# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import copy as cp
import os
import os.path as op
import re
from collections import defaultdict
from colorsys import hsv_to_rgb, rgb_to_hsv
import numpy as np
from scipy import linalg, sparse
from .fixes import _safe_svd
from .morph_map import read_morph_map
from .parallel import parallel_func
from .source_estimate import (
SourceEstimate,
VolSourceEstimate,
_center_of_mass,
extract_label_time_course,
spatial_src_adjacency,
)
from .source_space._source_space import (
SourceSpaces,
_ensure_src,
add_source_space_distances,
)
from .stats.cluster_level import _find_clusters, _get_components
from .surface import (
_mesh_borders,
complete_surface_info,
fast_cross_3d,
mesh_dist,
mesh_edges,
read_surface,
)
from .utils import (
_check_fname,
_check_option,
_check_subject,
_validate_type,
check_random_state,
fill_doc,
get_subjects_dir,
logger,
verbose,
warn,
)
def _blend_colors(color_1, color_2):
"""Blend two colors in HSV space.
Parameters
----------
color_1, color_2 : None | tuple
RGBA tuples with values between 0 and 1. None if no color is available.
If both colors are None, the output is None. If only one is None, the
output is the other color.
Returns
-------
color : None | tuple
RGBA tuple of the combined color. Saturation, value and alpha are
averaged, whereas the new hue is determined as angle half way between
the two input colors' hues.
"""
if color_1 is None and color_2 is None:
return None
elif color_1 is None:
return color_2
elif color_2 is None:
return color_1
r_1, g_1, b_1, a_1 = color_1
h_1, s_1, v_1 = rgb_to_hsv(r_1, g_1, b_1)
r_2, g_2, b_2, a_2 = color_2
h_2, s_2, v_2 = rgb_to_hsv(r_2, g_2, b_2)
hue_diff = abs(h_1 - h_2)
if hue_diff < 0.5:
h = min(h_1, h_2) + hue_diff / 2.0
else:
h = max(h_1, h_2) + (1.0 - hue_diff) / 2.0
h %= 1.0
s = (s_1 + s_2) / 2.0
v = (v_1 + v_2) / 2.0
r, g, b = hsv_to_rgb(h, s, v)
a = (a_1 + a_2) / 2.0
color = (r, g, b, a)
return color
def _split_colors(color, n):
"""Create n colors in HSV space that occupy a gradient in value.
Parameters
----------
color : tuple
RGBA tuple with values between 0 and 1.
n : int >= 2
Number of colors on the gradient.
Returns
-------
colors : tuple of tuples, len = n
N RGBA tuples that occupy a gradient in value (low to high) but share
saturation and hue with the input color.
"""
r, g, b, a = color
h, s, v = rgb_to_hsv(r, g, b)
gradient_range = np.sqrt(n / 10.0)
if v > 0.5:
v_max = min(0.95, v + gradient_range / 2)
v_min = max(0.05, v_max - gradient_range)
else:
v_min = max(0.05, v - gradient_range / 2)
v_max = min(0.95, v_min + gradient_range)
hsv_colors = ((h, s, v_) for v_ in np.linspace(v_min, v_max, n))
rgb_colors = (hsv_to_rgb(h_, s_, v_) for h_, s_, v_ in hsv_colors)
rgba_colors = (
(
r_,
g_,
b_,
a,
)
for r_, g_, b_ in rgb_colors
)
return tuple(rgba_colors)
def _n_colors(n, bytes_=False, cmap="hsv"):
"""Produce a list of n unique RGBA color tuples based on a colormap.
Parameters
----------
n : int
Number of colors.
bytes : bool
Return colors as integers values between 0 and 255 (instead of floats
between 0 and 1).
cmap : str
Which colormap to use.
Returns
-------
colors : array, shape (n, 4)
RGBA color values.
"""
n_max = 2**10
if n > n_max:
raise NotImplementedError(f"Can't produce more than {n_max} unique colors.")
from .viz.utils import _get_cmap
cm = _get_cmap(cmap)
pos = np.linspace(0, 1, n, False)
colors = cm(pos, bytes=bytes_)
if bytes_:
# make sure colors are unique
for ii, c in enumerate(colors):
if np.any(np.all(colors[:ii] == c, 1)):
raise RuntimeError(
f"Could not get {n} unique colors from {cmap} "
"colormap. Try using a different colormap."
)
return colors
@fill_doc
class Label:
"""A FreeSurfer/MNE label with vertices restricted to one hemisphere.
Labels can be combined with the ``+`` operator:
* Duplicate vertices are removed.
* If duplicate vertices have conflicting position values, an error
is raised.
* Values of duplicate vertices are summed.
Parameters
----------
vertices : array, shape (N,)
Vertex indices (0 based).
pos : array, shape (N, 3) | None
Locations in meters. If None, then zeros are used.
values : array, shape (N,) | None
Values at the vertices. If None, then ones are used.
hemi : 'lh' | 'rh'
Hemisphere to which the label applies.
comment : str
Kept as information but not used by the object itself.
name : str
Kept as information but not used by the object itself.
filename : str
Kept as information but not used by the object itself.
%(subject_label)s
color : None | matplotlib color
Default label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red).
%(verbose)s
Attributes
----------
color : None | tuple
Default label color, represented as RGBA tuple with values between 0
and 1.
comment : str
Comment from the first line of the label file.
hemi : 'lh' | 'rh'
Hemisphere.
name : None | str
A name for the label. It is OK to change that attribute manually.
pos : array, shape (N, 3)
Locations in meters.
subject : str | None
The label subject.
It is best practice to set this to the proper
value on initialization, but it can also be set manually.
values : array, shape (N,)
Values at the vertices.
vertices : array, shape (N,)
Vertex indices (0 based)
"""
@verbose
def __init__(
self,
vertices=(),
pos=None,
values=None,
hemi=None,
comment="",
name=None,
filename=None,
subject=None,
color=None,
*,
verbose=None,
):
# check parameters
if not isinstance(hemi, str):
raise ValueError(f"hemi must be a string, not {type(hemi)}")
vertices = np.asarray(vertices, int)
if np.any(np.diff(vertices.astype(int)) <= 0):
raise ValueError("Vertices must be ordered in increasing order.")
if color is not None:
from matplotlib.colors import colorConverter
color = colorConverter.to_rgba(color)
if values is None:
values = np.ones(len(vertices))
else:
values = np.asarray(values)
if pos is None:
pos = np.zeros((len(vertices), 3))
else:
pos = np.asarray(pos)
if not (len(vertices) == len(values) == len(pos)):
raise ValueError(
"vertices, values and pos need to have same length (number of vertices)"
)
# name
if name is None and filename is not None:
name = op.basename(filename[:-6])
self.vertices = vertices
self.pos = pos
self.values = values
self.hemi = hemi
self.comment = comment
self.subject = _check_subject(None, subject, raise_error=False)
self.color = color
self.name = name
self.filename = filename
def __setstate__(self, state): # noqa: D105
self.vertices = state["vertices"]
self.pos = state["pos"]
self.values = state["values"]
self.hemi = state["hemi"]
self.comment = state["comment"]
self.subject = state.get("subject", None)
self.color = state.get("color", None)
self.name = state["name"]
self.filename = state["filename"]
def __getstate__(self): # noqa: D105
out = dict(
vertices=self.vertices,
pos=self.pos,
values=self.values,
hemi=self.hemi,
comment=self.comment,
subject=self.subject,
color=self.color,
name=self.name,
filename=self.filename,
)
return out
def __repr__(self): # noqa: D105
name = "unknown, " if self.subject is None else self.subject + ", "
name += repr(self.name) if self.name is not None else "unnamed"
n_vert = len(self)
return f"<Label | {name}, {self.hemi} : {n_vert} vertices>"
def __len__(self):
"""Return the number of vertices.
Returns
-------
n_vertices : int
The number of vertices.
"""
return len(self.vertices)
def __add__(self, other):
"""Add Labels."""
_validate_type(other, (Label, BiHemiLabel), "other")
if isinstance(other, BiHemiLabel):
return other + self
else: # isinstance(other, Label)
if self.subject != other.subject:
raise ValueError(
"Label subject parameters must match, got "
f'"{self.subject}" and "{other.subject}". Consider setting the '
"subject parameter on initialization, or "
"setting label.subject manually before "
"combining labels."
)
if self.hemi != other.hemi:
name = f"{self.name} + {other.name}"
if self.hemi == "lh":
lh, rh = self.copy(), other.copy()
else:
lh, rh = other.copy(), self.copy()
color = _blend_colors(self.color, other.color)
return BiHemiLabel(lh, rh, name, color)
# check for overlap
duplicates = np.intersect1d(self.vertices, other.vertices)
n_dup = len(duplicates)
if n_dup:
self_dup = [np.where(self.vertices == d)[0][0] for d in duplicates]
other_dup = [np.where(other.vertices == d)[0][0] for d in duplicates]
if not np.all(self.pos[self_dup] == other.pos[other_dup]):
err = (
f"Labels {repr(self.name)} and {repr(other.name)}: vertices "
"overlap but differ in position values"
)
raise ValueError(err)
isnew = np.array([v not in duplicates for v in other.vertices])
vertices = np.hstack((self.vertices, other.vertices[isnew]))
pos = np.vstack((self.pos, other.pos[isnew]))
# find position of other's vertices in new array
tgt_idx = [np.where(vertices == v)[0][0] for v in other.vertices]
n_self = len(self.values)
n_other = len(other.values)
new_len = n_self + n_other - n_dup
values = np.zeros(new_len, dtype=self.values.dtype)
values[:n_self] += self.values
values[tgt_idx] += other.values
else:
vertices = np.hstack((self.vertices, other.vertices))
pos = np.vstack((self.pos, other.pos))
values = np.hstack((self.values, other.values))
indcs = np.argsort(vertices)
vertices, pos, values = vertices[indcs], pos[indcs, :], values[indcs]
comment = f"{self.comment} + {other.comment}"
name0 = self.name if self.name else "unnamed"
name1 = other.name if other.name else "unnamed"
name = f"{name0} + {name1}"
color = _blend_colors(self.color, other.color)
label = Label(
vertices, pos, values, self.hemi, comment, name, None, self.subject, color
)
return label
def __sub__(self, other):
"""Subtract Labels."""
