[7f9fb8]: / mne / io / eeglab / tests / test_eeglab.py

Download this file

749 lines (672 with data), 26.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
import shutil
from copy import deepcopy
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
from scipy import io
import mne
from mne import read_epochs_eeglab, write_events
from mne.annotations import events_from_annotations, read_annotations
from mne.channels import read_custom_montage
from mne.datasets import testing
from mne.io import read_raw_eeglab
from mne.io.eeglab._eeglab import _readmat
from mne.io.eeglab.eeglab import _dol_to_lod, _get_montage_information
from mne.io.tests.test_raw import _test_raw_reader
from mne.utils import Bunch, _check_pymatreader_installed, _record_warnings
base_dir = testing.data_path(download=False) / "EEGLAB"
raw_fname_mat = base_dir / "test_raw.set"
raw_fname_onefile_mat = base_dir / "test_raw_onefile.set"
raw_fname_event_duration = base_dir / "test_raw_event_duration.set"
epochs_fname_mat = base_dir / "test_epochs.set"
epochs_fname_onefile_mat = base_dir / "test_epochs_onefile.set"
epochs_mat_fnames = [epochs_fname_mat, epochs_fname_onefile_mat]
raw_fname_chanloc = base_dir / "test_raw_chanloc.set"
raw_fname_chanloc_fids = base_dir / "test_raw_chanloc_fids.set"
raw_fname_2021 = base_dir / "test_raw_2021.set"
raw_fname_h5 = base_dir / "test_raw_h5.set"
epochs_fname_h5 = base_dir / "test_epochs_h5.set"
epochs_fname_onefile_h5 = base_dir / "test_epochs_onefile_h5.set"
epochs_h5_fnames = [epochs_fname_h5, epochs_fname_onefile_h5]
montage_path = base_dir / "test_chans.locs"
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname",
[
raw_fname_mat,
pytest.param(
raw_fname_h5,
marks=[
pytest.mark.skipif(
not _check_pymatreader_installed(strict=False),
reason="pymatreader not installed",
)
],
),
raw_fname_chanloc,
],
ids=os.path.basename,
)
def test_io_set_raw(fname):
"""Test importing EEGLAB .set files."""
montage = read_custom_montage(montage_path)
montage.ch_names = [f"EEG {ii:03d}" for ii in range(len(montage.ch_names))]
kws = dict(reader=read_raw_eeglab, input_fname=fname)
if fname.name == "test_raw_chanloc.set":
with pytest.warns(RuntimeWarning, match="The data contains 'boundary' events"):
raw0 = _test_raw_reader(**kws)
elif "_h5" in fname.name: # should be safe enough, and much faster
raw0 = read_raw_eeglab(fname, preload=True)
else:
raw0 = _test_raw_reader(**kws)
# test that preloading works
if fname.name == "test_raw_chanloc.set":
raw0.set_montage(montage, on_missing="ignore")
# crop to check if the data has been properly preloaded; we cannot
# filter as the snippet of raw data is very short
raw0.crop(0, 1)
else:
raw0.set_montage(montage)
raw0.filter(
1, None, l_trans_bandwidth="auto", filter_length="auto", phase="zero"
)
# test that using uint16_codec does not break stuff
read_raw_kws = dict(input_fname=fname, preload=False, uint16_codec="ascii")
if fname.name == "test_raw_chanloc.set":
with pytest.warns(RuntimeWarning, match="The data contains 'boundary' events"):
raw0 = read_raw_eeglab(**read_raw_kws)
raw0.set_montage(montage, on_missing="ignore")
else:
raw0 = read_raw_eeglab(**read_raw_kws)
raw0.set_montage(montage)
# Annotations
if fname != raw_fname_chanloc:
assert len(raw0.annotations) == 154
assert set(raw0.annotations.description) == {"rt", "square"}
assert_array_equal(raw0.annotations.duration, 0.0)
@testing.requires_testing_data
def test_io_set_raw_more(tmp_path):
"""Test importing EEGLAB .set files."""
