"""Helper functions for reading eyelink ASCII files."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re
from datetime import datetime, timedelta, timezone
import numpy as np
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import create_info
from ...annotations import Annotations
from ...utils import _check_pandas_installed, logger, warn
EYELINK_COLS = {
"timestamp": ("time",),
"pos": {
"left": ("xpos_left", "ypos_left", "pupil_left"),
"right": ("xpos_right", "ypos_right", "pupil_right"),
},
"velocity": {
"left": ("xvel_left", "yvel_left"),
"right": ("xvel_right", "yvel_right"),
},
"resolution": ("xres", "yres"),
"input": ("DIN",),
"remote": ("x_head", "y_head", "distance"),
"block_num": ("block",),
"eye_event": ("eye", "time", "end_time", "duration"),
"fixation": ("fix_avg_x", "fix_avg_y", "fix_avg_pupil_size"),
"saccade": (
"sacc_start_x",
"sacc_start_y",
"sacc_end_x",
"sacc_end_y",
"sacc_visual_angle",
"peak_velocity",
),
}
def _parse_eyelink_ascii(
fname, find_overlaps=True, overlap_threshold=0.05, apply_offsets=False
):
# ======================== Parse ASCII File =========================
raw_extras = dict()
raw_extras.update(_parse_recording_blocks(fname))
raw_extras.update(_get_metadata(raw_extras))
raw_extras["dt"] = _get_recording_datetime(fname)
_validate_data(raw_extras)
# ======================== Create DataFrames ========================
raw_extras["dfs"] = _create_dataframes(raw_extras, apply_offsets)
del raw_extras["sample_lines"] # free up memory
# add column names to dataframes and set the dtype of each column
col_names, ch_names = _infer_col_names(raw_extras)
raw_extras["dfs"] = _assign_col_names(col_names, raw_extras["dfs"])
raw_extras["dfs"] = _set_df_dtypes(raw_extras["dfs"]) # set dtypes for dataframes
# if HREF data, convert to radians
if "HREF" in raw_extras["rec_info"]:
raw_extras["dfs"]["samples"] = _convert_href_samples(
raw_extras["dfs"]["samples"]
)
# fill in times between recording blocks with BAD_ACQ_SKIP
if raw_extras["n_blocks"] > 1:
logger.info(
f"There are {raw_extras['n_blocks']} recording blocks in this file."
f" Times between blocks will be annotated with BAD_ACQ_SKIP."
)
raw_extras["dfs"]["samples"] = _adjust_times(
raw_extras["dfs"]["samples"], raw_extras["sfreq"]
)
# Convert timestamps to seconds
for df in raw_extras["dfs"].values():
df = _convert_times(df, raw_extras["first_samp"])
# Find overlaps between left and right eye events
if find_overlaps:
for key in raw_extras["dfs"]:
if key not in ["blinks", "fixations", "saccades"]:
continue
raw_extras["dfs"][key] = _find_overlaps(
raw_extras["dfs"][key], max_time=overlap_threshold
)
# ======================== Info for BaseRaw ========================
eye_ch_data = raw_extras["dfs"]["samples"][ch_names].to_numpy().T
info = _create_info(ch_names, raw_extras)
return eye_ch_data, info, raw_extras
def _parse_recording_blocks(fname):
"""Parse Eyelink ASCII file.
Eyelink samples occur within START and END blocks.
samples lines start with a posix-like string,
and contain eyetracking sample info. Event Lines
start with an upper case string and contain info
about occular events (i.e. blink/saccade), or experiment
messages sent by the stimulus presentation software.