_validate_type(other, (Label, BiHemiLabel), "other")
if isinstance(other, BiHemiLabel):
if self.hemi == "lh":
return self - other.lh
else:
return self - other.rh
else: # isinstance(other, Label):
if self.subject != other.subject:
raise ValueError(
"Label subject parameters must match, got "
f'"{self.subject}" and "{other.subject}". Consider setting the '
"subject parameter on initialization, or "
"setting label.subject manually before "
"combining labels."
)
if self.hemi == other.hemi:
keep = np.isin(self.vertices, other.vertices, True, invert=True)
else:
keep = np.arange(len(self.vertices))
name = f"{self.name or 'unnamed'} - {other.name or 'unnamed'}"
return Label(
self.vertices[keep],
self.pos[keep],
self.values[keep],
self.hemi,
self.comment,
name,
None,
self.subject,
self.color,
)
def save(self, filename):
r"""Write to disk as FreeSurfer \*.label file.
Parameters
----------
filename : path-like
Path to label file to produce.
Notes
-----
Note that due to file specification limitations, the Label's subject
and color attributes are not saved to disk.
"""
write_label(filename, self)
def copy(self):
"""Copy the label instance.
Returns
-------
label : instance of Label
The copied label.
"""
return cp.deepcopy(self)
def fill(self, src, name=None):
"""Fill the surface between sources for a source space label.
Parameters
----------
src : SourceSpaces
Source space in which the label was defined. If a source space is
provided, the label is expanded to fill in surface vertices that
lie between the vertices included in the source space. For the
added vertices, ``pos`` is filled in with positions from the
source space, and ``values`` is filled in from the closest source
space vertex.
name : None | str
Name for the new Label (default is self.name).
Returns
-------
label : Label
The label covering the same vertices in source space but also
including intermediate surface vertices.
See Also
--------
Label.restrict
Label.smooth
"""
# find source space patch info
if len(self.vertices) == 0:
return self.copy()
hemi_src = _get_label_src(self, src)
if not np.all(np.isin(self.vertices, hemi_src["vertno"])):
msg = "Source space does not contain all of the label's vertices"
raise ValueError(msg)
if hemi_src["nearest"] is None:
warn(
"Source space is being modified in place because patch "
"information is needed. To avoid this in the future, run "
"mne.add_source_space_distances() on the source space "
"and save it to disk."
)
dist_limit = 0
add_source_space_distances(src, dist_limit=dist_limit)
nearest = hemi_src["nearest"]
# find new vertices
include = np.isin(nearest, self.vertices, False)
vertices = np.nonzero(include)[0]
# values
nearest_in_label = np.digitize(nearest[vertices], self.vertices, True)
values = self.values[nearest_in_label]
# pos
pos = hemi_src["rr"][vertices]
name = self.name if name is None else name
label = Label(
vertices,
pos,
values,
self.hemi,
self.comment,
name,
None,
self.subject,
self.color,
)
return label
def restrict(self, src, name=None):
"""Restrict a label to a source space.
Parameters
----------
src : instance of SourceSpaces
The source spaces to use to restrict the label.
name : None | str
Name for the new Label (default is self.name).
Returns
-------
label : instance of Label
The Label restricted to the set of source space vertices.
See Also
--------
Label.fill
Notes
-----
.. versionadded:: 0.20
"""
if len(self.vertices) == 0:
return self.copy()
hemi_src = _get_label_src(self, src)
mask = np.isin(self.vertices, hemi_src["vertno"])
name = self.name if name is None else name
label = Label(
self.vertices[mask],
self.pos[mask],
self.values[mask],
self.hemi,
self.comment,
name,
None,
self.subject,
self.color,
)
return label
@verbose
def smooth(
self,
subject=None,
smooth=2,
grade=None,
subjects_dir=None,
n_jobs=None,
verbose=None,
):
"""Smooth the label.
Useful for filling in labels made in a
decimated source space for display.
Parameters
----------
%(subject_label)s
smooth : int
Number of iterations for the smoothing of the surface data.
Cannot be None here since not all vertices are used. For a
grade of 5 (e.g., fsaverage), a smoothing of 2 will fill a
label.
grade : int, list of shape (2,), array, or None
Resolution of the icosahedral mesh (typically 5). If None, all
vertices will be used (potentially filling the surface). If a list,
values will be morphed to the set of vertices specified in grade[0]
and grade[1], assuming that these are vertices for the left and
right hemispheres. Note that specifying the vertices (e.g.,
grade=[np.arange(10242), np.arange(10242)] for fsaverage on a
standard grade 5 source space) can be substantially faster than
computing vertex locations. If one array is used, it is assumed
that all vertices belong to the hemisphere of the label. To create
a label filling the surface, use None.
%(subjects_dir)s
%(n_jobs)s
%(verbose)s
Returns
-------
label : instance of Label
The smoothed label.
Notes
-----
This function will set label.pos to be all zeros. If the positions
on the new surface are required, consider using mne.read_surface
with ``label.vertices``.
"""
subject = _check_subject(self.subject, subject)
return self.morph(
subject, subject, smooth, grade, subjects_dir, n_jobs, verbose=verbose
)
@verbose
def morph(
self,
subject_from=None,
subject_to=None,
smooth=5,
grade=None,
subjects_dir=None,
n_jobs=None,
verbose=None,
):
"""Morph the label.
Useful for transforming a label from one subject to another.
Parameters
----------
subject_from : str | None
The name of the subject of the current label. If None, the
initial subject will be taken from self.subject.
subject_to : str
The name of the subject to morph the label to. This will
be put in label.subject of the output label file.
smooth : int
Number of iterations for the smoothing of the surface data.
Cannot be None here since not all vertices are used.
grade : int, list of shape (2,), array, or None
Resolution of the icosahedral mesh (typically 5). If None, all
vertices will be used (potentially filling the surface). If a list,
values will be morphed to the set of vertices specified in grade[0]
and grade[1], assuming that these are vertices for the left and
right hemispheres. Note that specifying the vertices (e.g.,
``grade=[np.arange(10242), np.arange(10242)]`` for fsaverage on a
standard grade 5 source space) can be substantially faster than
computing vertex locations. If one array is used, it is assumed
that all vertices belong to the hemisphere of the label. To create
a label filling the surface, use None.
%(subjects_dir)s
%(n_jobs)s
%(verbose)s
Returns
-------
label : instance of Label
The morphed label.
See Also
--------
mne.morph_labels : Morph a set of labels.
Notes
-----
This function will set label.pos to be all zeros. If the positions
on the new surface are required, consider using `mne.read_surface`
with ``label.vertices``.
"""
from .morph import compute_source_morph, grade_to_vertices
subject_from = _check_subject(self.subject, subject_from)
if not isinstance(subject_to, str):
raise TypeError('"subject_to" must be entered as a string')
if not isinstance(smooth, int):
raise TypeError("smooth must be an integer")
if np.all(self.values == 0):
raise ValueError(
"Morphing label with all zero values will result "
"in the label having no vertices. Consider using "
"something like label.values.fill(1.0)."
)
idx = 0 if self.hemi == "lh" else 1
if isinstance(grade, np.ndarray):
grade_ = [np.array([], int)] * 2
grade_[idx] = grade
grade = grade_
del grade_
grade = grade_to_vertices(subject_to, grade, subjects_dir=subjects_dir)
spacing = [np.array([], int)] * 2
spacing[idx] = grade[idx]
vertices = [np.array([], int)] * 2
vertices[idx] = self.vertices
data = self.values[:, np.newaxis]
assert len(data) == sum(len(v) for v in vertices)
stc = SourceEstimate(data, vertices, tmin=1, tstep=1, subject=subject_from)
stc = compute_source_morph(
stc,
subject_from,
subject_to,
spacing=spacing,
smooth=smooth,
subjects_dir=subjects_dir,
warn=False,
).apply(stc)
inds = np.nonzero(stc.data)[0]
self.values = stc.data[inds, :].ravel()
self.pos = np.zeros((len(inds), 3))
self.vertices = stc.vertices[idx][inds]
self.subject = subject_to
return self
@fill_doc
def split(self, parts=2, subject=None, subjects_dir=None, freesurfer=False):
"""Split the Label into two or more parts.
Parameters
----------
parts : int >= 2 | tuple of str | str
Number of labels to create (default is 2), or tuple of strings
specifying label names for new labels (from posterior to anterior),
or 'contiguous' to split the label into connected components.
If a number or 'contiguous' is specified, names of the new labels
will be the input label's name with div1, div2 etc. appended.
%(subject_label)s
%(subjects_dir)s
freesurfer : bool
By default (``False``) ``split_label`` uses an algorithm that is
slightly optimized for performance and numerical precision. Set
``freesurfer`` to ``True`` in order to replicate label splits from
FreeSurfer's ``mris_divide_parcellation``.
Returns
-------
labels : list of Label, shape (n_parts,)
The labels, starting from the lowest to the highest end of the
projection axis.
Notes
-----
If using 'contiguous' split, you must ensure that the label being split
uses the same triangular resolution as the surface mesh files in
``subjects_dir`` Also, some small fringe labels may be returned that
are close (but not connected) to the large components.
The spatial split finds the label's principal eigen-axis on the
spherical surface, projects all label vertex coordinates onto this
axis, and divides them at regular spatial intervals.
"""
if isinstance(parts, str) and parts == "contiguous":
return _split_label_contig(self, subject, subjects_dir)
elif isinstance(parts, tuple | int):
return split_label(self, parts, subject, subjects_dir, freesurfer)
else:
raise ValueError(
"Need integer, tuple of strings, or string "
f"('contiguous'). Got {type(parts)})"
)
def get_vertices_used(self, vertices=None):
"""Get the source space's vertices inside the label.
Parameters
----------
vertices : ndarray of int, shape (n_vertices,) | None
The set of vertices to compare the label to. If None, equals to
``np.arange(10242)``. Defaults to None.
Returns
-------
label_verts : ndarray of in, shape (n_label_vertices,)
The vertices of the label corresponding used by the data.
"""
if vertices is None:
vertices = np.arange(10242)
label_verts = vertices[np.isin(vertices, self.vertices)]
return label_verts
def get_tris(self, tris, vertices=None):
"""Get the source space's triangles inside the label.
Parameters
----------
tris : ndarray of int, shape (n_tris, 3)
The set of triangles corresponding to the vertices in a
source space.
vertices : ndarray of int, shape (n_vertices,) | None
The set of vertices to compare the label to. If None, equals to
``np.arange(10242)``. Defaults to None.
Returns
-------
label_tris : ndarray of int, shape (n_tris, 3)
The subset of tris used by the label.