eeg = io.loadmat(raw_fname_mat, struct_as_record=False, squeeze_me=True)["EEG"]
# test reading file with one event (read old version)
negative_latency_fname = tmp_path / "test_negative_latency.set"
events = deepcopy(eeg.event[0])
events.latency = 0
io.savemat(
negative_latency_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": eeg.nbchan,
"data": "test_negative_latency.fdt",
"epoch": eeg.epoch,
"event": events,
"chanlocs": eeg.chanlocs,
"pnts": eeg.pnts,
}
},
appendmat=False,
oned_as="row",
)
shutil.copyfile(
base_dir / "test_raw.fdt", negative_latency_fname.with_suffix(".fdt")
)
with (
_record_warnings(),
pytest.warns(RuntimeWarning, match="has a sample index of -1."),
):
read_raw_eeglab(input_fname=negative_latency_fname, preload=True)
# test negative event latencies
events.latency = -1
io.savemat(
negative_latency_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": eeg.nbchan,
"data": "test_negative_latency.fdt",
"epoch": eeg.epoch,
"event": events,
"chanlocs": eeg.chanlocs,
"pnts": eeg.pnts,
}
},
appendmat=False,
oned_as="row",
)
with pytest.raises(ValueError, match="event sample index is negative"):
with _record_warnings():
read_raw_eeglab(input_fname=negative_latency_fname, preload=True)
# test overlapping events
overlap_fname = tmp_path / "test_overlap_event.set"
io.savemat(
overlap_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": eeg.nbchan,
"data": "test_overlap_event.fdt",
"epoch": eeg.epoch,
"event": [eeg.event[0], eeg.event[0]],
"chanlocs": eeg.chanlocs,
"pnts": eeg.pnts,
}
},
appendmat=False,
oned_as="row",
)
shutil.copyfile(base_dir / "test_raw.fdt", overlap_fname.with_suffix(".fdt"))
read_raw_eeglab(input_fname=overlap_fname, preload=True)
# test reading file with empty event durations
empty_dur_fname = tmp_path / "test_empty_durations.set"
events = deepcopy(eeg.event)
for ev in events:
ev.duration = np.array([], dtype="float")
io.savemat(
empty_dur_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": eeg.nbchan,
"data": "test_negative_latency.fdt",
"epoch": eeg.epoch,
"event": events,
"chanlocs": eeg.chanlocs,
"pnts": eeg.pnts,
}
},
appendmat=False,
oned_as="row",
)
shutil.copyfile(base_dir / "test_raw.fdt", empty_dur_fname.with_suffix(".fdt"))
raw = read_raw_eeglab(input_fname=empty_dur_fname, preload=True)
assert (raw.annotations.duration == 0).all()
# test reading file when the EEG.data name is wrong
io.savemat(
overlap_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": eeg.nbchan,
"data": "test_overla_event.fdt",
"epoch": eeg.epoch,
"event": [eeg.event[0], eeg.event[0]],
"chanlocs": eeg.chanlocs,
"pnts": eeg.pnts,
}
},
appendmat=False,
oned_as="row",
)
with pytest.warns(RuntimeWarning, match="must have changed on disk"):
read_raw_eeglab(input_fname=overlap_fname, preload=True)
# raise error when both EEG.data and fdt name from set are wrong
overlap_fname = tmp_path / "test_ovrlap_event.set"
io.savemat(
overlap_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": eeg.nbchan,
"data": "test_overla_event.fdt",
"epoch": eeg.epoch,
"event": [eeg.event[0], eeg.event[0]],
"chanlocs": eeg.chanlocs,
"pnts": eeg.pnts,
}
},
appendmat=False,
oned_as="row",
)
with pytest.raises(FileNotFoundError, match="not find the .fdt data file"):
read_raw_eeglab(input_fname=overlap_fname, preload=True)
# test reading file with one channel
one_chan_fname = tmp_path / "test_one_channel.set"
io.savemat(
one_chan_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": 1,
"data": np.random.random((1, 3)),
"epoch": eeg.epoch,
"event": eeg.epoch,