"""
with fname.open() as file:
data_dict = dict()
data_dict["sample_lines"] = []
data_dict["event_lines"] = {
"START": [],
"END": [],
"SAMPLES": [],
"EVENTS": [],
"ESACC": [],
"EBLINK": [],
"EFIX": [],
"MSG": [],
"INPUT": [],
"BUTTON": [],
"PUPIL": [],
}
is_recording_block = False
for line in file:
if line.startswith("START"): # start of recording block
is_recording_block = True
if is_recording_block:
tokens = line.split()
if not tokens:
continue # skip empty lines
if tokens[0][0].isnumeric(): # Samples
data_dict["sample_lines"].append(tokens)
elif tokens[0] in data_dict["event_lines"].keys():
if _is_sys_msg(line):
continue # system messages don't need to be parsed.
event_key, event_info = tokens[0], tokens[1:]
data_dict["event_lines"][event_key].append(event_info)
if tokens[0] == "END": # end of recording block
is_recording_block = False
if not data_dict["sample_lines"]: # no samples parsed
raise ValueError(f"Couldn't find any samples in {fname}")
return data_dict
def _validate_data(raw_extras):
"""Check the incoming data for some known problems that can occur."""
# Detect the datatypes that are in file.
if "GAZE" in raw_extras["rec_info"]:
logger.info(
"Pixel coordinate data detected."
"Pass `scalings=dict(eyegaze=1e3)` when using plot"
" method to make traces more legible."
)
elif "HREF" in raw_extras["rec_info"]:
logger.info("Head-referenced eye-angle (HREF) data detected.")
elif "PUPIL" in raw_extras["rec_info"]:
warn("Raw eyegaze coordinates detected. Analyze with caution.")
if "AREA" in raw_extras["pupil_info"]:
logger.info("Pupil-size area detected.")
elif "DIAMETER" in raw_extras["pupil_info"]:
logger.info("Pupil-size diameter detected.")
# If more than 1 recording period, check whether eye being tracked changed.
if raw_extras["n_blocks"] > 1:
if raw_extras["tracking_mode"] == "monocular":
blocks_list = raw_extras["event_lines"]["SAMPLES"]
eye_per_block = [block_info[1].lower() for block_info in blocks_list]
if not all([this_eye == raw_extras["eye"] for this_eye in eye_per_block]):
warn(
"The eye being tracked changed during the"
" recording. The channel names will reflect"
" the eye that was tracked at the start of"
" the recording."
)
def _get_recording_datetime(fname):
"""Create a datetime object from the datetime in ASCII file."""
# create a timezone object for UTC
tz = timezone(timedelta(hours=0))
in_header = False
with fname.open() as file:
for line in file:
# header lines are at top of file and start with **
if line.startswith("**"):
in_header = True
if in_header:
if line.startswith("** DATE:"):
dt_str = line.replace("** DATE:", "").strip()
fmt = "%a %b %d %H:%M:%S %Y"
# Eyelink measdate timestamps are timezone naive.
# Force datetime to be in UTC.
# Even though dt is probably in local time zone.
try:
dt_naive = datetime.strptime(dt_str, fmt)
except ValueError:
# date string is missing or in an unexpected format
logger.info(
"Could not detect date from file with date entry: "
f"{repr(dt_str)}"
)
return
else:
return dt_naive.replace(tzinfo=tz) # make it dt aware
return
def _get_metadata(raw_extras):
"""Get tracking mode, sfreq, eye tracked, pupil metric, etc.
Don't call this until after _parse_recording_blocks.
"""
meta_data = dict()
meta_data["rec_info"] = raw_extras["event_lines"]["SAMPLES"][0]
if ("LEFT" in meta_data["rec_info"]) and ("RIGHT" in meta_data["rec_info"]):
meta_data["tracking_mode"] = "binocular"
meta_data["eye"] = "both"
else:
meta_data["tracking_mode"] = "monocular"
meta_data["eye"] = meta_data["rec_info"][1].lower()
meta_data["first_samp"] = float(raw_extras["event_lines"]["START"][0][0])
meta_data["sfreq"] = _get_sfreq_from_ascii(meta_data["rec_info"])
meta_data["pupil_info"] = raw_extras["event_lines"]["PUPIL"][0]
meta_data["n_blocks"] = len(raw_extras["event_lines"]["START"])
return meta_data
def _is_sys_msg(line):
"""Flag lines from eyelink ASCII file that contain a known system message.
Some lines in eyelink files are system outputs usually
only meant for Eyelinks DataViewer application to read.
These shouldn't need to be parsed.