"""
vertices_ = self.get_vertices_used(vertices)
selection = np.all(np.isin(tris, vertices_).reshape(tris.shape), axis=1)
label_tris = tris[selection]
if len(np.unique(label_tris)) < len(vertices_):
logger.info("Surprising label structure. Trying to repair triangles.")
dropped_vertices = np.setdiff1d(vertices_, label_tris)
n_dropped = len(dropped_vertices)
assert n_dropped == (len(vertices_) - len(np.unique(label_tris)))
# put missing vertices as extra zero-length triangles
add_tris = (
dropped_vertices + np.zeros((len(dropped_vertices), 3), dtype=int).T
)
label_tris = np.r_[label_tris, add_tris.T]
assert len(np.unique(label_tris)) == len(vertices_)
return label_tris
@fill_doc
def center_of_mass(
self, subject=None, restrict_vertices=False, subjects_dir=None, surf="sphere"
):
"""Compute the center of mass of the label.
This function computes the spatial center of mass on the surface
as in :footcite:`LarsonLee2013`.
Parameters
----------
%(subject_label)s
restrict_vertices : bool | array of int | instance of SourceSpaces
If True, returned vertex will be one from the label. Otherwise,
it could be any vertex from surf. If an array of int, the
returned vertex will come from that array. If instance of
SourceSpaces (as of 0.13), the returned vertex will be from
the given source space. For most accuruate estimates, do not
restrict vertices.
%(subjects_dir)s
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
Returns
-------
vertex : int
Vertex of the spatial center of mass for the inferred hemisphere,
with each vertex weighted by its label value.
See Also
--------
SourceEstimate.center_of_mass
vertex_to_mni
Notes
-----
.. versionadded:: 0.13
References
----------
.. footbibliography::
"""
if not isinstance(surf, str):
raise TypeError(f"surf must be a string, got {type(surf)}")
subject = _check_subject(self.subject, subject)
if np.any(self.values < 0):
raise ValueError("Cannot compute COM with negative values")
if np.all(self.values == 0):
raise ValueError(
"Cannot compute COM with all values == 0. For "
"structural labels, consider setting to ones via "
"label.values[:] = 1."
)
vertex = _center_of_mass(
self.vertices,
self.values,
self.hemi,
surf,
subject,
subjects_dir,
restrict_vertices,
)
return vertex
@verbose
def distances_to_outside(
self, subject=None, subjects_dir=None, surface="white", *, verbose=None
):
"""Compute the distance from each vertex to outside the label.
Parameters
----------
%(subject_label)s
%(subjects_dir)s
%(surface)s
%(verbose)s
Returns
-------
dist : ndarray, shape (n_vertices,)
The distance from each vertex in ``self.vertices`` to exit the
label.
outside_vertices : ndarray, shape (n_vertices,)
For each vertex in the label, the nearest vertex outside the
label.
Notes
-----
Distances are computed along the cortical surface.
.. versionadded:: 0.24
"""
rr, tris = self._load_surface(subject, subjects_dir, surface)
adjacency = mesh_dist(tris, rr)
mask = np.zeros(len(rr))
mask[self.vertices] = 1
border_vert = _mesh_borders(tris, mask)
# vertices on the edge
outside_vert = np.setdiff1d(border_vert, self.vertices)
dist, _, outside = sparse.csgraph.dijkstra(
adjacency, indices=outside_vert, min_only=True, return_predecessors=True
)
dist = dist[self.vertices] * 1e-3 # mm to m
outside = outside[self.vertices]
return dist, outside
@verbose
def compute_area(
self, subject=None, subjects_dir=None, surface="white", *, verbose=None
):
"""Compute the surface area of a label.
Parameters
----------
%(subject_label)s
%(subjects_dir)s
%(surface)s
%(verbose)s
Returns
-------
area : float
The area (in m²) of the label.
Notes
-----
..versionadded:: 0.24
"""
_, _, surf = self._load_surface(
subject, subjects_dir, surface, return_dict=True
)
complete_surface_info(
surf, do_neighbor_vert=False, do_neighbor_tri=False, copy=False
)
in_ = np.isin(surf["tris"], self.vertices).reshape(surf["tris"].shape)
tidx = np.where(in_.all(-1))[0]
if len(tidx) == 0:
warn("No complete triangles found, perhaps label is not filled?")
return surf["tri_area"][tidx].sum() * 1e-6 # mm² -> m²
def _load_surface(self, subject, subjects_dir, surface, **kwargs):
subject = _check_subject(self.subject, subject)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
fname = subjects_dir / subject / "surf" / f"{self.hemi}.{surface}"
fname = _check_fname(fname, overwrite="read", must_exist=True, name="Surface")
return read_surface(fname, **kwargs)
def _get_label_src(label, src):
src = _ensure_src(src)
if src.kind != "surface":
raise RuntimeError(
f"Cannot operate on SourceSpaces that are not surface type, got {src.kind}"
)
if label.hemi == "lh":
hemi_src = src[0]
else:
hemi_src = src[1]
return hemi_src
class BiHemiLabel:
"""A freesurfer/MNE label with vertices in both hemispheres.
Parameters
----------
lh : Label
Label for the left hemisphere.
rh : Label
Label for the right hemisphere.
name : None | str
Name for the label.
color : None | color
Label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red).
Note that due to file specification limitations, the color isn't saved
to or loaded from files written to disk.
Attributes
----------
lh : Label
Label for the left hemisphere.
rh : Label
Label for the right hemisphere.
name : None | str
A name for the label. It is OK to change that attribute manually.
subject : str | None
The name of the subject.
"""
def __init__(self, lh, rh, name=None, color=None):
if lh.subject != rh.subject:
raise ValueError(
f"lh.subject ({lh.subject}) and rh.subject ({rh.subject}) must agree"
)
self.lh = lh
self.rh = rh
self.name = name
self.subject = lh.subject
self.color = color
self.hemi = "both"
def __repr__(self): # noqa: D105
name = "unknown, " if self.subject is None else self.subject + ", "
name += repr(self.name) if self.name is not None else "unnamed"
return (
f"<BiHemiLabel | {name}, "
f"lh : {len(self.lh)} vertices, rh : {self.rh} vertices>"
)
def __len__(self):
"""Return the number of vertices.
Returns
-------
n_vertices : int
The number of vertices.
"""
return len(self.lh) + len(self.rh)
def __add__(self, other):
"""Add labels."""
if isinstance(other, Label):
if other.hemi == "lh":
lh = self.lh + other
rh = self.rh
else:
lh = self.lh
rh = self.rh + other
elif isinstance(other, BiHemiLabel):
lh = self.lh + other.lh
rh = self.rh + other.rh
else:
raise TypeError(f"Need: Label or BiHemiLabel. Got: {other!r}")
name = f"{self.name} + {other.name}"
color = _blend_colors(self.color, other.color)
return BiHemiLabel(lh, rh, name, color)
def __sub__(self, other):
"""Subtract labels."""
_validate_type(other, (Label, BiHemiLabel), "other")
if isinstance(other, Label):
if other.hemi == "lh":
lh = self.lh - other
rh = self.rh
else:
rh = self.rh - other
lh = self.lh
else: # isinstance(other, BiHemiLabel)
lh = self.lh - other.lh
rh = self.rh - other.rh
if len(lh.vertices) == 0:
return rh
elif len(rh.vertices) == 0:
return lh
else:
name = f"{self.name} - {other.name}"
return BiHemiLabel(lh, rh, name, self.color)
@verbose
def read_label(filename, subject=None, color=None, *, verbose=None):
"""Read FreeSurfer Label file.
Parameters
----------
filename : str
Path to label file.
%(subject_label)s
It is good practice to set this attribute to avoid combining
incompatible labels and SourceEstimates (e.g., ones from other
subjects). Note that due to file specification limitations, the
subject name isn't saved to or loaded from files written to disk.
color : None | matplotlib color
Default label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red).
Note that due to file specification limitations, the color isn't saved
to or loaded from files written to disk.
%(verbose)s
Returns
-------
label : Label
Instance of Label object with attributes:
- ``comment``: comment from the first line of the label file
- ``vertices``: vertex indices (0 based, column 1)
- ``pos``: locations in meters (columns 2 - 4 divided by 1000)
- ``values``: values at the vertices (column 5)
See Also
--------
read_labels_from_annot
write_labels_to_annot
"""
if subject is not None and not isinstance(subject, str):
raise TypeError("subject must be a string")
# find hemi
basename = op.basename(filename)
if basename.endswith("lh.label") or basename.startswith("lh."):
hemi = "lh"
elif basename.endswith("rh.label") or basename.startswith("rh."):
hemi = "rh"
else:
raise ValueError(
"Cannot find which hemisphere it is. File should end with lh.label or "
f"rh.label: {basename}"
)
# find name
if basename.startswith(("lh.", "rh.")):
basename_ = basename[3:]
if basename.endswith(".label"):
basename_ = basename[:-6]
else:
basename_ = basename[:-9]
name = f"{basename_}-{hemi}"
# read the file
with open(filename) as fid:
comment = fid.readline().replace("\n", "")[1:]
nv = int(fid.readline())
data = np.empty((5, nv))
for i, line in enumerate(fid):
data[:, i] = line.split()
# let's make sure everything is ordered correctly
vertices = np.array(data[0], dtype=np.int32)
pos = 1e-3 * data[1:4].T
values = data[4]
order = np.argsort(vertices)
vertices = vertices[order]
pos = pos[order]
values = values[order]
label = Label(
vertices,
pos,
values,
hemi,
comment,
name,
filename,
subject,
color,
verbose=verbose,
)
return label
@verbose
def write_label(filename, label, verbose=None):
"""Write a FreeSurfer label.
Parameters
----------
filename : str
Path to label file to produce.
label : Label
The label object to save.
%(verbose)s
See Also
--------
write_labels_to_annot
Notes
-----
Note that due to file specification limitations, the Label's subject and
color attributes are not saved to disk.