"chanlocs": {"labels": "E1", "Y": -6.6069, "X": 6.3023, "Z": -2.9423},
"times": eeg.times[:3],
"pnts": 3,
}
},
appendmat=False,
oned_as="row",
)
read_raw_eeglab(input_fname=one_chan_fname, preload=True, montage_units="cm")
# test reading file with 3 channels - one without position information
# first, create chanlocs structured array
ch_names = ["F3", "unknown", "FPz"]
x, y, z = [1.0, 2.0, np.nan], [4.0, 5.0, np.nan], [7.0, 8.0, np.nan]
dt = [("labels", "S10"), ("X", "f8"), ("Y", "f8"), ("Z", "f8")]
nopos_dt = [("labels", "S10"), ("Z", "f8")]
chanlocs = np.zeros((3,), dtype=dt)
nopos_chanlocs = np.zeros((3,), dtype=nopos_dt)
for ind, vals in enumerate(zip(ch_names, x, y, z)):
for fld in range(4):
chanlocs[ind][dt[fld][0]] = vals[fld]
if fld in (0, 3):
nopos_chanlocs[ind][dt[fld][0]] = vals[fld]
# In theory this should work and be simpler, but there is an obscure
# SciPy writing bug that pops up sometimes:
# nopos_chanlocs = np.array(chanlocs[['labels', 'Z']])
# test reading channel names but not positions when there is no X (only Z)
# field in the EEG.chanlocs structure
nopos_fname = tmp_path / "test_no_chanpos.set"
io.savemat(
nopos_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": 3,
"data": np.random.random((3, 2)),
"epoch": eeg.epoch,
"event": eeg.epoch,
"chanlocs": nopos_chanlocs,
"times": eeg.times[:2],
"pnts": 2,
}
},
appendmat=False,
oned_as="row",
)
# load the file
raw = read_raw_eeglab(input_fname=nopos_fname, preload=True, montage_units="cm")
# test that channel names have been loaded but not channel positions
for i in range(3):
assert_equal(raw.info["chs"][i]["ch_name"], ch_names[i])
assert_array_equal(
raw.info["chs"][i]["loc"][:3], np.array([np.nan, np.nan, np.nan])
)
@pytest.mark.timeout(60) # ~60 s on Travis OSX
@testing.requires_testing_data
@pytest.mark.parametrize(
"fnames",
[
epochs_mat_fnames,
pytest.param(
epochs_h5_fnames,
marks=[
pytest.mark.slowtest,
pytest.mark.skipif(
not _check_pymatreader_installed(strict=False),
reason="pymatreader not installed",
),
],
),
],
)
def test_io_set_epochs(fnames):
"""Test importing EEGLAB .set epochs files."""
epochs_fname, epochs_fname_onefile = fnames
with _record_warnings(), pytest.warns(RuntimeWarning, match="multiple events"):
epochs = read_epochs_eeglab(epochs_fname)
with _record_warnings(), pytest.warns(RuntimeWarning, match="multiple events"):
epochs2 = read_epochs_eeglab(epochs_fname_onefile)
# one warning for each read_epochs_eeglab because both files have epochs
# associated with multiple events
assert_array_equal(epochs.get_data(copy=False), epochs2.get_data(copy=False))
@testing.requires_testing_data
def test_io_set_epochs_events(tmp_path):
"""Test different combinations of events and event_ids."""
out_fname = tmp_path / "test-eve.fif"
events = np.array([[4, 0, 1], [12, 0, 2], [20, 0, 3], [26, 0, 3]])
write_events(out_fname, events)
event_id = {"S255/S8": 1, "S8": 2, "S255/S9": 3}
epochs = read_epochs_eeglab(epochs_fname_mat, events, event_id)
assert_equal(len(epochs.events), 4)
assert epochs.preload
assert epochs._bad_dropped
epochs = read_epochs_eeglab(epochs_fname_mat, out_fname, event_id)
pytest.raises(ValueError, read_epochs_eeglab, epochs_fname_mat, None, event_id)
pytest.raises(ValueError, read_epochs_eeglab, epochs_fname_mat, epochs.events, None)
@testing.requires_testing_data
@pytest.mark.filterwarnings("ignore:At least one epoch has multiple events")
@pytest.mark.filterwarnings("ignore:The data contains 'boundary' events")
def test_degenerate(tmp_path):
"""Test some degenerate conditions."""