Parameters
----------
line : string
single line from Eyelink asc file
Returns
-------
bool :
True if any of the following strings that are
known to indicate a system message are in the line
Notes
-----
Examples of eyelink system messages:
- ;Sess:22Aug22;Tria:1;Tri2:False;ESNT:182BFE4C2F4;
- ;NTPT:182BFE55C96;SMSG:__NTP_CLOCK_SYNC__;DIFF:-1;
- !V APLAYSTART 0 1 library/audio
- !MODE RECORD CR 500 2 1 R
"""
return "!V" in line or "!MODE" in line or ";" in line
def _get_sfreq_from_ascii(rec_info):
"""Get sampling frequency from Eyelink ASCII file.
Parameters
----------
rec_info : list
the first list in raw_extras["event_lines"]['SAMPLES'].
The sfreq occurs after RATE: i.e. [..., RATE, 1000, ...].
Returns
-------
sfreq : float
"""
return float(rec_info[rec_info.index("RATE") + 1])
def _create_dataframes(raw_extras, apply_offsets):
"""Create pandas.DataFrame for Eyelink samples and events.
Creates a pandas DataFrame for sample_lines and for each
non-empty key in event_lines.
"""
pd = _check_pandas_installed()
df_dict = dict()
# dataframe for samples
df_dict["samples"] = pd.DataFrame(raw_extras["sample_lines"])
df_dict["samples"] = _drop_status_col(df_dict["samples"]) # drop STATUS col
# dataframe for each type of occular event
for event, label in zip(
["EFIX", "ESACC", "EBLINK"], ["fixations", "saccades", "blinks"]
):
if raw_extras["event_lines"][event]: # an empty list returns False
df_dict[label] = pd.DataFrame(raw_extras["event_lines"][event])
else:
logger.info(
f"No {label} were found in this file. "
f"Not returning any info on {label}."
)
# make dataframe for experiment messages
if raw_extras["event_lines"]["MSG"]:
msgs = []
for token in raw_extras["event_lines"]["MSG"]:
if apply_offsets and len(token) == 2:
ts, msg = token
offset = np.nan
elif apply_offsets:
ts = token[0]
try:
offset = float(token[1])
msg = " ".join(str(x) for x in token[2:])
except ValueError:
offset = np.nan
msg = " ".join(str(x) for x in token[1:])
else:
ts, offset = token[0], np.nan
msg = " ".join(str(x) for x in token[1:])
msgs.append([ts, offset, msg])
df_dict["messages"] = pd.DataFrame(msgs)
# make dataframe for recording block start, end times
i = 1
blocks = list()
for bgn, end in zip(
raw_extras["event_lines"]["START"], raw_extras["event_lines"]["END"]
):
blocks.append((float(bgn[0]), float(end[0]), i))
i += 1
cols = ["time", "end_time", "block"]
df_dict["recording_blocks"] = pd.DataFrame(blocks, columns=cols)
# TODO: Make dataframes for other eyelink events (Buttons)
return df_dict
def _drop_status_col(samples_df):
"""Drop STATUS column from samples dataframe.
see https://github.com/mne-tools/mne-python/issues/11809, and section 4.9.2.1 of
the Eyelink 1000 Plus User Manual, version 1.0.19. We know that the STATUS
column is either 3, 5, 13, or 17 characters long, i.e. "...", ".....", ".C."
"""
status_cols = []
# we know the first 3 columns will be the time, xpos, ypos
for col in samples_df.columns[3:]:
if samples_df[col][0][0].isnumeric():
# if the value is numeric, it's not a status column
continue
if len(samples_df[col][0]) in [3, 5, 13, 17]:
status_cols.append(col)
return samples_df.drop(columns=status_cols)
def _infer_col_names(raw_extras):
"""Build column and channel names for data from Eyelink ASCII file.
Returns the expected column names for the sample lines and event
lines, to be passed into pd.DataFrame. The columns present in an eyelink ASCII
file can vary. The order that col_names are built below should NOT change.