"""
hemi = label.hemi
path_head, name = op.split(filename)
if name.endswith(".label"):
name = name[:-6]
if not (name.startswith(hemi) or name.endswith(hemi)):
name += "-" + hemi
filename = op.join(path_head, name) + ".label"
logger.info(f"Saving label to : {filename}")
with open(filename, "w", encoding="utf-8") as fid:
n_vertices = len(label.vertices)
data = np.zeros((n_vertices, 5), dtype=np.float64)
data[:, 0] = label.vertices
data[:, 1:4] = 1e3 * label.pos
data[:, 4] = label.values
fid.write(f"#{label.comment}\n")
fid.write(f"{n_vertices}\n")
for vert, pos, val in zip(label.vertices, 1e3 * label.pos, label.values):
fid.write(f"{vert} {pos[0]:f} {pos[1]:f} {pos[2]:f} {val:f}\n")
def _prep_label_split(label, subject=None, subjects_dir=None):
"""Get label and subject information prior to label splitting."""
# If necessary, find the label
if isinstance(label, BiHemiLabel):
raise TypeError("Can only split labels restricted to one hemisphere.")
elif isinstance(label, str):
label = read_label(label)
# Find the subject
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
if label.subject is None and subject is None:
raise ValueError("The subject needs to be specified.")
elif subject is None:
subject = label.subject
elif label.subject is None:
pass
elif subject != label.subject:
raise ValueError(
f"The label specifies a different subject ({repr(label.subject)}) from "
f"the subject parameter ({repr(subject)})."
)
return label, subject, subjects_dir
def _split_label_contig(label_to_split, subject=None, subjects_dir=None):
"""Split label into contiguous regions (i.e., connected components).
Parameters
----------
label_to_split : Label | str
Label which is to be split (Label object or path to a label file).
%(subject_label)s
%(subjects_dir)s
Returns
-------
labels : list of Label
The contiguous labels, in order of descending size.
"""
# Convert to correct input if necessary
label_to_split, subject, subjects_dir = _prep_label_split(
label_to_split, subject, subjects_dir
)
# Find the spherical surface to get vertices and tris
surf_fname = ".".join((label_to_split.hemi, "sphere"))
surf_path = op.join(subjects_dir, subject, "surf", surf_fname)
surface_points, surface_tris = read_surface(surf_path)
# Get vertices we want to keep and compute mesh edges
verts_arr = label_to_split.vertices
edges_all = mesh_edges(surface_tris)
# Subselect rows and cols of vertices that belong to the label
select_edges = edges_all[verts_arr][:, verts_arr].tocoo()
# Compute connected components and store as lists of vertex numbers
comp_labels = _get_components(verts_arr, select_edges)
# Convert to indices in the original surface space
label_divs = []
for comp in comp_labels:
label_divs.append(verts_arr[comp])
# Construct label division names
n_parts = len(label_divs)
if label_to_split.name.endswith(("lh", "rh")):
basename = label_to_split.name[:-3]
name_ext = label_to_split.name[-3:]
else:
basename = label_to_split.name
name_ext = ""
name_pattern = f"{basename}_div%i{name_ext}"
names = tuple(name_pattern % i for i in range(1, n_parts + 1))
# Colors
if label_to_split.color is None:
colors = (None,) * n_parts
else:
colors = _split_colors(label_to_split.color, n_parts)
# Sort label divisions by their size (in vertices)
label_divs.sort(key=lambda x: len(x), reverse=True)
labels = []
for div, name, color in zip(label_divs, names, colors):
# Get indices of dipoles within this division of the label
verts = np.array(sorted(list(div)), int)
vert_indices = np.isin(verts_arr, verts, assume_unique=True)
# Set label attributes
pos = label_to_split.pos[vert_indices]
values = label_to_split.values[vert_indices]
hemi = label_to_split.hemi
comment = label_to_split.comment
lbl = Label(verts, pos, values, hemi, comment, name, None, subject, color)
labels.append(lbl)
return labels
@fill_doc
def split_label(label, parts=2, subject=None, subjects_dir=None, freesurfer=False):
"""Split a Label into two or more parts.
Parameters
----------
label : Label | str
Label which is to be split (Label object or path to a label file).
parts : int >= 2 | tuple of str
A sequence of strings specifying label names for the new labels (from
posterior to anterior), or the number of new labels to create (default
is 2). If a number is specified, names of the new labels will be the
input label's name with div1, div2 etc. appended.
%(subject_label)s
%(subjects_dir)s
freesurfer : bool
By default (``False``) ``split_label`` uses an algorithm that is
slightly optimized for performance and numerical precision. Set
``freesurfer`` to ``True`` in order to replicate label splits from
FreeSurfer's ``mris_divide_parcellation``.
Returns
-------
labels : list of Label, shape (n_parts,)
The labels, starting from the lowest to the highest end of the
projection axis.
Notes
-----
Works by finding the label's principal eigen-axis on the spherical surface,
projecting all label vertex coordinates onto this axis and dividing them at
regular spatial intervals.
"""
label, subject, subjects_dir = _prep_label_split(label, subject, subjects_dir)
# find the parts
if np.isscalar(parts):
n_parts = int(parts)
if label.name.endswith(("lh", "rh")):
basename = label.name[:-3]
name_ext = label.name[-3:]
else:
basename = label.name
name_ext = ""
name_pattern = f"{basename}_div%i{name_ext}"
names = tuple(name_pattern % i for i in range(1, n_parts + 1))
else:
names = parts
n_parts = len(names)
if n_parts < 2:
raise ValueError(f"Can't split label into {n_parts} parts.")
# find the spherical surface
surf_fname = ".".join((label.hemi, "sphere"))
surf_path = op.join(subjects_dir, subject, "surf", surf_fname)
surface_points, surface_tris = read_surface(surf_path)
# find the label coordinates on the surface
points = surface_points[label.vertices]
center = np.mean(points, axis=0)
centered_points = points - center
# find the label's normal
if freesurfer:
# find the Freesurfer vertex closest to the center
distance = np.sqrt(np.sum(centered_points**2, axis=1))
i_closest = np.argmin(distance)
closest_vertex = label.vertices[i_closest]
# find the normal according to freesurfer convention
idx = np.any(surface_tris == closest_vertex, axis=1)
tris_for_normal = surface_tris[idx]
r1 = surface_points[tris_for_normal[:, 0], :]
r2 = surface_points[tris_for_normal[:, 1], :]
r3 = surface_points[tris_for_normal[:, 2], :]
tri_normals = fast_cross_3d((r2 - r1), (r3 - r1))
normal = np.mean(tri_normals, axis=0)
normal /= linalg.norm(normal)
else:
# Normal of the center
normal = center / linalg.norm(center)
# project all vertex coordinates on the tangential plane for this point
q, _ = linalg.qr(normal[:, np.newaxis])
tangent_u = q[:, 1:]
m_obs = np.dot(centered_points, tangent_u)
# find principal eigendirection
m_cov = np.dot(m_obs.T, m_obs)
w, vr = linalg.eig(m_cov)
i = np.argmax(w)
eigendir = vr[:, i]
# project back into 3d space
axis = np.dot(tangent_u, eigendir)
# orient them from posterior to anterior
if axis[1] < 0:
axis *= -1
# project the label on the axis
proj = np.dot(points, axis)
# assign mark (new label index)
proj -= proj.min()
proj /= proj.max() / n_parts
mark = proj // 1
mark[mark == n_parts] = n_parts - 1
# colors
if label.color is None:
colors = (None,) * n_parts
else:
colors = _split_colors(label.color, n_parts)
# construct new labels
labels = []
for i, name, color in zip(range(n_parts), names, colors):
idx = mark == i
vert = label.vertices[idx]
pos = label.pos[idx]
values = label.values[idx]
hemi = label.hemi
comment = label.comment
lbl = Label(vert, pos, values, hemi, comment, name, None, subject, color)
labels.append(lbl)
return labels
def label_sign_flip(label, src):
"""Compute sign for label averaging.
Parameters
----------
label : Label | BiHemiLabel
A label.
src : SourceSpaces
The source space over which the label is defined.
Returns
-------
flip : array
Sign flip vector (contains 1 or -1).
"""
if len(src) != 2:
raise ValueError("Only source spaces with 2 hemisphers are accepted")
lh_vertno = src[0]["vertno"]
rh_vertno = src[1]["vertno"]
# get source orientations
ori = list()
if label.hemi in ("lh", "both"):
vertices = label.vertices if label.hemi == "lh" else label.lh.vertices
vertno_sel = np.intersect1d(lh_vertno, vertices)
ori.append(src[0]["nn"][vertno_sel])
if label.hemi in ("rh", "both"):
vertices = label.vertices if label.hemi == "rh" else label.rh.vertices
vertno_sel = np.intersect1d(rh_vertno, vertices)
ori.append(src[1]["nn"][vertno_sel])
if len(ori) == 0:
raise Exception(f'Unknown hemisphere type "{label.hemi}"')
ori = np.concatenate(ori, axis=0)
if len(ori) == 0:
return np.array([], int)
_, _, Vh = _safe_svd(ori, full_matrices=False)
# The sign of Vh is ambiguous, so we should align to the max-positive
# (outward) direction
dots = np.dot(ori, Vh[0])
if np.mean(dots) < 0:
dots *= -1
# Comparing to the direction of the first right singular vector
flip = np.sign(dots)
return flip
@verbose
def stc_to_label(
stc, src=None, smooth=True, connected=False, subjects_dir=None, verbose=None
):
"""Compute a label from the non-zero sources in an stc object.
Parameters
----------
stc : SourceEstimate
The source estimates.
src : SourceSpaces | str | None
The source space over which the source estimates are defined.
If it's a string it should the subject name (e.g. fsaverage).
Can be None if stc.subject is not None.
smooth : bool
Fill in vertices on the cortical surface that are not in the source
space based on the closest source space vertex (requires
src to be a SourceSpace).
connected : bool
If True a list of connected labels will be returned in each
hemisphere. The labels are ordered in decreasing order depending
of the maximum value in the stc.
%(subjects_dir)s
%(verbose)s
Returns
-------
labels : list of Label | list of list of Label
The generated labels. If connected is False, it returns
a list of Labels (one per hemisphere). If no Label is available
in a hemisphere, None is returned. If connected is True,
it returns for each hemisphere a list of connected labels
ordered in decreasing order depending of the maximum value in the stc.
If no Label is available in an hemisphere, an empty list is returned.
"""
if not isinstance(smooth, bool):
raise ValueError(f"smooth should be True or False. Got {smooth}.")
src = stc.subject if src is None else src
if src is None:
raise ValueError("src cannot be None if stc.subject is None")
if isinstance(src, str):
subject = src
else:
subject = stc.subject
if not isinstance(stc, SourceEstimate):
raise ValueError("SourceEstimate should be surface source estimates")
if isinstance(src, str):
if connected:
raise ValueError(
"The option to return only connected labels is "
"only available if source spaces are provided."
