[7f9fb8]: / mne / io / snirf / tests / test_snirf.py

Download this file

577 lines (491 with data), 20.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import datetime
import shutil
from contextlib import nullcontext
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_almost_equal, assert_equal
from mne._fiff.constants import FIFF
from mne.datasets.testing import data_path, requires_testing_data
from mne.io import read_raw_nirx, read_raw_snirf
from mne.io.tests.test_raw import _test_raw_reader
from mne.preprocessing.nirs import (
_reorder_nirx,
beer_lambert_law,
optical_density,
short_channels,
source_detector_distances,
)
from mne.transforms import _get_trans, apply_trans
from mne.utils import catch_logging
testing_path = data_path(download=False)
# SfNIRS files
sfnirs_homer_103_wShort = (
testing_path
/ "SNIRF"
/ "SfNIRS"
/ "snirf_homer3"
/ "1.0.3"
/ "snirf_1_3_nirx_15_2_recording_w_short.snirf"
)
sfnirs_homer_103_wShort_original = (
testing_path / "NIRx" / "nirscout" / "nirx_15_2_recording_w_short"
)
sfnirs_homer_103_153 = (
testing_path
/ "SNIRF"
/ "SfNIRS"
/ "snirf_homer3"
/ "1.0.3"
/ "nirx_15_3_recording.snirf"
)
# NIRSport2 files
nirx_nirsport2_103 = (
testing_path / "SNIRF" / "NIRx" / "NIRSport2" / "1.0.3" / "2021-04-23_005.snirf"
)
nirx_nirsport2_103_2 = (
testing_path / "SNIRF" / "NIRx" / "NIRSport2" / "1.0.3" / "2021-05-05_001.snirf"
)
snirf_nirsport2_20219 = (
testing_path / "SNIRF" / "NIRx" / "NIRSport2" / "2021.9" / "2021-10-01_002.snirf"
)
# Kernel
kernel_hb = testing_path / "SNIRF" / "Kernel" / "Flow50" / "Portal_2021_11" / "hb.snirf"
h5py = pytest.importorskip("h5py") # module-level
# Fieldtrip
ft_od = testing_path / "SNIRF" / "FieldTrip" / "220307_opticaldensity.snirf"
# GowerLabs
lumo110 = testing_path / "SNIRF" / "GowerLabs" / "lumomat-1-1-0.snirf"
def _get_loc(raw, ch_name):
return raw.copy().pick(ch_name).info["chs"][0]["loc"]
@requires_testing_data
@pytest.mark.filterwarnings("ignore:.*contains 2D location.*:")
@pytest.mark.filterwarnings("ignore:.*measurement date.*:")
@pytest.mark.parametrize(
"fname",
(
[
sfnirs_homer_103_wShort,
nirx_nirsport2_103,
sfnirs_homer_103_153,
nirx_nirsport2_103,
nirx_nirsport2_103_2,
nirx_nirsport2_103_2,
kernel_hb,
lumo110,
]
),
)
def test_basic_reading_and_min_process(fname):
"""Test reading SNIRF files and minimum typical processing."""
raw = read_raw_snirf(fname, preload=True)
# SNIRF data can contain several types, so only apply appropriate functions
if "fnirs_cw_amplitude" in raw:
raw = optical_density(raw)
if "fnirs_od" in raw:
raw = beer_lambert_law(raw, ppf=6)
assert "hbo" in raw
assert "hbr" in raw
@requires_testing_data
@pytest.mark.filterwarnings("ignore:.*measurement date.*:")
def test_snirf_gowerlabs():
"""Test reading SNIRF files."""
raw = read_raw_snirf(lumo110, preload=True)
assert raw._data.shape == (216, 274)
assert raw.info["dig"][0]["coord_frame"] == FIFF.FIFFV_COORD_HEAD
assert len(raw.ch_names) == 216
assert_allclose(raw.info["sfreq"], 10.0)
# we don't force them to be sorted according to a naive split
assert raw.ch_names != sorted(raw.ch_names)
# ... but this file does have a nice logical ordering already
print(raw.ch_names)
assert raw.ch_names == sorted(
raw.ch_names,
# use a key which is (src triplet, freq, src, freq, det)
key=lambda name: (
(int(name.split()[0].split("_")[0][1:]) - 1) // 3,
int(name.split()[1]),
int(name.split()[0].split("_")[0][1:]),
int(name.split()[0].split("_")[1][1:]),
),
)
@requires_testing_data
def test_snirf_basic():
"""Test reading SNIRF files."""