"""
col_names = {}
# initiate the column names for the sample lines
col_names["samples"] = list(EYELINK_COLS["timestamp"])
# and for the eye message lines
col_names["blinks"] = list(EYELINK_COLS["eye_event"])
col_names["fixations"] = list(EYELINK_COLS["eye_event"] + EYELINK_COLS["fixation"])
col_names["saccades"] = list(EYELINK_COLS["eye_event"] + EYELINK_COLS["saccade"])
# Recording was either binocular or monocular
# If monocular, find out which eye was tracked and append to ch_name
if raw_extras["tracking_mode"] == "monocular":
eye = raw_extras["eye"]
ch_names = list(EYELINK_COLS["pos"][eye])
elif raw_extras["tracking_mode"] == "binocular":
ch_names = list(EYELINK_COLS["pos"]["left"] + EYELINK_COLS["pos"]["right"])
col_names["samples"].extend(ch_names)
# The order of these if statements should not be changed.
if "VEL" in raw_extras["rec_info"]: # If velocity data are reported
if raw_extras["tracking_mode"] == "monocular":
ch_names.extend(EYELINK_COLS["velocity"][eye])
col_names["samples"].extend(EYELINK_COLS["velocity"][eye])
elif raw_extras["tracking_mode"] == "binocular":
ch_names.extend(
EYELINK_COLS["velocity"]["left"] + EYELINK_COLS["velocity"]["right"]
)
col_names["samples"].extend(
EYELINK_COLS["velocity"]["left"] + EYELINK_COLS["velocity"]["right"]
)
# if resolution data are reported
if "RES" in raw_extras["rec_info"]:
ch_names.extend(EYELINK_COLS["resolution"])
col_names["samples"].extend(EYELINK_COLS["resolution"])
col_names["fixations"].extend(EYELINK_COLS["resolution"])
col_names["saccades"].extend(EYELINK_COLS["resolution"])
# if digital input port values are reported
if "INPUT" in raw_extras["rec_info"]:
ch_names.extend(EYELINK_COLS["input"])
col_names["samples"].extend(EYELINK_COLS["input"])
# if head target info was reported, add its cols
if "HTARGET" in raw_extras["rec_info"]:
ch_names.extend(EYELINK_COLS["remote"])
col_names["samples"].extend(EYELINK_COLS["remote"])
return col_names, ch_names
def _assign_col_names(col_names, df_dict):
"""Assign column names to dataframes.
Parameters
----------
col_names : dict
Dictionary of column names for each dataframe.
"""
for key, df in df_dict.items():
if key in ("samples", "blinks", "fixations", "saccades"):
df.columns = col_names[key]
elif key == "messages":
cols = ["time", "offset", "event_msg"]
df.columns = cols
return df_dict
def _set_df_dtypes(df_dict):
from mne.utils import _set_pandas_dtype
for key, df in df_dict.items():
if key in ["samples"]:
# convert missing position values to NaN
_set_missing_values(df, df.columns[1:])
_set_pandas_dtype(df, df.columns, float, verbose="warning")
elif key in ["blinks", "fixations", "saccades"]:
_set_missing_values(df, df.columns[1:])
_set_pandas_dtype(df, df.columns[1:], float, verbose="warning")
elif key == "messages":
_set_pandas_dtype(df, ["time"], float, verbose="warning") # timestamp
return df_dict
def _set_missing_values(df, columns):
"""Set missing values to NaN. operates in-place."""
missing_vals = (".", "MISSING_DATA")
for col in columns:
# we explicitly use numpy instead of pd.replace because it is faster
# if a stim channel (DIN) we should use zero so it can cast to int properly
# in find_events
replacement = 0 if col == "DIN" else np.nan
df[col] = np.where(df[col].isin(missing_vals), replacement, df[col])
def _sort_by_time(df, col="time"):
df.sort_values(col, ascending=True, inplace=True)
df.reset_index(drop=True, inplace=True)
def _convert_times(df, first_samp, col="time"):
"""Set initial time to 0, converts from ms to seconds in place.
Parameters
----------
df pandas.DataFrame:
One of the dataframes in raw_extras["dfs"] dict.
first_samp int:
timestamp of the first sample of the recording. This should
be the first sample of the first recording block.
col str (default 'time'):
column name to sort pandas.DataFrame by
Notes
-----
Each sample in an Eyelink file has a posix timestamp string.