)
if smooth:
msg = (
"stc_to_label with smooth=True requires src to be an "
"instance of SourceSpace"
)
raise ValueError(msg)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
surf_path_from = subjects_dir / src / "surf"
rr_lh, tris_lh = read_surface(surf_path_from / "lh.white")
rr_rh, tris_rh = read_surface(surf_path_from / "rh.white")
rr = [rr_lh, rr_rh]
tris = [tris_lh, tris_rh]
else:
if not isinstance(src, SourceSpaces):
raise TypeError("src must be a string or a set of source spaces")
if len(src) != 2:
raise ValueError("source space should contain the 2 hemispheres")
rr = [1e3 * src[0]["rr"], 1e3 * src[1]["rr"]]
tris = [src[0]["tris"], src[1]["tris"]]
src_conn = spatial_src_adjacency(src).tocsr()
labels = []
cnt = 0
cnt_full = 0
for hemi_idx, (hemi, this_vertno, this_tris, this_rr) in enumerate(
zip(["lh", "rh"], stc.vertices, tris, rr)
):
this_data = stc.data[cnt : cnt + len(this_vertno)]
if connected: # we know src *must* be a SourceSpaces now
vertno = np.where(src[hemi_idx]["inuse"])[0]
if not len(np.setdiff1d(this_vertno, vertno)) == 0:
raise RuntimeError(
"stc contains vertices not present in source space, did you morph?"
)
tmp = np.zeros((len(vertno), this_data.shape[1]))
this_vertno_idx = np.searchsorted(vertno, this_vertno)
tmp[this_vertno_idx] = this_data
this_data = tmp
offset = cnt_full + len(this_data)
this_src_adj = src_conn[cnt_full:offset, cnt_full:offset].tocoo()
this_data_abs_max = np.abs(this_data).max(axis=1)
clusters, _ = _find_clusters(this_data_abs_max, 0.0, adjacency=this_src_adj)
cnt_full += len(this_data)
# Then order clusters in descending order based on maximum value
clusters_max = np.argsort([np.max(this_data_abs_max[c]) for c in clusters])[
::-1
]
clusters = [clusters[k] for k in clusters_max]
clusters = [vertno[c] for c in clusters]
else:
clusters = [this_vertno[np.any(this_data, axis=1)]]
cnt += len(this_vertno)
clusters = [c for c in clusters if len(c) > 0]
if len(clusters) == 0:
if not connected:
this_labels = None
else:
this_labels = []
else:
this_labels = []
colors = _n_colors(len(clusters))
for c, color in zip(clusters, colors):
idx_use = c
label = Label(
idx_use,
this_rr[idx_use],
None,
hemi,
"Label from stc",
subject=subject,
color=color,
)
if smooth:
label = label.fill(src)
this_labels.append(label)
if not connected:
this_labels = this_labels[0]
labels.append(this_labels)
return labels
def _verts_within_dist(graph, sources, max_dist):
"""Find all vertices within a maximum geodesic distance from source.
Parameters
----------
graph : scipy.sparse.csr_array
Sparse matrix with distances between adjacent vertices.
sources : list of int
Source vertices.
max_dist : float
Maximum geodesic distance.
Returns
-------
verts : array
Vertices within max_dist.
dist : array
Distances from source vertex.
"""
dist_map = {}
verts_added_last = []
for source in sources:
dist_map[source] = 0
verts_added_last.append(source)
# add neighbors until no more neighbors within max_dist can be found
while len(verts_added_last) > 0:
verts_added = []
for i in verts_added_last:
v_dist = dist_map[i]
row = graph[[i], :]
neighbor_vert = row.indices
neighbor_dist = row.data
for j, d in zip(neighbor_vert, neighbor_dist):
n_dist = v_dist + d
if j in dist_map:
if n_dist < dist_map[j]:
dist_map[j] = n_dist
else:
if n_dist <= max_dist:
dist_map[j] = n_dist
# we found a new vertex within max_dist
verts_added.append(j)
verts_added_last = verts_added
verts = np.sort(np.array(list(dist_map.keys()), int))
dist = np.array([dist_map[v] for v in verts], int)
return verts, dist
def _grow_labels(seeds, extents, hemis, names, dist, vert, subject):
"""Parallelize grow_labels."""
labels = []
for seed, extent, hemi, name in zip(seeds, extents, hemis, names):
label_verts, label_dist = _verts_within_dist(dist[hemi], seed, extent)
# create a label
if len(seed) == 1:
seed_repr = str(seed)
else:
seed_repr = ",".join(map(str, seed))
comment = f"Circular label: seed={seed_repr}, extent={extent:0.1f}mm"
label = Label(
vertices=label_verts,
pos=vert[hemi][label_verts],
values=label_dist,
hemi=hemi,
comment=comment,
name=str(name),
subject=subject,
)
labels.append(label)
return labels
@fill_doc
def grow_labels(
subject,
seeds,
extents,
hemis,
subjects_dir=None,
n_jobs=None,
overlap=True,
names=None,
surface="white",
colors=None,
):
"""Generate circular labels in source space with region growing.
This function generates a number of labels in source space by growing
regions starting from the vertices defined in "seeds". For each seed, a
label is generated containing all vertices within a maximum geodesic
distance on the white matter surface from the seed.
Parameters
----------
%(subject)s
seeds : int | list
Seed, or list of seeds. Each seed can be either a vertex number or
a list of vertex numbers.
extents : array | float
Extents (radius in mm) of the labels.
hemis : array | int
Hemispheres to use for the labels (0: left, 1: right).
%(subjects_dir)s
%(n_jobs)s
Likely only useful if tens or hundreds of labels are being expanded
simultaneously. Does not apply with ``overlap=False``.
overlap : bool
Produce overlapping labels. If True (default), the resulting labels
can be overlapping. If False, each label will be grown one step at a
time, and occupied territory will not be invaded.
names : None | list of str
Assign names to the new labels (list needs to have the same length as
seeds).
%(surface)s
colors : array, shape (n, 4) or (, 4) | None
How to assign colors to each label. If None then unique colors will be
chosen automatically (default), otherwise colors will be broadcast
from the array. The first three values will be interpreted as RGB
colors and the fourth column as the alpha value (commonly 1).
Returns
-------
labels : list of Label
The labels' ``comment`` attribute contains information on the seed
vertex and extent; the ``values`` attribute contains distance from the
seed in millimeters.
Notes
-----
"extents" and "hemis" can either be arrays with the same length as
seeds, which allows using a different extent and hemisphere for
label, or integers, in which case the same extent and hemisphere is
used for each label.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# make sure the inputs are arrays
if np.isscalar(seeds):
seeds = [seeds]
seeds = [np.atleast_1d(seed) for seed in seeds]
extents = np.atleast_1d(extents)
hemis = np.atleast_1d(hemis)
n_seeds = len(seeds)
if len(extents) != 1 and len(extents) != n_seeds:
raise ValueError("The extents parameter has to be of length 1 or len(seeds)")
if len(hemis) != 1 and len(hemis) != n_seeds:
raise ValueError("The hemis parameter has to be of length 1 or len(seeds)")
if colors is not None:
if len(colors.shape) == 1: # if one color for all seeds
n_colors = 1
n = colors.shape[0]
else:
n_colors, n = colors.shape
if n_colors != n_seeds and n_colors != 1:
msg = (
f"Number of colors ({n_colors}) and seeds ({n_seeds}) are not "
"compatible."
)
raise ValueError(msg)
if n != 4:
msg = f"Colors must have 4 values (RGB and alpha), not {n}."
raise ValueError(msg)
# make the arrays the same length as seeds
if len(extents) == 1:
extents = np.tile(extents, n_seeds)
if len(hemis) == 1:
hemis = np.tile(hemis, n_seeds)
hemis = np.array(["lh" if h == 0 else "rh" for h in hemis])
# names
if names is None:
names = [f"Label_{ii}-{h}" for ii, h in enumerate(hemis)]
else:
if np.isscalar(names):
names = [names]
if len(names) != n_seeds:
raise ValueError(
"The names parameter has to be None or have length len(seeds)"
)
for i, hemi in enumerate(hemis):
if not names[i].endswith(hemi):
names[i] = "-".join((names[i], hemi))
names = np.array(names)
# load the surfaces and create the distance graphs
tris, vert, dist = {}, {}, {}
for hemi in set(hemis):
surf_fname = subjects_dir / subject / "surf" / f"{hemi}.{surface}"
vert[hemi], tris[hemi] = read_surface(surf_fname)
dist[hemi] = mesh_dist(tris[hemi], vert[hemi])
if overlap:
# create the patches
parallel, my_grow_labels, n_jobs = parallel_func(_grow_labels, n_jobs)
seeds = np.array_split(np.array(seeds, dtype="O"), n_jobs)
extents = np.array_split(extents, n_jobs)
hemis = np.array_split(hemis, n_jobs)
names = np.array_split(names, n_jobs)
labels = sum(
parallel(
my_grow_labels(s, e, h, n, dist, vert, subject)
for s, e, h, n in zip(seeds, extents, hemis, names)
),
[],
)
else:
# special procedure for non-overlapping labels
labels = _grow_nonoverlapping_labels(
subject, seeds, extents, hemis, vert, dist, names
)
if colors is None:
# add a unique color to each label
label_colors = _n_colors(len(labels))
else:
# use specified colors
label_colors = np.empty((len(labels), 4))
label_colors[:] = colors
for label, color in zip(labels, label_colors):
label.color = color
return labels
def _grow_nonoverlapping_labels(
subject, seeds_, extents_, hemis, vertices_, graphs, names_
):
"""Grow labels while ensuring that they don't overlap."""
labels = []
for hemi in set(hemis):
hemi_index = hemis == hemi
seeds = [seed for seed, h in zip(seeds_, hemis) if h == hemi]
extents = extents_[hemi_index]
names = names_[hemi_index]
graph = graphs[hemi] # distance graph
n_vertices = len(vertices_[hemi])
n_labels = len(seeds)
# prepare parcellation
parc = np.empty(n_vertices, dtype="int32")
parc[:] = -1
# initialize active sources
sources = {} # vert -> (label, dist_from_seed)
edge = [] # queue of vertices to process
for label, seed in enumerate(seeds):
if np.any(parc[seed] >= 0):
raise ValueError("Overlapping seeds")
parc[seed] = label
for s in np.atleast_1d(seed):
sources[s] = (label, 0.0)
edge.append(s)
# grow from sources
while edge:
vert_from = edge.pop(0)
label, old_dist = sources[vert_from]
# add neighbors within allowable distance
row = graph[[vert_from], :]
for vert_to, dist in zip(row.indices, row.data):
# Prevent adding a point that has already been used
# (prevents infinite loop)
if (vert_to == seeds[label]).any():
continue
new_dist = old_dist + dist
# abort if outside of extent
if new_dist > extents[label]:
continue
vert_to_label = parc[vert_to]
if vert_to_label >= 0:
_, vert_to_dist = sources[vert_to]
# abort if the vertex is occupied by a closer seed
if new_dist > vert_to_dist:
continue
elif vert_to in edge:
edge.remove(vert_to)
# assign label value
parc[vert_to] = label
sources[vert_to] = (label, new_dist)
edge.append(vert_to)
# convert parc to labels
for i in range(n_labels):
vertices = np.nonzero(parc == i)[0]
name = str(names[i])
label_ = Label(vertices, hemi=hemi, name=name, subject=subject)
labels.append(label_)
return labels
@fill_doc
def random_parcellation(
subject, n_parcel, hemi, subjects_dir=None, surface="white", random_state=None
):
"""Generate random cortex parcellation by growing labels.