raw = read_raw_snirf(sfnirs_homer_103_wShort, preload=True)
assert raw.info["subject_info"]["his_id"] == "default"
# Test data import
assert raw._data.shape == (26, 145)
assert raw.info["sfreq"] == 12.5
# Test channel naming
assert raw.info["ch_names"][:4] == [
"S1_D1 760",
"S1_D9 760",
"S2_D3 760",
"S2_D10 760",
]
assert raw.info["ch_names"][24:26] == ["S5_D8 850", "S5_D13 850"]
# Test frequency encoding
assert raw.info["chs"][0]["loc"][9] == 760
assert raw.info["chs"][24]["loc"][9] == 850
# Test source locations
assert_allclose(
[-8.6765 * 1e-2, 0.0049 * 1e-2, -2.6167 * 1e-2],
_get_loc(raw, "S1_D1 760")[3:6],
rtol=0.02,
)
assert_allclose(
[7.9579 * 1e-2, -2.7571 * 1e-2, -2.2631 * 1e-2],
_get_loc(raw, "S2_D3 760")[3:6],
rtol=0.02,
)
assert_allclose(
[-2.1387 * 1e-2, -8.8874 * 1e-2, 3.8393 * 1e-2],
_get_loc(raw, "S3_D2 760")[3:6],
rtol=0.02,
)
assert_allclose(
[1.8602 * 1e-2, 9.7164 * 1e-2, 1.7539 * 1e-2],
_get_loc(raw, "S4_D4 760")[3:6],
rtol=0.02,
)
assert_allclose(
[-0.1108 * 1e-2, 0.7066 * 1e-2, 8.9883 * 1e-2],
_get_loc(raw, "S5_D5 760")[3:6],
rtol=0.02,
)
# Test detector locations
assert_allclose(
[-8.0409 * 1e-2, -2.9677 * 1e-2, -2.5415 * 1e-2],
_get_loc(raw, "S1_D1 760")[6:9],
rtol=0.02,
)
assert_allclose(
[-8.7329 * 1e-2, 0.7577 * 1e-2, -2.7980 * 1e-2],
_get_loc(raw, "S1_D9 850")[6:9],
rtol=0.02,
)
assert_allclose(
[9.2027 * 1e-2, 0.0161 * 1e-2, -2.8909 * 1e-2],
_get_loc(raw, "S2_D3 850")[6:9],
rtol=0.02,
)
assert_allclose(
[7.7548 * 1e-2, -3.5901 * 1e-2, -2.3179 * 1e-2],
_get_loc(raw, "S2_D10 850")[6:9],
rtol=0.02,
)
assert "fnirs_cw_amplitude" in raw
@requires_testing_data
def test_snirf_against_nirx():
"""Test Homer generated against file snirf was created from."""
raw_homer = read_raw_snirf(sfnirs_homer_103_wShort, preload=True)
_reorder_nirx(raw_homer)
raw_orig = read_raw_nirx(sfnirs_homer_103_wShort_original, preload=True)
# Check annotations are the same
assert_allclose(raw_homer.annotations.onset, raw_orig.annotations.onset)
assert_allclose(
[float(d) for d in raw_homer.annotations.description],
[float(d) for d in raw_orig.annotations.description],
)
# Homer writes durations as 5s regardless of the true duration.
# So we will not test that the nirx file stim durations equal
# the homer file stim durations.
# Check names are the same
assert raw_homer.info["ch_names"] == raw_orig.info["ch_names"]
# Check frequencies are the same
num_chans = len(raw_homer.ch_names)
new_chs = raw_homer.info["chs"]
ori_chs = raw_orig.info["chs"]
assert_allclose(
[new_chs[idx]["loc"][9] for idx in range(num_chans)],
[ori_chs[idx]["loc"][9] for idx in range(num_chans)],
)
# Check data is the same
assert_allclose(raw_homer.get_data(), raw_orig.get_data())
@requires_testing_data
def test_snirf_nonstandard(tmp_path):
"""Test custom tags."""