Subtracts the "first" sample's timestamp from each timestamp.
The "first" sample is inferred to be the first sample of
the first recording block, i.e. the first "START" line.
"""
_sort_by_time(df, col)
for col in df.columns:
if col.endswith("time"): # 'time' and 'end_time' cols
df[col] -= first_samp
df[col] /= 1000
if col in ["duration", "offset"]:
df[col] /= 1000
return df
def _adjust_times(
df,
sfreq,
time_col="time",
):
"""Fill missing timestamps if there are multiple recording blocks.
Parameters
----------
df : pandas.DataFrame:
dataframe of the eyetracking data samples, BEFORE
_convert_times() is applied to the dataframe
sfreq : int | float:
sampling frequency of the data
time_col : str (default 'time'):
name of column with the timestamps (e.g. 9511881, 9511882, ...)
Returns
-------
%(df_return)s
Notes
-----
After _parse_recording_blocks, Files with multiple recording blocks will
have missing timestamps for the duration of the period between the blocks.
This would cause the occular annotations (i.e. blinks) to not line up with
the signal.
"""
pd = _check_pandas_installed()
first, last = df[time_col].iloc[[0, -1]]
step = 1000 / sfreq
df[time_col] = df[time_col].astype(float)
new_times = pd.DataFrame(
np.arange(first, last + step / 2, step), columns=[time_col]
)
df = pd.merge_asof(
new_times, df, on=time_col, direction="nearest", tolerance=step / 2
)
# fix DIN NaN values
if "DIN" in df.columns:
df["DIN"] = df["DIN"].fillna(0)
return df
def _find_overlaps(df, max_time=0.05):
"""Merge left/right eye events with onset/offset diffs less than max_time.
Parameters
----------
df : pandas.DataFrame
Pandas DataFrame with occular events (fixations, saccades, blinks)
max_time : float (default 0.05)
Time in seconds. Defaults to .05 (50 ms)
Returns
-------
DataFrame: %(df_return)s
:class:`pandas.DataFrame` specifying overlapped eye events, if any
Notes
-----
The idea is to cumulative sum the boolean values for rows with onset and
offset differences (against the previous row) that are greater than the
max_time. If onset and offset diffs are less than max_time then no_overlap
will become False. Alternatively, if either the onset or offset diff is
greater than max_time, no_overlap becomes True. Cumulatively summing over
these boolean values will leave rows with no_overlap == False unchanged
and hence with the same group number.
"""
pd = _check_pandas_installed()
if not len(df):
return
df["overlap_start"] = df.sort_values("time")["time"].diff().lt(max_time)
df["overlap_end"] = df["end_time"].diff().abs().lt(max_time)
df["no_overlap"] = ~(df["overlap_end"] & df["overlap_start"])
df["group"] = df["no_overlap"].cumsum()
# now use groupby on 'group'. If one left and one right eye in group
# the new start/end times are the mean of the two eyes
ovrlp = pd.concat(
[
pd.DataFrame(g[1].drop(columns="eye").mean()).T
if (len(g[1]) == 2) and (len(g[1].eye.unique()) == 2)
else g[1] # not an overlap, return group unchanged
for g in df.groupby("group")
]
)
# overlapped events get a "both" value in the "eye" col
if "eye" in ovrlp.columns:
ovrlp["eye"] = ovrlp["eye"].fillna("both")
else:
ovrlp["eye"] = "both"
tmp_cols = ["overlap_start", "overlap_end", "no_overlap", "group"]
return ovrlp.drop(columns=tmp_cols).reset_index(drop=True)
def _convert_href_samples(samples_df):
"""Convert HREF eyegaze samples to radians."""
# grab the xpos and ypos channel names
pos_names = EYELINK_COLS["pos"]["left"][:-1] + EYELINK_COLS["pos"]["right"][:-1]
for col in samples_df.columns:
if col not in pos_names: # 'xpos_left' ... 'ypos_right'
continue
series = _href_to_radian(samples_df[col])
samples_df[col] = series
return samples_df
def _href_to_radian(opposite, f=15_000):
"""Convert HREF eyegaze samples to radians.