This function generates a number of labels which don't intersect and
cover the whole surface. Regions are growing around randomly chosen
seeds.
Parameters
----------
%(subject)s
n_parcel : int
Total number of cortical parcels.
hemi : str
Hemisphere id (ie ``'lh'``, ``'rh'``, ``'both'``). In the case
of ``'both'``, both hemispheres are processed with ``(n_parcel // 2)``
parcels per hemisphere.
%(subjects_dir)s
%(surface)s
%(random_state)s
Returns
-------
labels : list of Label
Random cortex parcellation.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if hemi == "both":
hemi = ["lh", "rh"]
hemis = np.atleast_1d(hemi)
# load the surfaces and create the distance graphs
tris, vert, dist = {}, {}, {}
for hemi in set(hemis):
surf_fname = subjects_dir / subject / "surf" / f"{hemi}.{surface}"
vert[hemi], tris[hemi] = read_surface(surf_fname)
dist[hemi] = mesh_dist(tris[hemi], vert[hemi])
# create the patches
labels = _cortex_parcellation(subject, n_parcel, hemis, vert, dist, random_state)
# add a unique color to each label
colors = _n_colors(len(labels))
for label, color in zip(labels, colors):
label.color = color
return labels
def _cortex_parcellation(
subject, n_parcel, hemis, vertices_, graphs, random_state=None
):
"""Random cortex parcellation."""
labels = []
rng = check_random_state(random_state)
for hemi in set(hemis):
parcel_size = len(hemis) * len(vertices_[hemi]) // n_parcel
graph = graphs[hemi] # distance graph
n_vertices = len(vertices_[hemi])
# prepare parcellation
parc = np.full(n_vertices, -1, dtype="int32")
# initialize active sources
s = rng.choice(range(n_vertices))
label_idx = 0
edge = [s] # queue of vertices to process
parc[s] = label_idx
label_size = 1
rest = len(parc) - 1
# grow from sources
while rest:
# if there are not free neighbors, start new parcel
if not edge:
rest_idx = np.where(parc < 0)[0]
s = rng.choice(rest_idx)
edge = [s]
label_idx += 1
label_size = 1
parc[s] = label_idx
rest -= 1
vert_from = edge.pop(0)
# add neighbors within allowable distance
# row = graph[vert_from, :]
# row_indices, row_data = row.indices, row.data
sl = slice(graph.indptr[vert_from], graph.indptr[vert_from + 1])
row_indices, row_data = graph.indices[sl], graph.data[sl]
for vert_to, dist in zip(row_indices, row_data):
vert_to_label = parc[vert_to]
# abort if the vertex is already occupied
if vert_to_label >= 0:
continue
# abort if outside of extent
if label_size > parcel_size:
label_idx += 1
label_size = 1
edge = [vert_to]
parc[vert_to] = label_idx
rest -= 1
break
# assign label value
parc[vert_to] = label_idx
label_size += 1
edge.append(vert_to)
rest -= 1
# merging small labels
# label adjacency matrix
n_labels = label_idx + 1
label_sizes = np.empty(n_labels, dtype=int)
label_conn = np.zeros([n_labels, n_labels], dtype="bool")
for i in range(n_labels):
vertices = np.nonzero(parc == i)[0]
label_sizes[i] = len(vertices)
neighbor_vertices = graph[vertices, :].indices
neighbor_labels = np.unique(np.array(parc[neighbor_vertices]))
label_conn[i, neighbor_labels] = 1
np.fill_diagonal(label_conn, 0)
# merging
label_id = range(n_labels)
while n_labels > n_parcel // len(hemis):
# smallest label and its smallest neighbor
i = np.argmin(label_sizes)
neighbors = np.nonzero(label_conn[i, :])[0]
j = neighbors[np.argmin(label_sizes[neighbors])]
# merging two labels
label_conn[j, :] += label_conn[i, :]
label_conn[:, j] += label_conn[:, i]
label_conn = np.delete(label_conn, i, 0)
label_conn = np.delete(label_conn, i, 1)
label_conn[j, j] = 0
label_sizes[j] += label_sizes[i]
label_sizes = np.delete(label_sizes, i, 0)
n_labels -= 1
vertices = np.nonzero(parc == label_id[i])[0]
parc[vertices] = label_id[j]
label_id = np.delete(label_id, i, 0)
# convert parc to labels
for i in range(n_labels):
vertices = np.nonzero(parc == label_id[i])[0]
name = "label_" + str(i)
label_ = Label(vertices, hemi=hemi, name=name, subject=subject)
labels.append(label_)
return labels
def _read_annot_cands(dir_name, raise_error=True):
"""List the candidate parcellations."""
if not op.isdir(dir_name):
if not raise_error:
return list()
raise OSError("Directory for annotation does not exist: %s", dir_name)
cands = os.listdir(dir_name)
cands = sorted(
set(
c.replace("lh.", "").replace("rh.", "").replace(".annot", "")
for c in cands
if ".annot" in c
),
key=lambda x: x.lower(),
)
# exclude .ctab files
cands = [c for c in cands if ".ctab" not in c]
return cands
def _read_annot(fname):
"""Read a Freesurfer annotation from a .annot file.
Note : Copied from PySurfer
Parameters
----------
fname : str
Path to annotation file
Returns
-------
annot : numpy array, shape=(n_verts)
Annotation id at each vertex
ctab : numpy array, shape=(n_entries, 5)
RGBA + label id colortable array
names : list of str
List of region names as stored in the annot file
"""
if not op.isfile(fname):
dir_name = op.split(fname)[0]
cands = _read_annot_cands(dir_name)
if len(cands) == 0:
raise OSError(
f"No such file {fname}, no candidate parcellations found in directory"
)
else:
raise OSError(
f"No such file {fname}, candidate parcellations in "
"that directory:\n" + "\n".join(cands)
)
with open(fname, "rb") as fid:
n_verts = np.fromfile(fid, ">i4", 1)[0]
data = np.fromfile(fid, ">i4", n_verts * 2).reshape(n_verts, 2)
annot = data[data[:, 0], 1]
ctab_exists = np.fromfile(fid, ">i4", 1)[0]
if not ctab_exists:
raise Exception("Color table not found in annotation file")
n_entries = np.fromfile(fid, ">i4", 1)[0]
if n_entries > 0:
length = np.fromfile(fid, ">i4", 1)[0]
np.fromfile(fid, ">c", length) # discard orig_tab
names = list()
ctab = np.zeros((n_entries, 5), np.int64)
for i in range(n_entries):
name_length = np.fromfile(fid, ">i4", 1)[0]
name = np.fromfile(fid, f"|S{name_length}", 1)[0]
names.append(name)
ctab[i, :4] = np.fromfile(fid, ">i4", 4)
ctab[i, 4] = (
ctab[i, 0]
+ ctab[i, 1] * (2**8)
+ ctab[i, 2] * (2**16)
+ ctab[i, 3] * (2**24)
)
else:
ctab_version = -n_entries
if ctab_version != 2:
raise Exception("Color table version not supported")
n_entries = np.fromfile(fid, ">i4", 1)[0]
ctab = np.zeros((n_entries, 5), np.int64)
length = np.fromfile(fid, ">i4", 1)[0]
np.fromfile(fid, f"|S{length}", 1) # Orig table path
entries_to_read = np.fromfile(fid, ">i4", 1)[0]
names = list()
for i in range(entries_to_read):
np.fromfile(fid, ">i4", 1) # Structure
name_length = np.fromfile(fid, ">i4", 1)[0]
name = np.fromfile(fid, f"|S{name_length}", 1)[0]
names.append(name)
ctab[i, :4] = np.fromfile(fid, ">i4", 4)
ctab[i, 4] = ctab[i, 0] + ctab[i, 1] * (2**8) + ctab[i, 2] * (2**16)
# convert to more common alpha value
ctab[:, 3] = 255 - ctab[:, 3]
return annot, ctab, names
def _get_annot_fname(annot_fname, subject, hemi, parc, subjects_dir):
"""Get the .annot filenames and hemispheres."""
if annot_fname is not None:
# we use use the .annot file specified by the user
hemis = [op.basename(annot_fname)[:2]]
if hemis[0] not in ["lh", "rh"]:
raise ValueError(
"Could not determine hemisphere from filename, "
'filename has to start with "lh" or "rh".'
)
annot_fname = [annot_fname]
else:
# construct .annot file names for requested subject, parc, hemi
_check_option("hemi", hemi, ["lh", "rh", "both"])
if hemi == "both":
hemis = ["lh", "rh"]
else:
hemis = [hemi]
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
annot_fname = [
str(subjects_dir / subject / "label" / f"{hemi_}.{parc}.annot")
for hemi_ in hemis
]
return annot_fname, hemis
def _load_vert_pos(subject, subjects_dir, surf_name, hemi, n_expected, extra=""):
fname_surf = op.join(subjects_dir, subject, "surf", f"{hemi}.{surf_name}")
vert_pos, _ = read_surface(fname_surf)
vert_pos /= 1e3 # the positions in labels are in meters
if len(vert_pos) != n_expected:
raise RuntimeError(
f"Number of surface vertices ({len(vert_pos)}) for subject {subject}"
" does not match the expected number of vertices"
f"({n_expected}){extra}"
)
return vert_pos
@verbose
def read_labels_from_annot(
subject,
parc="aparc",
hemi="both",
surf_name="white",
annot_fname=None,
regexp=None,
subjects_dir=None,
sort=True,
verbose=None,
):
"""Read labels from a FreeSurfer annotation file.