shutil.copy(sfnirs_homer_103_wShort, str(tmp_path) + "/mod.snirf")
fname = str(tmp_path) + "/mod.snirf"
# Manually mark up the file to match MNE-NIRS custom tags
with h5py.File(fname, "r+") as f:
f.create_dataset("nirs/metaDataTags/middleName", data=[b"X"])
f.create_dataset("nirs/metaDataTags/lastName", data=[b"Y"])
f.create_dataset("nirs/metaDataTags/sex", data=[b"1"])
raw = read_raw_snirf(fname, preload=True)
assert raw.info["subject_info"]["first_name"] == "default" # pull from his_id
with h5py.File(fname, "r+") as f:
f.create_dataset("nirs/metaDataTags/firstName", data=[b"W"])
raw = read_raw_snirf(fname, preload=True)
assert raw.info["subject_info"]["first_name"] == "W"
assert raw.info["subject_info"]["middle_name"] == "X"
assert raw.info["subject_info"]["last_name"] == "Y"
assert raw.info["subject_info"]["sex"] == 1
assert raw.info["subject_info"]["his_id"] == "default"
with h5py.File(fname, "r+") as f:
del f["nirs/metaDataTags/sex"]
f.create_dataset("nirs/metaDataTags/sex", data=[b"2"])
raw = read_raw_snirf(fname, preload=True)
assert raw.info["subject_info"]["sex"] == 2
with h5py.File(fname, "r+") as f:
del f["nirs/metaDataTags/sex"]
f.create_dataset("nirs/metaDataTags/sex", data=[b"0"])
raw = read_raw_snirf(fname, preload=True)
assert raw.info["subject_info"]["sex"] == 0
with h5py.File(fname, "r+") as f:
f.create_dataset("nirs/metaDataTags/MNE_coordFrame", data=[1])
@requires_testing_data
def test_snirf_nirsport2():
"""Test reading SNIRF files."""
raw = read_raw_snirf(nirx_nirsport2_103, preload=True)
# Test data import
assert raw._data.shape == (92, 84)
assert_almost_equal(raw.info["sfreq"], 7.6, decimal=1)
# Test channel naming
assert raw.info["ch_names"][:4] == [
"S1_D1 760",
"S1_D3 760",
"S1_D9 760",
"S1_D16 760",
]
assert raw.info["ch_names"][24:26] == ["S8_D15 760", "S8_D20 760"]
# Test frequency encoding
assert raw.info["chs"][0]["loc"][9] == 760
assert raw.info["chs"][-1]["loc"][9] == 850
assert sum(short_channels(raw.info)) == 16
@requires_testing_data
def test_snirf_coordframe():
"""Test reading SNIRF files."""
raw = read_raw_snirf(nirx_nirsport2_103, optode_frame="head").info["chs"][3][
"coord_frame"
]
assert raw == FIFF.FIFFV_COORD_HEAD
raw = read_raw_snirf(nirx_nirsport2_103, optode_frame="mri").info["chs"][3][
"coord_frame"
]
assert raw == FIFF.FIFFV_COORD_HEAD
raw = read_raw_snirf(nirx_nirsport2_103, optode_frame="unknown").info["chs"][3][
"coord_frame"
]
assert raw == FIFF.FIFFV_COORD_UNKNOWN
@requires_testing_data
def test_snirf_nirsport2_w_positions():
"""Test reading SNIRF files with known positions."""
raw = read_raw_snirf(nirx_nirsport2_103_2, preload=True, optode_frame="mri")
_reorder_nirx(raw)
# Test data import
assert raw._data.shape == (40, 128)
assert_almost_equal(raw.info["sfreq"], 10.2, decimal=1)
# Test channel naming
assert raw.info["ch_names"][:4] == [
"S1_D1 760",
"S1_D1 850",
"S1_D6 760",
"S1_D6 850",
]
assert raw.info["ch_names"][24:26] == ["S6_D4 760", "S6_D4 850"]
# Test frequency encoding
assert raw.info["chs"][0]["loc"][9] == 760
assert raw.info["chs"][1]["loc"][9] == 850
assert sum(short_channels(raw.info)) == 16
# Test distance between optodes matches values from
# nirsite https://github.com/mne-tools/mne-testing-data/pull/86
# figure 3
allowed_distance_error = 0.005
assert_allclose(
source_detector_distances(raw.copy().pick("S1_D1 760").info),
[0.0304],
atol=allowed_distance_error,
)
assert_allclose(
source_detector_distances(raw.copy().pick("S2_D2 760").info),
[0.0400],
atol=allowed_distance_error,
)
# Test location of detectors
# The locations of detectors can be seen in the first
# figure on this page...
# https://github.com/mne-tools/mne-testing-data/pull/86
allowed_dist_error = 0.0002
locs = [ch["loc"][6:9] for ch in raw.info["chs"]]
head_mri_t, _ = _get_trans("fsaverage", "head", "mri")
mni_locs = apply_trans(head_mri_t, locs)
assert raw.info["ch_names"][0][3:5] == "D1"
assert_allclose(mni_locs[0], [-0.0841, -0.0464, -0.0129], atol=allowed_dist_error)
assert raw.info["ch_names"][2][3:5] == "D6"
assert_allclose(mni_locs[2], [-0.0841, -0.0138, 0.0248], atol=allowed_dist_error)
assert raw.info["ch_names"][34][3:5] == "D5"
assert_allclose(mni_locs[34], [0.0845, -0.0451, -0.0123], atol=allowed_dist_error)
