoothing_steps=None takes ~20 ms to hash, ~400 ms to compute (20x speedup)
@_custom_lru_cache(20)
def _surf_upsampling_mat(idx_from, e, smooth):
"""Upsample data on a subject's surface given mesh edges."""
# we're in CSR format and it's to==from
assert isinstance(e, sparse.csr_array)
n_tot = e.shape[0]
assert e.shape == (n_tot, n_tot)
# our output matrix starts out as a smaller matrix, and will gradually
# increase in size
data = _eye_array(len(idx_from), format="csr")
_validate_type(smooth, ("int-like", str, None), "smoothing steps")
if smooth is not None: # number of steps
smooth = _ensure_int(smooth, "smoothing steps")
if smooth <= 0: # == 0 is handled in a shortcut above
raise ValueError(
f"The number of smoothing operations has to be at least 0, got {smooth}"
)
smooth = smooth - 1
# idx will gradually expand from idx_from -> np.arange(n_tot)
idx = idx_from
recompute_idx_sum = True # always compute at least once
mult = np.zeros(n_tot)
for k in range(100): # the maximum allowed
# on first iteration it's already restricted, so we need to re-restrict
if k != 0 and len(idx) < n_tot:
data = data[idx]
# smoothing multiplication
use_e = e[:, idx] if len(idx) < n_tot else e
data = use_e @ data
del use_e
# compute row sums + output indices
if recompute_idx_sum:
if len(idx) == n_tot:
row_sum = np.asarray(e.sum(-1))
idx = np.arange(n_tot)
recompute_idx_sum = False
else:
mult[idx] = 1
row_sum = e @ mult
idx = np.where(row_sum)[0]
# do row normalization
_csr_row_norm(data, row_sum)
if k == smooth or (smooth is None and len(idx) == n_tot):
break # last iteration / done
assert data.shape == (n_tot, len(idx_from))
n_missing = n_tot - len(idx)
n_iter = k + 1
return data, n_missing, n_iter
def _sparse_argmax_nnz_row(csr_mat):
"""Return index of the maximum non-zero index in each row."""
n_rows = csr_mat.shape[0]
idx = np.empty(n_rows, dtype=np.int64)
for k in range(n_rows):
row = csr_mat[[k]].tocoo()
idx[k] = row.col[np.argmax(row.data)]
return idx
def _get_subject_sphere_tris(subject, subjects_dir):
spheres = [
subjects_dir / subject / "surf" / (xh + ".sphere.reg") for xh in ["lh", "rh"]
]
tris = [read_surface(s)[1] for s in spheres]
return tris
###############################################################################
# Apply morph to source estimate
def _get_zooms_orig(morph):
"""Compute src zooms from morph zooms, morph shape and src shape."""
# zooms_to = zooms_from / shape_to * shape_from for each spatial dimension
return [
mz / ss * ms
for mz, ms, ss in zip(
morph.zooms, morph.shape, morph.src_data["src_shape_full"][::-1]
)
]
def _check_vertices_match(v1, v2, name):
if not np.array_equal(v1, v2):
ext = ""
if np.isin(v2, v1).all():
ext = " Vertices were likely excluded during forward computation."
raise ValueError(
f"vertices do not match between morph ({len(v1)}) and stc ({len(v2)}) "
'for {name}:\n{v1}\n{v2}\nPerhaps src_to=fwd["src"] needs to be passed '
f"when calling compute_source_morph.{ext}"
)
_VOL_MAT_CHECK_RATIO = 1.0
def _apply_morph_data(morph, stc_from):
"""Morph a source estimate from one subject to another."""
if stc_from.subject is not None and stc_from.subject != morph.subject_from:
raise ValueError(
f"stc.subject ({stc_from.subject}) != morph.subject_from "
f"({morph.subject_from})"
)
_check_option("morph.kind", morph.kind, ("surface", "volume", "mixed"))
if morph.kind == "surface":
_validate_type(
stc_from,
_BaseSurfaceSourceEstimate,
"stc_from",
"volume source estimate when using a surface morph",
)
elif morph.kind == "volume":
_validate_type(
stc_from,
_BaseVolSourceEstimate,
"stc_from",
"surface source estimate when using a volume morph",
)
else:
assert morph.kind == "mixed" # can handle any
_validate_type(
stc_from,
_BaseSourceEstimate,
"stc_from",
"source estimate when using a mixed source morph",
)
# figure out what to actually morph
do_vol = not isinstance(stc_from, _BaseSurfaceSourceEstimate)
do_surf = not isinstance(stc_from, _BaseVolSourceEstimate)
vol_src_offset = 2 if do_surf else 0
from_surf_stop = sum(len(v) for v in stc_from.vertices[:vol_src_offset])
to_surf_stop = sum(len(v) for v in morph.vertices_to[:vol_src_offset])
from_vol_stop = stc_from.data.shape[0]
vertices_to = morph.vertices_to
if morph.kind == "mixed":
vertices_to = vertices_to[0 if do_surf else 2 : None if do_vol else 2]
to_vol_stop = sum(len(v) for v in vertices_to)
mesg = "Ori × Time" if stc_from.data.ndim == 3 else "Time"
data_from = np.reshape(stc_from.data, (stc_from.data.shape[0], -1))
n_times = data_from.shape[1] # oris treated as times
data = np.empty((to_vol_stop, n_times), stc_from.data.dtype)
to_used = np.zeros(data.shape[0], bool)
from_used = np.zeros(data_from.shape[0], bool)
if do_vol:
stc_from_vertices = stc_from.vertices[vol_src_offset:]
vertices_from = morph._vol_vertices_from
for ii, (v1, v2) in enumerate(zip(vertices_from, stc_from_vertices)):
_check_vertices_match(v1, v2, f"volume[{ii}]")
from_sl = slice(from_surf_stop, from_vol_stop)
assert not from_used[from_sl].any()
from_used[from_sl] = True
to_sl = slice(to_surf_stop, to_vol_stop)
assert not to_used[to_sl].any()
to_used[to_sl] = True
# Loop over time points to save memory
if morph.vol_morph_mat is None and n_times >= _VOL_MAT_CHECK_RATIO * (
to_vol_stop - to_surf_stop
):
warn(
"Computing a sparse volume morph matrix will save time over "
"directly morphing, calling morph.compute_vol_morph_mat(). "
"Consider (re-)saving your instance to disk to avoid "
"subsequent recomputation."
)
morph.compute_vol_morph_mat()
if morph.vol_morph_mat is None:
logger.debug("Using individual volume morph")
data[to_sl, :] = morph._morph_vols(data_from[from_sl], mesg)
else:
logger.debug("Using sparse volume morph matrix")
data[to_sl, :] = morph.vol_morph_mat @ data_from[from_sl]
if do_surf:
for hemi, v1, v2 in zip(
("left", "right"), morph.src_data["vertices_from"], stc_from.vertices[:2]
):
_check_vertices_match(v1, v2, f"{hemi} hemisphere")
from_sl = slice(0, from_surf_stop)
assert not from_used[from_sl].any()
from_used[from_sl] = True
to_sl = slice(0, to_surf_stop)
assert not to_used[to_sl].any()
to_used[to_sl] = True
data[to_sl] = morph.morph_mat @ data_from[from_sl]
assert to_used.all()
assert from_used.all()
data.shape = (data.shape[0],) + stc_from.data.shape[1:]
klass = stc_from.__class__
stc_to = klass(data, vertices_to, stc_from.tmin, stc_from.tstep, morph.subject_to)
return stc_to