# test if .dat file raises an error
eeg = io.loadmat(epochs_fname_mat, struct_as_record=False, squeeze_me=True)["EEG"]
eeg.data = "epochs_fname.dat"
bad_epochs_fname = tmp_path / "test_epochs.set"
io.savemat(
bad_epochs_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": eeg.nbchan,
"data": eeg.data,
"epoch": eeg.epoch,
"event": eeg.event,
"chanlocs": eeg.chanlocs,
"pnts": eeg.pnts,
}
},
appendmat=False,
oned_as="row",
)
shutil.copyfile(base_dir / "test_epochs.fdt", tmp_path / "test_epochs.dat")
pytest.raises(NotImplementedError, read_epochs_eeglab, bad_epochs_fname)
# error when montage units incorrect
with pytest.raises(ValueError, match=r"Invalid value"):
read_epochs_eeglab(epochs_fname_mat, montage_units="mV")
# warning when head radius too large
with pytest.warns(RuntimeWarning, match="is above"):
read_raw_eeglab(raw_fname_chanloc, montage_units="m")
# warning when head radius too small
m_fname = tmp_path / "test_montage_m.set"
_create_eeg_with_scaled_montage_units(raw_fname_chanloc, m_fname, 1e-3)
with pytest.warns(RuntimeWarning, match="is below"):
read_raw_eeglab(m_fname, montage_units="mm")
@pytest.mark.parametrize(
"fname",
[
raw_fname_mat,
raw_fname_onefile_mat,
# We don't test the h5 variants here because they are implicitly tested
# in test_io_set_raw
],
)
@pytest.mark.filterwarnings("ignore: Complex objects")
@testing.requires_testing_data
def test_eeglab_annotations(fname):
"""Test reading annotations in EEGLAB files."""
annotations = read_annotations(fname)
assert len(annotations) == 154
assert set(annotations.description) == {"rt", "square"}
assert np.all(annotations.duration == 0.0)
@testing.requires_testing_data
def test_eeglab_read_annotations():
"""Test annotations onsets are timestamps (+ validate some)."""
annotations = read_annotations(raw_fname_mat)
validation_samples = [0, 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
expected_onset = np.array(
[
1.00,
1.69,
2.08,
4.70,
7.71,
11.30,
17.18,
20.20,
26.12,
29.14,
35.25,
44.30,
47.15,
]
)
assert annotations.orig_time is None
assert_array_almost_equal(
annotations.onset[validation_samples], expected_onset, decimal=2
)
# test if event durations are imported correctly
raw = read_raw_eeglab(raw_fname_event_duration, preload=True, montage_units="dm")
# file contains 3 annotations with 0.5 s (64 samples) duration each
assert_allclose(raw.annotations.duration, np.ones(3) * 0.5)
@testing.requires_testing_data
def test_eeglab_event_from_annot():
"""Test all forms of obtaining annotations."""
raw_fname_mat = base_dir / "test_raw.set"
raw_fname = raw_fname_mat
event_id = {"rt": 1, "square": 2}
raw1 = read_raw_eeglab(input_fname=raw_fname, preload=False)
annotations = read_annotations(raw_fname)
assert len(raw1.annotations) == 154
raw1.set_annotations(annotations)
events_b, _ = events_from_annotations(raw1, event_id=event_id)
assert len(events_b) == 154
def _assert_array_allclose_nan(left, right):
assert_array_equal(np.isnan(left), np.isnan(right))
assert_allclose(left[~np.isnan(left)], right[~np.isnan(left)], atol=1e-8)
@pytest.fixture(scope="session")
def three_chanpos_fname(tmp_path_factory):
"""Test file with 3 channels to exercise EEGLAB reader.
File characteristics
- ch_names: 'F3', 'unknown', 'FPz'
- 'FPz' has no position information.