Parameters
----------
opposite : int
The x or y coordinate in an HREF gaze sample.
f : int (default 15_000)
distance of plane from the eye. Defaults to 15,000 units, which was taken
from the Eyelink 1000 plus user manual.
Returns
-------
x or y coordinate in radians
Notes
-----
See section 4.4.2.2 in the Eyelink 1000 Plus User Manual
(version 1.0.19) for a detailed description of HREF data.
"""
return np.arcsin(opposite / f)
def _create_info(ch_names, raw_extras):
"""Create info object for RawEyelink."""
# assign channel type from ch_name
pos_names = EYELINK_COLS["pos"]["left"][:-1] + EYELINK_COLS["pos"]["right"][:-1]
pupil_names = EYELINK_COLS["pos"]["left"][-1] + EYELINK_COLS["pos"]["right"][-1]
ch_types = [
"eyegaze"
if ch in pos_names
else "pupil"
if ch in pupil_names
else "stim"
if ch == "DIN"
else "misc"
for ch in ch_names
]
info = create_info(ch_names, raw_extras["sfreq"], ch_types)
# set correct loc for eyepos and pupil channels
for ch_dict in info["chs"]:
# loc index 3 can indicate left or right eye
if ch_dict["ch_name"].endswith("left"): # [x,y,pupil]_left
ch_dict["loc"][3] = -1 # left eye
elif ch_dict["ch_name"].endswith("right"): # [x,y,pupil]_right
ch_dict["loc"][3] = 1 # right eye
else:
logger.debug(
f"leaving index 3 of loc array as"
f" {ch_dict['loc'][3]} for {ch_dict['ch_name']}"
)
# loc index 4 can indicate x/y coord
if ch_dict["ch_name"].startswith("x"):
ch_dict["loc"][4] = -1 # x-coord
elif ch_dict["ch_name"].startswith("y"):
ch_dict["loc"][4] = 1 # y-coord
else:
logger.debug(
f"leaving index 4 of loc array as"
f" {ch_dict['loc'][4]} for {ch_dict['ch_name']}"
)
if "HREF" in raw_extras["rec_info"]:
if ch_dict["ch_name"].startswith(("xpos", "ypos")):
ch_dict["unit"] = FIFF.FIFF_UNIT_RAD
return info
def _make_eyelink_annots(df_dict, create_annots, apply_offsets):
"""Create Annotations for each df in raw_extras."""
eye_ch_map = {
"L": ("xpos_left", "ypos_left", "pupil_left"),
"R": ("xpos_right", "ypos_right", "pupil_right"),
"both": (
"xpos_left",
"ypos_left",
"pupil_left",
"xpos_right",
"ypos_right",
"pupil_right",
),
}
valid_descs = ["blinks", "saccades", "fixations", "messages"]
msg = (
"create_annotations must be True or a list containing one or"
f" more of {valid_descs}."
)
wrong_type = msg + f" Got a {type(create_annots)} instead."
if create_annots is True:
descs = valid_descs
else:
if not isinstance(create_annots, list):
raise TypeError(wrong_type)
for desc in create_annots:
if desc not in valid_descs:
raise ValueError(msg + f" Got '{desc}' instead")
descs = create_annots
annots = None
for key, df in df_dict.items():
eye_annot_cond = (key in ["blinks", "fixations", "saccades"]) and (key in descs)
if eye_annot_cond:
onsets = df["time"]
durations = df["duration"]
# Create annotations for both eyes
descriptions = key[:-1] # i.e "blink", "fixation", "saccade"
if key == "blinks":
descriptions = "BAD_" + descriptions
ch_names = df["eye"].map(eye_ch_map).tolist()
this_annot = Annotations(
onset=onsets,
duration=durations,
description=descriptions,
ch_names=ch_names,
)
elif (key in ["messages"]) and (key in descs):
if apply_offsets:
# If df['offset] is all NaNs, time is not changed
onsets = df["time"] + df["offset"].fillna(0)
else:
onsets = df["time"]
durations = [0] * onsets
descriptions = df["event_msg"]
this_annot = Annotations(
onset=onsets, duration=durations, description=descriptions
)
else:
continue # TODO make df and annotations for Buttons
if not annots:
annots = this_annot
elif annots:
annots += this_annot
if not annots:
warn(f"Annotations for {descs} were requested but none could be made.")