# Test location of sensors
# The locations of sensors can be seen in the second
# figure on this page...
# https://github.com/mne-tools/mne-testing-data/pull/86
allowed_dist_error = 0.0002
locs = [ch["loc"][3:6] for ch in raw.info["chs"]]
head_mri_t, _ = _get_trans("fsaverage", "head", "mri")
mni_locs = apply_trans(head_mri_t, locs)
assert raw.info["ch_names"][0][:2] == "S1"
assert_allclose(mni_locs[0], [-0.0848, -0.0162, -0.0163], atol=allowed_dist_error)
assert raw.info["ch_names"][9][:2] == "S2"
assert_allclose(mni_locs[9], [-0.0, -0.1195, 0.0142], atol=allowed_dist_error)
assert raw.info["ch_names"][34][:2] == "S8"
assert_allclose(mni_locs[34], [0.0828, -0.046, 0.0285], atol=allowed_dist_error)
mon = raw.get_montage()
assert len(mon.dig) == 27
@requires_testing_data
def test_snirf_fieldtrip_od():
"""Test reading FieldTrip SNIRF files with optical density data."""
raw = read_raw_snirf(ft_od, preload=True)
# Test data import
assert raw._data.shape == (72, 500)
assert raw.copy().pick("fnirs")._data.shape == (72, 500)
assert raw.copy().pick("fnirs_od")._data.shape == (72, 500)
with pytest.raises(ValueError, match="not be interpreted as channel"):
raw.copy().pick("hbo")
with pytest.raises(ValueError, match="not be interpreted as channel"):
raw.copy().pick("hbr")
assert_allclose(raw.info["sfreq"], 50)
@requires_testing_data
def test_snirf_kernel_hb():
"""Test reading Kernel SNIRF files with haemoglobin data."""
raw = read_raw_snirf(kernel_hb, preload=True)
# Test data import
assert raw._data.shape == (180 * 2, 14)
assert raw.copy().pick("hbo")._data.shape == (180, 14)
assert raw.copy().pick("hbr")._data.shape == (180, 14)
assert_allclose(raw.info["sfreq"], 8.256495)
bad_nans = np.isnan(raw.get_data()).any(axis=1)
assert np.sum(bad_nans) == 20
assert len(raw.annotations.description) == 2
assert raw.annotations.onset[0] == 0.036939
assert raw.annotations.onset[1] == 0.874633
assert raw.annotations.description[0] == "StartTrial"
assert raw.annotations.description[1] == "StartIti"
@requires_testing_data
@pytest.mark.parametrize(
"sfreq,context",
(
[8.2, nullcontext()], # sfreq estimated from file is 8.256495
[22, pytest.warns(RuntimeWarning, match="User-supplied sampling frequency")],
),
)
def test_user_set_sfreq(sfreq, context):
"""Test manually setting sfreq."""
with context:
# both sfreqs are far enough from true rate to yield >1% jitter
with pytest.warns(RuntimeWarning, match=r"jitter of \d+\.\d*% in sample times"):
raw = read_raw_snirf(kernel_hb, preload=False, sfreq=sfreq)
assert raw.info["sfreq"] == sfreq
@requires_testing_data
@pytest.mark.parametrize(
"fname, boundary_decimal, test_scaling, test_rank",
(
[sfnirs_homer_103_wShort, 0, True, True],
[nirx_nirsport2_103, 0, True, False], # strange rank behavior
[nirx_nirsport2_103_2, 0, False, True], # weirdly small values
[snirf_nirsport2_20219, 0, True, True],
),
)
def test_snirf_standard(fname, boundary_decimal, test_scaling, test_rank):
"""Test standard operations."""