- the rest is aleatory
Notes from when this code was factorized:
# test reading file with one event (read old version)
"""
fname = str(tmp_path_factory.mktemp("data") / "test_chanpos.set")
file_conent = dict(
EEG={
"trials": 1,
"nbchan": 3,
"pnts": 3,
"epoch": [],
"event": [],
"srate": 128,
"times": np.array([0.0, 0.1, 0.2]),
"data": np.empty([3, 3]),
"chanlocs": np.array(
[
(b"F3", 1.0, 4.0, 7.0),
(b"unknown", np.nan, np.nan, np.nan),
(b"FPz", 2.0, 5.0, 8.0),
],
dtype=[("labels", "S10"), ("X", "f8"), ("Y", "f8"), ("Z", "f8")],
),
}
)
io.savemat(file_name=fname, mdict=file_conent, appendmat=False, oned_as="row")
return fname
@testing.requires_testing_data
def test_position_information(three_chanpos_fname):
"""Test reading file with 3 channels - one without position information."""
nan = np.nan
EXPECTED_LOCATIONS_FROM_FILE = (
np.array(
[
[-4.0, 1.0, 7.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[-5.0, 2.0, 8.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan],
]
)
* 0.01
) # 0.01 is to scale cm to meters
EXPECTED_LOCATIONS_FROM_MONTAGE = np.array(
[
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
]
)
raw = read_raw_eeglab(
input_fname=three_chanpos_fname, preload=True, montage_units="cm"
)
assert_array_equal(
np.array([ch["loc"] for ch in raw.info["chs"]]), EXPECTED_LOCATIONS_FROM_FILE
)
# To accommodate the new behavior so that:
# read_raw_eeglab(.. montage=montage) and raw.set_montage(montage)
# behaves the same we need to flush the montage. otherwise we get
# a mix of what is in montage and in the file
raw = read_raw_eeglab(
input_fname=three_chanpos_fname,
preload=True,
montage_units="cm",
).set_montage(None) # Flush the montage builtin within input_fname
_assert_array_allclose_nan(
np.array([ch["loc"] for ch in raw.info["chs"]]), EXPECTED_LOCATIONS_FROM_MONTAGE
)
def _create_eeg_with_scaled_montage_units(in_fname, out_fname, scale):
eeg = io.loadmat(in_fname, struct_as_record=False, squeeze_me=True)["EEG"]
# test reading file with one event (read old version)
# chanlocs = deepcopy(eeg.chanlocs)
chanlocs = eeg.chanlocs
xyz = np.empty((len(chanlocs), 3))
labels = []
for ch_i, loc in enumerate(chanlocs):
xyz[ch_i] = [loc.X, loc.Y, loc.Z]
labels.append(loc.labels)
xyz *= scale
chanlocs = np.rec.fromarrays(
[labels, *xyz.T],
names=["labels", "X", "Y", "Z"],
)
fdt = isinstance(eeg.data, str)
if fdt:
shutil.copyfile(in_fname.with_suffix(".fdt"), out_fname.with_suffix(".fdt"))
io.savemat(
out_fname,
{
"EEG": {
"trials": eeg.trials,
"srate": eeg.srate,
"nbchan": eeg.nbchan,
"data": out_fname.with_suffix(".fdt").name if fdt else eeg.data,
"epoch": eeg.epoch,
"event": eeg.event,
"chanlocs": chanlocs,
"pnts": eeg.pnts,
}
},
appendmat=False,
oned_as="row",
)
@testing.requires_testing_data
def test_estimate_montage_units(tmp_path):
"""Test automatic estimation of montage units."""
m_fname = tmp_path / "test_montage_m.set"
_create_eeg_with_scaled_montage_units(raw_fname_chanloc, m_fname, 1e-3)
cm_fname = tmp_path / "test_montage_cm.set"
_create_eeg_with_scaled_montage_units(raw_fname_chanloc, cm_fname, 1e-1)
with pytest.warns(RuntimeWarning, match="The data contains 'boundary' events"):
# read 3 versions of the same file, with different montage units
raw_mm = read_raw_eeglab(raw_fname_chanloc, montage_units="auto")
raw_m = read_raw_eeglab(m_fname, montage_units="auto")
raw_cm = read_raw_eeglab(cm_fname, montage_units="auto")
# All locations should be the same if the units are correctly estimated
assert_allclose(
np.array([ch["loc"] for ch in raw_mm.info["chs"]]),
np.array([ch["loc"] for ch in raw_m.info["chs"]]),
)
assert_allclose(
np.array([ch["loc"] for ch in raw_mm.info["chs"]]),
np.array([ch["loc"] for ch in raw_cm.info["chs"]]),
)
@testing.requires_testing_data
def test_io_set_raw_2021():
"""Test reading new default file format (no EEG struct)."""