Note: Only cortical labels will be returned.
Parameters
----------
%(subject)s
parc : str
The parcellation to use, e.g., ``'aparc'`` or ``'aparc.a2009s'``.
hemi : str
The hemisphere from which to read the parcellation, can be ``'lh'``,
``'rh'``, or ``'both'``.
surf_name : str
Surface used to obtain vertex locations, e.g., ``'white'``, ``'pial'``.
annot_fname : path-like | None
Filename of the ``.annot`` file. If not None, only this file is read
and the arguments ``parc`` and ``hemi`` are ignored.
regexp : str
Regular expression or substring to select particular labels from the
parcellation. E.g. ``'superior'`` will return all labels in which this
substring is contained.
%(subjects_dir)s
sort : bool
If true, labels will be sorted by name before being returned.
.. versionadded:: 0.21.0
%(verbose)s
Returns
-------
labels : list of Label
The labels, sorted by label name (ascending).
See Also
--------
write_labels_to_annot
morph_labels
"""
logger.info("Reading labels from parcellation...")
subjects_dir = get_subjects_dir(subjects_dir)
if subjects_dir is not None:
subjects_dir = str(subjects_dir)
# get the .annot filenames and hemispheres
annot_fname, hemis = _get_annot_fname(
annot_fname, subject, hemi, parc, subjects_dir
)
if regexp is not None:
# allow for convenient substring match
r_ = re.compile(
f".*{regexp}.*" if regexp.replace("_", "").isalnum() else regexp
)
# now we are ready to create the labels
n_read = 0
labels = list()
orig_names = set()
for fname, hemi in zip(annot_fname, hemis):
# read annotation
annot, ctab, label_names = _read_annot(fname)
label_rgbas = ctab[:, :4] / 255.0
label_ids = ctab[:, -1]
# load the vertex positions from surface
vert_pos = _load_vert_pos(
subject,
subjects_dir,
surf_name,
hemi,
len(annot),
extra=f"for annotation file {fname}",
)
for label_id, label_name, label_rgba in zip(
label_ids, label_names, label_rgbas
):
vertices = np.where(annot == label_id)[0]
if len(vertices) == 0:
# label is not part of cortical surface
continue
label_name = label_name.decode("utf-8")
orig_names.add(label_name)
name = f"{label_name}-{hemi}"
if (regexp is not None) and not r_.match(name):
continue
pos = vert_pos[vertices, :]
label = Label(
vertices,
pos,
hemi=hemi,
name=name,
subject=subject,
color=tuple(label_rgba),
)
labels.append(label)
n_read = len(labels) - n_read
logger.info(" read %d labels from %s", n_read, fname)
# sort the labels by label name
if sort:
labels = sorted(labels, key=lambda label: label.name)
if len(labels) == 0:
msg = "No labels found."
if regexp is not None:
orig_names = "\n".join(sorted(orig_names))
msg += (
f" Maybe the regular expression {repr(regexp)} did not "
f"match any of:\n{orig_names}"
)
raise RuntimeError(msg)
return labels
def _check_labels_subject(labels, subject, name):
_validate_type(labels, (list, tuple), "labels")
for label in labels:
_validate_type(label, Label, "each entry in labels")
if subject is None:
subject = label.subject
if subject is not None: # label.subject can be None, depending on init
if subject != label.subject:
raise ValueError(
f"Got multiple values of {name}: {subject} and {label.subject}"
)
if subject is None:
raise ValueError(
f"if label.subject is None for all labels, {name} must be provided."
)
return subject
@verbose
def morph_labels(
labels,
subject_to,
subject_from=None,
subjects_dir=None,
surf_name="white",
verbose=None,
):
"""Morph a set of labels.
This is useful when morphing a set of non-overlapping labels (such as those
obtained with :func:`read_labels_from_annot`) from one subject to
another.
Parameters
----------
labels : list
The labels to morph.
subject_to : str
The subject to morph labels to.
subject_from : str | None
The subject to morph labels from. Can be None if the labels
have the ``.subject`` property defined.
%(subjects_dir)s
surf_name : str
Surface used to obtain vertex locations, e.g., ``'white'``, ``'pial'``.
%(verbose)s
Returns
-------
labels : list
The morphed labels.
See Also
--------
read_labels_from_annot
mne.Label.morph
Notes
-----
This does not use the same algorithm as Freesurfer, so the results
morphing (e.g., from ``'fsaverage'`` to your subject) might not match
what Freesurfer produces during ``recon-all``.
.. versionadded:: 0.18
"""
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
subject_from = _check_labels_subject(labels, subject_from, "subject_from")
mmaps = read_morph_map(subject_from, subject_to, subjects_dir)
vert_poss = [
_load_vert_pos(subject_to, subjects_dir, surf_name, hemi, mmap.shape[0])
for hemi, mmap in zip(("lh", "rh"), mmaps)
]
idxs = [mmap.argmax(axis=1) for mmap in mmaps]
out_labels = list()
values = filename = None
for label in labels:
li = dict(lh=0, rh=1)[label.hemi]
vertices = np.where(np.isin(idxs[li], label.vertices))[0]
pos = vert_poss[li][vertices]
out_labels.append(
Label(
vertices,
pos,
values,
label.hemi,
label.comment,
label.name,
filename,
subject_to,
label.color,
)
)
return out_labels
@verbose
def labels_to_stc(
labels, values, tmin=0, tstep=1, subject=None, src=None, verbose=None
):
"""Convert a set of labels and values to a STC.
This function is meant to work like the opposite of
`extract_label_time_course`.
Parameters
----------
%(labels_eltc)s
values : ndarray, shape (n_labels, ...)
The values in each label. Can be 1D or 2D.
tmin : float
The tmin to use for the STC.
tstep : float
The tstep to use for the STC.
%(subject)s
%(src_eltc)s
Can be omitted if using a surface source space, in which case
the label vertices will determine the output STC vertices.
Required if using a volumetric source space.
.. versionadded:: 0.22
%(verbose)s
Returns
-------
stc : instance of SourceEstimate | instance of VolSourceEstimate
The values-in-labels converted to a STC.
See Also
--------
extract_label_time_course
Notes
-----
Vertices that appear in more than one label will be averaged.
.. versionadded:: 0.18
"""
values = np.array(values, float)
if values.ndim == 1:
values = values[:, np.newaxis]
if values.ndim != 2:
raise ValueError(f"values must have 1 or 2 dimensions, got {values.ndim}")
_validate_type(src, (SourceSpaces, None))
if src is None:
data, vertices, subject = _labels_to_stc_surf(
labels, values, tmin, tstep, subject
)
klass = SourceEstimate
else:
kind = src.kind
subject = _check_subject(
src._subject, subject, first_kind="source space subject", raise_error=False
)
_check_option("source space kind", kind, ("surface", "volume"))
if kind == "volume":
klass = VolSourceEstimate
else:
klass = SourceEstimate
# Easiest way is to get a dot-able operator and use it
vertices = [s["vertno"].copy() for s in src]
stc = klass(np.eye(sum(len(v) for v in vertices)), vertices, 0, 1, subject)
label_op = extract_label_time_course(
stc, labels, src=src, mode="mean", allow_empty=True
)
_check_values_labels(values, label_op.shape[0])
rev_op = np.zeros(label_op.shape[::-1])
rev_op[np.arange(label_op.shape[1]), np.argmax(label_op, axis=0)] = 1.0
data = rev_op @ values
return klass(data, vertices, tmin, tstep, subject, verbose=verbose)
def _check_values_labels(values, n_labels):
if n_labels != len(values):
raise ValueError(
f"values.shape[0] ({values.shape[0]}) must match the number of "
f"labels ({n_labels})"
)
def _labels_to_stc_surf(labels, values, tmin, tstep, subject):
subject = _check_labels_subject(labels, subject, "subject")
_check_values_labels(values, len(labels))
vertices = dict(lh=[], rh=[])
data = dict(lh=[], rh=[])
for li, label in enumerate(labels):
data[label.hemi].append(
np.repeat(values[li][np.newaxis], len(label.vertices), axis=0)
)
vertices[label.hemi].append(label.vertices)
hemis = ("lh", "rh")
for hemi in hemis:
vertices[hemi] = np.concatenate(vertices[hemi], axis=0)
data[hemi] = np.concatenate(data[hemi], axis=0).astype(float)
cols = np.arange(len(vertices[hemi]))
vertices[hemi], rows = np.unique(vertices[hemi], return_inverse=True)
mat = sparse.coo_array((np.ones(len(rows)), (rows, cols))).tocsr()
mat *= 1.0 / mat.sum(axis=-1)
data[hemi] = mat @ data[hemi]
vertices = [vertices[hemi] for hemi in hemis]
data = np.concatenate([data[hemi] for hemi in hemis], axis=0)
return data, vertices, subject
_DEFAULT_TABLE_NAME = "MNE-Python Colortable"
def _write_annot(fname, annot, ctab, names, table_name=_DEFAULT_TABLE_NAME):
"""Write a Freesurfer annotation to a .annot file."""
assert len(names) == len(ctab)
with open(fname, "wb") as fid:
n_verts = len(annot)
np.array(n_verts, dtype=">i4").tofile(fid)
data = np.zeros((n_verts, 2), dtype=">i4")
data[:, 0] = np.arange(n_verts)
data[:, 1] = annot
data.ravel().tofile(fid)
# indicate that color table exists
np.array(1, dtype=">i4").tofile(fid)
# color table version 2
np.array(-2, dtype=">i4").tofile(fid)
# write color table
n_entries = len(ctab)
np.array(n_entries, dtype=">i4").tofile(fid)
# write our color table name
_write_annot_str(fid, table_name)
# number of entries to write
np.array(n_entries, dtype=">i4").tofile(fid)
# write entries
for ii, (name, color) in enumerate(zip(names, ctab)):
np.array(ii, dtype=">i4").tofile(fid)
_write_annot_str(fid, name)
np.array(color[:4], dtype=">i4").tofile(fid)
def _write_annot_str(fid, s):
s = s.encode("ascii") + b"\x00"
np.array(len(s), ">i4").tofile(fid)
fid.write(s)
@verbose
def write_labels_to_annot(
labels,
subject=None,
parc=None,
overwrite=False,
subjects_dir=None,
annot_fname=None,
colormap="hsv",
hemi="both",
sort=True,
table_name=_DEFAULT_TABLE_NAME,
verbose=None,
):
r"""Create a FreeSurfer annotation from a list of labels.