_test_raw_reader(
read_raw_snirf,
fname=fname,
boundary_decimal=boundary_decimal,
test_scaling=test_scaling,
test_rank=test_rank,
) # low fs
@requires_testing_data
def test_annotation_description_from_stim_groups():
"""Test annotation descriptions parsed from stim group names."""
raw = read_raw_snirf(nirx_nirsport2_103_2, preload=True)
expected_descriptions = ["1", "2", "6"]
assert_equal(expected_descriptions, raw.annotations.description)
@requires_testing_data
def test_annotation_duration_from_stim_groups():
"""Test annotation durations extracted correctly from stim group."""
raw = read_raw_snirf(snirf_nirsport2_20219, preload=True)
# Specify the expected SNIRF stim durations.
# We can verify these values should be 10 by using the official
# SNIRF package pysnirf2 and running the following script.
# You will see that the print statement shows the middle column,
# which represents duration, will be all 10s.
# from snirf import Snirf
# a = Snirf(snirf_nirsport2_20219, "r+"); print(a.nirs[0].stim[0].data)
expected_durations = np.full((10,), 10.0)
assert_equal(expected_durations, raw.annotations.duration)
def test_birthday(tmp_path, monkeypatch):
"""Test birthday parsing."""
try:
snirf = pytest.importorskip("snirf")
except AttributeError as exc:
# Until https://github.com/BUNPC/pysnirf2/pull/43 is released
pytest.skip(f"snirf import error: {exc}")
fname = tmp_path / "test.snirf"
with snirf.Snirf(str(fname), "w") as a:
a.nirs.appendGroup()
a.nirs[0].data.appendGroup()
a.nirs[0].data[0].dataTimeSeries = np.zeros((2, 2))
a.nirs[0].data[0].time = [0, 1]
for i in range(2):
a.nirs[0].data[0].measurementList.appendGroup()
a.nirs[0].data[0].measurementList[i].sourceIndex = 1
a.nirs[0].data[0].measurementList[i].detectorIndex = 1
a.nirs[0].data[0].measurementList[i].wavelengthIndex = 1
a.nirs[0].data[0].measurementList[i].dataType = 99999
a.nirs[0].data[0].measurementList[i].dataTypeIndex = 0
a.nirs[0].data[0].measurementList[0].dataTypeLabel = "HbO"
a.nirs[0].data[0].measurementList[1].dataTypeLabel = "HbR"
a.nirs[0].metaDataTags.SubjectID = "0"
a.nirs[0].metaDataTags.MeasurementDate = "2000-01-01"
a.nirs[0].metaDataTags.MeasurementTime = "00:00:00"
a.nirs[0].metaDataTags.LengthUnit = "m"
a.nirs[0].metaDataTags.TimeUnit = "s"
a.nirs[0].metaDataTags.FrequencyUnit = "Hz"
a.nirs[0].metaDataTags.add("DateOfBirth", "1950-01-01")
a.nirs[0].probe.wavelengths = [0, 0]
a.nirs[0].probe.sourcePos3D = np.zeros((1, 3))
a.nirs[0].probe.detectorPos3D = np.zeros((1, 3))
# Until https://github.com/BUNPC/pysnirf2/pull/39 is released
monkeypatch.setattr(a._cfg.logger, "info", lambda *args, **kwargs: None)
a.save()
raw = read_raw_snirf(fname)
assert raw.info["subject_info"]["birthday"] == datetime.date(1950, 1, 1)
# TODO: trigger some setting checkers that should maybe be in the reader (like
# those for subject_info)
raw.info.copy()
@requires_testing_data
def test_sample_rate_jitter(tmp_path):
"""Test handling of jittered sample times."""
from shutil import copy2
# Create a clean copy and ensure it loads without error
new_file = tmp_path / "snirf_nirsport2_2019.snirf"
copy2(snirf_nirsport2_20219, new_file)
read_raw_snirf(new_file)
# Edit the file and add jitter within tolerance (0.99%)
with h5py.File(new_file, "r+") as f:
orig_time = np.array(f.get("nirs/data1/time"))
acceptable_time_jitter = orig_time.copy()
mean_period = np.mean(np.diff(orig_time))
acceptable_time_jitter[-1] += 0.0099 * mean_period
del f["nirs/data1/time"]
f.flush()
f.create_dataset("nirs/data1/time", data=acceptable_time_jitter)
with catch_logging("info") as log:
read_raw_snirf(new_file)
lines = "\n".join(line for line in log.getvalue().splitlines() if "jitter" in line)
assert "Found jitter of 0.9" in lines
# Add jitter of 1.02%, which is greater than allowed tolerance
with h5py.File(new_file, "r+") as f:
unacceptable_time_jitter = orig_time
unacceptable_time_jitter[-1] = unacceptable_time_jitter[-1] + (
0.0102 * mean_period
)
del f["nirs/data1/time"]
f.flush()
f.create_dataset("nirs/data1/time", data=unacceptable_time_jitter)
with pytest.warns(RuntimeWarning, match="non-uniformly-sampled data"):
read_raw_snirf(new_file, verbose=True)