assert "EEG" not in io.loadmat(raw_fname_2021)
_test_raw_reader(
reader=read_raw_eeglab,
input_fname=raw_fname_2021,
test_preloading=False,
preload=True,
)
@testing.requires_testing_data
def test_read_single_epoch():
"""Test reading raw set file as an Epochs instance."""
with pytest.raises(ValueError, match="trials less than 2"):
read_epochs_eeglab(raw_fname_mat)
@testing.requires_testing_data
def test_get_montage_info_with_ch_type():
"""Test that the channel types are properly returned."""
mat = _readmat(raw_fname_onefile_mat)
n = len(mat["EEG"]["chanlocs"]["labels"])
mat["EEG"]["chanlocs"]["type"] = ["eeg"] * (n - 2) + ["eog"] + ["stim"]
mat["EEG"]["chanlocs"] = _dol_to_lod(mat["EEG"]["chanlocs"])
mat["EEG"] = Bunch(**mat["EEG"])
ch_names, ch_types, montage = _get_montage_information(
mat["EEG"],
get_pos=False,
montage_units="mm",
)
assert len(ch_names) == len(ch_types) == n
assert ch_types == ["eeg"] * (n - 2) + ["eog"] + ["stim"]
assert montage is None
# test unknown type warning
mat = _readmat(raw_fname_onefile_mat)
n = len(mat["EEG"]["chanlocs"]["labels"])
mat["EEG"]["chanlocs"]["type"] = ["eeg"] * (n - 2) + ["eog"] + ["unknown"]
mat["EEG"]["chanlocs"] = _dol_to_lod(mat["EEG"]["chanlocs"])
mat["EEG"] = Bunch(**mat["EEG"])
with pytest.warns(RuntimeWarning, match="Unknown types found"):
ch_names, ch_types, montage = _get_montage_information(
mat["EEG"],
get_pos=False,
montage_units="mm",
)
@testing.requires_testing_data
@pytest.mark.parametrize("has_type", (True, False))
def test_fidsposition_information(monkeypatch, has_type):
"""Test reading file with 3 fiducial locations."""
if not has_type:
def get_bad_information(eeg, get_pos, *, montage_units):
del eeg.chaninfo["nodatchans"]["type"]
return _get_montage_information(eeg, get_pos, montage_units=montage_units)
monkeypatch.setattr(
mne.io.eeglab.eeglab, "_get_montage_information", get_bad_information
)
raw = read_raw_eeglab(raw_fname_chanloc_fids, montage_units="cm")
montage = raw.get_montage()
pos = montage.get_positions()
n_eeg = 129
if not has_type:
# These should now be estimated from the data
assert_allclose(pos["nasion"], [0, 0.0997, 0], atol=1e-4)
assert_allclose(pos["lpa"], -pos["nasion"][[1, 0, 0]])
assert_allclose(pos["rpa"], pos["nasion"][[1, 0, 0]])
assert pos["nasion"] is not None
assert pos["lpa"] is not None
assert pos["rpa"] is not None
assert len(pos["nasion"]) == 3
assert len(pos["lpa"]) == 3
assert len(pos["rpa"]) == 3
assert len(raw.info["dig"]) == n_eeg + 3
@testing.requires_testing_data
def test_eeglab_drop_nan_annotations(tmp_path):
"""Test reading file with NaN annotations."""
pytest.importorskip("eeglabio")
from eeglabio.raw import export_set
file_path = tmp_path / "test_nan_anno.set"
raw = read_raw_eeglab(raw_fname_mat, preload=True)
data = raw.get_data()
sfreq = raw.info["sfreq"]
ch_names = raw.ch_names
anno = [
raw.annotations.description,
raw.annotations.onset,
raw.annotations.duration,
]
anno[1][0] = np.nan
export_set(
str(file_path),
data,
sfreq,
ch_names,
ch_locs=None,
annotations=anno,
ref_channels="common",
ch_types=np.repeat("EEG", len(ch_names)),
)
with pytest.warns(RuntimeWarning, match="1 .* have an onset that is NaN.*"):
raw = read_raw_eeglab(file_path, preload=True)