return
return annots
def _make_gap_annots(raw_extras, key="recording_blocks"):
"""Create Annotations for gap periods between recording blocks."""
df = raw_extras["dfs"][key]
onsets = df["end_time"].iloc[:-1]
diffs = df["time"].shift(-1) - df["end_time"]
durations = diffs.iloc[:-1]
descriptions = ["BAD_ACQ_SKIP"] * len(onsets)
return Annotations(onset=onsets, duration=durations, description=descriptions)
# ======================== Used by read_eyelink-calibration ===========================
def _find_recording_start(lines):
"""Return the first START line in an SR Research EyeLink ASCII file.
Parameters
----------
lines: A list of strings, which are The lines in an eyelink ASCII file.
Returns
-------
The line that contains the info on the start of the recording.
"""
for line in lines:
if line.startswith("START"):
return line
raise ValueError("Could not find the start of the recording.")
def _parse_validation_line(line):
"""Parse a single line of eyelink validation data.
Parameters
----------
line: A string containing a line of validation data from an eyelink
ASCII file.
Returns
-------
A list of tuples containing the validation data.
"""
tokens = line.split()
xy = tokens[-6].strip("[]").split(",") # e.g. '960, 540'
xy_diff = tokens[-2].strip("[]").split(",") # e.g. '-1.5, -2.8'
vals = [float(v) for v in [*xy, tokens[-4], *xy_diff]]
vals[3] += vals[0] # pos_x + eye_x i.e. 960 + -1.5
vals[4] += vals[1] # pos_y + eye_y
return tuple(vals)
def _parse_calibration(
lines, screen_size=None, screen_distance=None, screen_resolution=None
):
"""Parse the lines in the given list and returns a list of Calibration instances.
Parameters
----------
lines: A list of strings, which are The lines in an eyelink ASCII file.
Returns
-------
A list containing one or more Calibration instances,
one for each calibration that was recorded in the eyelink ASCII file
data.
"""
from ...preprocessing.eyetracking.calibration import Calibration
regex = re.compile(r"\d+") # for finding numeric characters
calibrations = list()
rec_start = float(_find_recording_start(lines).split()[1])
for line_number, line in enumerate(lines):
if (
"!CAL VALIDATION " in line and "ABORTED" not in line
): # Start of a calibration
tokens = line.split()
model = tokens[4] # e.g. 'HV13'
this_eye = tokens[6].lower() # e.g. 'left'
timestamp = float(tokens[1])
onset = (timestamp - rec_start) / 1000.0 # in seconds
avg_error = float(line.split("avg.")[0].split()[-1]) # e.g. 0.3
max_error = float(line.split("max")[0].split()[-1]) # e.g. 0.9
n_points = int(regex.search(model).group()) # e.g. 13
n_points *= 2 if "LR" in line else 1 # one point per eye if "LR"
# The next n_point lines contain the validation data
points = []
for validation_index in range(n_points):
subline = lines[line_number + validation_index + 1]
if "!CAL VALIDATION" in subline:
continue # for bino mode, skip the second eye's validation summary
subline_eye = subline.split("at")[0].split()[-1].lower() # e.g. 'left'
if subline_eye != this_eye:
continue # skip the validation lines for the other eye
point_info = _parse_validation_line(subline)
points.append(point_info)
# Convert the list of validation data into a numpy array
positions = np.array([point[:2] for point in points])
offsets = np.array([point[2] for point in points])
gaze = np.array([point[3:] for point in points])
# create the Calibration instance
calibration = Calibration(
onset=onset,
model=model,
eye=this_eye,
avg_error=avg_error,
max_error=max_error,
positions=positions,
offsets=offsets,
gaze=gaze,
screen_size=screen_size,
screen_distance=screen_distance,
screen_resolution=screen_resolution,
)
calibrations.append(calibration)
return calibrations