"""Create coordinate transforms."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from ..._fiff.constants import FIFF
from ...transforms import (
Transform,
_fit_matched_points,
_quat_to_affine,
apply_trans,
combine_transforms,
get_ras_to_neuromag_trans,
invert_transform,
)
from ...utils import logger
from .constants import CTF
def _make_transform_card(fro, to, r_lpa, r_nasion, r_rpa):
"""Make a transform from cardinal landmarks."""
return invert_transform(
Transform(to, fro, get_ras_to_neuromag_trans(r_nasion, r_lpa, r_rpa))
)
def _quaternion_align(from_frame, to_frame, from_pts, to_pts, diff_tol=1e-4):
"""Perform an alignment using the unit quaternions (modifies points)."""
assert from_pts.shape[1] == to_pts.shape[1] == 3
trans = _quat_to_affine(_fit_matched_points(from_pts, to_pts)[0])
# Test the transformation and print the results
logger.info(" Quaternion matching (desired vs. transformed):")
for fro, to in zip(from_pts, to_pts):
rr = apply_trans(trans, fro)
diff = np.linalg.norm(to - rr)
logger.info(
" %7.2f %7.2f %7.2f mm <-> %7.2f %7.2f %7.2f mm "
"(orig : %7.2f %7.2f %7.2f mm) diff = %8.3f mm"
% (tuple(1000 * to) + tuple(1000 * rr) + tuple(1000 * fro) + (1000 * diff,))
)
if diff > diff_tol:
raise RuntimeError(
"Something is wrong: quaternion matching did not work (see above)"
)
return Transform(from_frame, to_frame, trans)
def _make_ctf_coord_trans_set(res4, coils):
"""Figure out the necessary coordinate transforms."""
# CTF head > Neuromag head
lpa = rpa = nas = T1 = T2 = T3 = T5 = None
if coils is not None:
for p in coils:
if p["valid"] and (p["coord_frame"] == FIFF.FIFFV_MNE_COORD_CTF_HEAD):
if lpa is None and p["kind"] == CTF.CTFV_COIL_LPA:
lpa = p
elif rpa is None and p["kind"] == CTF.CTFV_COIL_RPA:
rpa = p
elif nas is None and p["kind"] == CTF.CTFV_COIL_NAS:
nas = p
if lpa is None or rpa is None or nas is None:
raise RuntimeError(
"Some of the mandatory HPI device-coordinate info was not there."
)
t = _make_transform_card("head", "ctf_head", lpa["r"], nas["r"], rpa["r"])
T3 = invert_transform(t)
# CTF device -> Neuromag device
#
# Rotate the CTF coordinate frame by 45 degrees and shift by 190 mm
# in z direction to get a coordinate system comparable to the Neuromag one
#
R = np.eye(4)
R[:3, 3] = [0.0, 0.0, 0.19]
val = 0.5 * np.sqrt(2.0)
R[0, 0] = val
R[0, 1] = -val
R[1, 0] = val
R[1, 1] = val
T4 = Transform("ctf_meg", "meg", R)
# CTF device -> CTF head
# We need to make the implicit transform explicit!
h_pts = dict()
d_pts = dict()
kinds = (
CTF.CTFV_COIL_LPA,
CTF.CTFV_COIL_RPA,
CTF.CTFV_COIL_NAS,
CTF.CTFV_COIL_SPARE,
)
if coils is not None:
for p in coils:
if p["valid"]:
if p["coord_frame"] == FIFF.FIFFV_MNE_COORD_CTF_HEAD:
for kind in kinds:
if kind not in h_pts and p["kind"] == kind:
h_pts[kind] = p["r"]
elif p["coord_frame"] == FIFF.FIFFV_MNE_COORD_CTF_DEVICE:
for kind in kinds:
if kind not in d_pts and p["kind"] == kind:
d_pts[kind] = p["r"]
if any(kind not in h_pts for kind in kinds[:-1]):
raise RuntimeError(
"Some of the mandatory HPI device-coordinate info was not there."
)
if any(kind not in d_pts for kind in kinds[:-1]):
raise RuntimeError(
"Some of the mandatory HPI head-coordinate info was not there."
)
use_kinds = [kind for kind in kinds if (kind in h_pts and kind in d_pts)]
r_head = np.array([h_pts[kind] for kind in use_kinds])
r_dev = np.array([d_pts[kind] for kind in use_kinds])
T2 = _quaternion_align("ctf_meg", "ctf_head", r_dev, r_head)
# The final missing transform
if T3 is not None and T2 is not None:
T5 = combine_transforms(T2, T3, "ctf_meg", "head")
T1 = combine_transforms(invert_transform(T4), T5, "meg", "head")
s = dict(
t_dev_head=T1,
t_ctf_dev_ctf_head=T2,
t_ctf_head_head=T3,
t_ctf_dev_dev=T4,
t_ctf_dev_head=T5,
)
logger.info(" Coordinate transformations established.")
return s