Parameters
----------
labels : list with instances of mne.Label
The labels to create a parcellation from.
%(subject)s
parc : str | None
The parcellation name to use.
overwrite : bool
Overwrite files if they already exist.
%(subjects_dir)s
annot_fname : str | None
Filename of the ``.annot file``. If not None, only this file is written
and the arguments ``parc`` and ``subject`` are ignored.
colormap : str
Colormap to use to generate label colors for labels that do not
have a color specified.
hemi : ``'both'`` | ``'lh'`` | ``'rh'``
The hemisphere(s) for which to write \*.annot files (only applies if
annot_fname is not specified; default is 'both').
sort : bool
If True (default), labels will be sorted by name before writing.
.. versionadded:: 0.21.0
table_name : str
The table name to use for the colortable.
.. versionadded:: 0.21.0
%(verbose)s
See Also
--------
read_labels_from_annot
Notes
-----
Vertices that are not covered by any of the labels are assigned to a label
named ``"unknown"``.
"""
logger.info("Writing labels to parcellation...")
subjects_dir = get_subjects_dir(subjects_dir)
if subjects_dir is not None:
subjects_dir = str(subjects_dir)
# get the .annot filenames and hemispheres
annot_fname, hemis = _get_annot_fname(
annot_fname, subject, hemi, parc, subjects_dir
)
if not overwrite:
for fname in annot_fname:
if op.exists(fname):
raise ValueError(
f'File {fname} exists. Use "overwrite=True" to overwrite it'
)
# prepare container for data to save:
to_save = []
# keep track of issues found in the labels
duplicate_colors = []
invalid_colors = []
overlap = []
no_color = (-1, -1, -1, -1)
no_color_rgb = (-1, -1, -1)
for hemi, fname in zip(hemis, annot_fname):
hemi_labels = [label for label in labels if label.hemi == hemi]
n_hemi_labels = len(hemi_labels)
if n_hemi_labels == 0:
ctab = np.empty((0, 4), dtype=np.int32)
ctab_rgb = ctab[:, :3]
else:
if sort:
hemi_labels.sort(key=lambda label: label.name)
# convert colors to 0-255 RGBA tuples
hemi_colors = [
no_color
if label.color is None
else tuple(int(round(255 * i)) for i in label.color)
for label in hemi_labels
]
ctab = np.array(hemi_colors, dtype=np.int32)
ctab_rgb = ctab[:, :3]
# make color dict (for annot ID, only R, G and B count)
labels_by_color = defaultdict(list)
for label, color in zip(hemi_labels, ctab_rgb):
labels_by_color[tuple(color)].append(label.name)
# check label colors
for color, names in labels_by_color.items():
if color == no_color_rgb:
continue
if color == (0, 0, 0):
# we cannot have an all-zero color, otherw. e.g. tksurfer
# refuses to read the parcellation
warn(
'At least one label contains a color with, "r=0, '
'g=0, b=0" value. Some FreeSurfer tools may fail '
"to read the parcellation"
)
if any(i > 255 for i in color):
msg = f"{color}: {', '.join(names)} ({hemi})"
invalid_colors.append(msg)
if len(names) > 1:
msg = f"{color}: {', '.join(names)} ({hemi})"
duplicate_colors.append(msg)
# replace None values (labels with unspecified color)
if labels_by_color[no_color_rgb]:
default_colors = _n_colors(n_hemi_labels, bytes_=True, cmap=colormap)
# keep track of colors known to be in hemi_colors :
safe_color_i = 0
for i in range(n_hemi_labels):
if ctab[i, 0] == -1:
color = default_colors[i]
# make sure to add no duplicate color
while np.any(np.all(color[:3] == ctab_rgb, 1)):
color = default_colors[safe_color_i]
safe_color_i += 1
# assign the color
ctab[i] = color
# find number of vertices in surface
if subject is not None and subjects_dir is not None:
fpath = op.join(subjects_dir, subject, "surf", f"{hemi}.white")
points, _ = read_surface(fpath)
n_vertices = len(points)
else:
if len(hemi_labels) > 0:
max_vert = max(np.max(label.vertices) for label in hemi_labels)
n_vertices = max_vert + 1
else:
n_vertices = 1
warn(
"Number of vertices in the surface could not be "
"verified because the surface file could not be found; "
"specify subject and subjects_dir parameters."
)
# Create annot and color table array to write
annot = np.empty(n_vertices, dtype=np.int64)
annot[:] = -1
# create the annotation ids from the colors
annot_id_coding = np.array((1, 2**8, 2**16))
annot_ids = list(np.sum(ctab_rgb * annot_id_coding, axis=1))
for label, annot_id in zip(hemi_labels, annot_ids):
# make sure the label is not overwriting another label
if np.any(annot[label.vertices] != -1):
other_ids = set(annot[label.vertices])
other_ids.discard(-1)
other_indices = (annot_ids.index(i) for i in other_ids)
other_names = (hemi_labels[i].name for i in other_indices)
other_repr = ", ".join(other_names)
msg = f"{hemi}: {label.name} overlaps {other_repr}"
overlap.append(msg)
annot[label.vertices] = annot_id
hemi_names = [label.name for label in hemi_labels]
if None in hemi_names:
msg = (
f"Found {hemi_names.count(None)} labels with no name. Writing "
"annotation file requires all labels named."
)
# raise the error immediately rather than crash with an
# uninformative error later (e.g. cannot join NoneType)
raise ValueError(msg)
# Assign unlabeled vertices to an "unknown" label
unlabeled = annot == -1
if np.any(unlabeled):
msg = f"Assigning {unlabeled.sum()} unlabeled vertices to 'unknown-{hemi}'."
logger.info(msg)
# find an unused color (try shades of gray first)
for i in range(1, 257):
if not np.any(np.all((i, i, i) == ctab_rgb, 1)):
break
if i < 256:
color = (i, i, i, 0)
else:
err = (
"Need one free shade of gray for 'unknown' label. "
"Please modify your label colors, or assign the "
"unlabeled vertices to another label."
)
raise ValueError(err)
# find the id
annot_id = np.sum(annot_id_coding * color[:3])
# update data to write
annot[unlabeled] = annot_id
ctab = np.vstack((ctab, color))
hemi_names.append("unknown")
# convert to FreeSurfer alpha values
ctab[:, 3] = 255 - ctab[:, 3]
# remove hemi ending in names
hemi_names = [name[:-3] if name.endswith(hemi) else name for name in hemi_names]
to_save.append((fname, annot, ctab, hemi_names))
issues = []
if duplicate_colors:
msg = (
"Some labels have the same color values (all labels in one "
"hemisphere must have a unique color):"
)
duplicate_colors.insert(0, msg)
issues.append("\n".join(duplicate_colors))
if invalid_colors:
msg = (
"Some labels have invalid color values (all colors should be "
"RGBA tuples with values between 0 and 1)"
)
invalid_colors.insert(0, msg)
issues.append("\n".join(invalid_colors))
if overlap:
msg = (
"Some labels occupy vertices that are also occupied by one or "
"more other labels. Each vertex can only be occupied by a "
"single label in *.annot files."
)
overlap.insert(0, msg)
issues.append("\n".join(overlap))
if issues:
raise ValueError("\n\n".join(issues))
# write it
for fname, annot, ctab, hemi_names in to_save:
logger.info(" writing %d labels to %s", len(hemi_names), fname)
_write_annot(fname, annot, ctab, hemi_names, table_name)
@fill_doc
def select_sources(
subject,
label,
location="center",
extent=0.0,
grow_outside=True,
subjects_dir=None,
name=None,
random_state=None,
surf="white",
):
"""Select sources from a label.
Parameters
----------
%(subject)s
label : instance of Label | str
Define where the seed will be chosen. If str, can be 'lh' or 'rh',
which correspond to left or right hemisphere, respectively.
location : 'random' | 'center' | int
Location to grow label from. If the location is an int, it represents
the vertex number in the corresponding label. If it is a str, it can be
either 'random' or 'center'.
extent : float
Extents (radius in mm) of the labels, i.e. maximum geodesic distance
on the white matter surface from the seed. If 0, the resulting label
will contain only one vertex.
grow_outside : bool
Let the region grow outside the original label where location was
defined.
%(subjects_dir)s
name : None | str
Assign name to the new label.
%(random_state)s
surf : str
The surface used to simulated the label, defaults to the white surface.
Returns
-------
label : instance of Label
The label that contains the selected sources.
Notes
-----
This function selects a region of interest on the cortical surface based
on a label (or a hemisphere). The sources are selected by growing a region
around a seed which is selected randomly, is the center of the label, or
is a specific vertex. The selected vertices can extend beyond the initial
provided label. This can be prevented by setting grow_outside to False.
The selected sources are returned in the form of a new Label object. The
values of the label contain the distance from the seed in millimeters.
.. versionadded:: 0.18
"""
# If label is a string, convert it to a label that contains the whole
# hemisphere.
if isinstance(label, str):
_check_option("label", label, ["lh", "rh"])
surf_filename = op.join(subjects_dir, subject, "surf", label + ".white")
vertices, _ = read_surface(surf_filename)
indices = np.arange(len(vertices), dtype=int)
label = Label(indices, vertices, hemi=label)
# Choose the seed according to the selected strategy.
if isinstance(location, str):
_check_option("location", location, ["center", "random"])
if location == "center":
seed = label.center_of_mass(
subject, restrict_vertices=True, subjects_dir=subjects_dir, surf=surf
)
else:
rng = check_random_state(random_state)
seed = rng.choice(label.vertices)
else:
seed = label.vertices[location]
hemi = 0 if label.hemi == "lh" else 1
new_label = grow_labels(subject, seed, extent, hemi, subjects_dir)[0]
# We override the name because grow_label automatically adds a -rh or -lh
# to the given parameter.
new_label.name = name
# Restrict the new label to the vertices of the input label if needed.
if not grow_outside:
to_keep = np.array([v in label.vertices for v in new_label.vertices])
new_label = Label(
new_label.vertices[to_keep],
new_label.pos[to_keep],
hemi=new_label.hemi,
name=name,
subject=subject,
)
return new_label