"""Conversion tool from BrainVision EEG to FIF."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import configparser
import os
import os.path as op
import re
from datetime import datetime, timezone
from io import StringIO
import numpy as np
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import _empty_info
from ..._fiff.utils import _mult_cal_one, _read_segments_file
from ...annotations import Annotations, read_annotations
from ...channels import make_dig_montage
from ...defaults import HEAD_SIZE_DEFAULT
from ...transforms import _sph_to_cart
from ...utils import _DefaultEventParser, fill_doc, logger, verbose, warn
from ..base import BaseRaw
@fill_doc
class RawBrainVision(BaseRaw):
"""Raw object from Brain Vision EEG file.
Parameters
----------
vhdr_fname : path-like
Path to the EEG header file.
eog : list of (int | str) | tuple of (int | str)
Names of channels or list of indices that should be designated EOG channels.
Values should correspond to the header file. Default is ``('HEOGL', 'HEOGR',
'VEOGb')``.
misc : list of (int | str) | tuple of (int | str) | ``'auto'``
Names of channels or list of indices that should be designated MISC channels.
Values should correspond to the electrodes in the header file. If ``'auto'``,
units in header file are used for inferring misc channels. Default is
``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by header file,
units are in microvolts. Default scale factor is 1.
ignore_marker_types : bool
If ``True``, ignore marker types and only use marker descriptions. Default is
``False``.
.. versionadded:: 1.8
%(preload)s
%(verbose)s
Attributes
----------
impedances : dict
A dictionary of all electrodes and their impedances.
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
Notes
-----
If the BrainVision header file contains impedance measurements, these may be
accessed using ``raw.impedances`` after reading using this function. However, this
attribute will NOT be available after a save and re-load of the data. That is, it is
only available when reading data directly from the BrainVision header file.
BrainVision markers consist of a type and a description (in addition to other fields
like onset and duration). In contrast, annotations in MNE only have a description.
Therefore, a BrainVision marker of type "Stimulus" and description "S 1" will be
converted to an annotation "Stimulus/S 1" by default. If you want to ignore the
type and instead only use the description, set ``ignore_marker_types=True``, which
will convert the same marker to an annotation "S 1".
The first marker in a BrainVision file is usually a "New Segment" marker, which
contains the recording time. This time is stored in the ``info['meas_date']``
attribute of the returned object and is not converted to an annotation.
"""
_extra_attributes = ("impedances",)
@verbose
def __init__(
self,
vhdr_fname,
eog=("HEOGL", "HEOGR", "VEOGb"),
misc="auto",
scale=1.0,
ignore_marker_types=False,
preload=False,
verbose=None,
): # noqa: D107
# Channel info and events
logger.info(f"Extracting parameters from {vhdr_fname}...")
hdr_fname = op.abspath(vhdr_fname)
ext = op.splitext(hdr_fname)[-1]
ahdr_format = True if ext == ".ahdr" else False
(
info,
data_fname,
fmt,
order,
n_samples,
mrk_fname,
montage,
orig_units,
) = _get_hdr_info(hdr_fname, eog, misc, scale)
with open(data_fname, "rb") as f:
if isinstance(fmt, dict): # ASCII, this will be slow :(
if order == "F": # multiplexed, channels in columns
n_skip = 0
for _ in range(int(fmt["skiplines"])):
n_skip += len(f.readline())
offsets = np.cumsum([n_skip] + [len(line) for line in f])
n_samples = len(offsets) - 1
elif order == "C": # vectorized, channels, in rows
raise NotImplementedError()
else:
n_data_ch = int(info["nchan"])
f.seek(0, os.SEEK_END)
n_samples = f.tell()
dtype_bytes = _fmt_byte_dict[fmt]
offsets = None
n_samples = n_samples // (dtype_bytes * n_data_ch)
orig_format = "single" if isinstance(fmt, dict) else fmt
raw_extras = dict(offsets=offsets, fmt=fmt, order=order, n_samples=n_samples)
super().__init__(
info,
last_samps=[n_samples - 1],
filenames=[data_fname],
orig_format=orig_format,
preload=preload,
verbose=verbose,
raw_extras=[raw_extras],
orig_units=orig_units,
)
self.set_montage(montage)
settings, _, _, _ = _aux_hdr_info(hdr_fname)
split_settings = settings.splitlines()
self.impedances = _parse_impedance(split_settings, self.info["meas_date"])
# Get annotations from marker file
annots = read_annotations(
mrk_fname, info["sfreq"], ignore_marker_types=ignore_marker_types
)
self.set_annotations(annots)
# Drop the fake ahdr channel if needed
if ahdr_format:
self.drop_channels(_AHDR_CHANNEL_NAME)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
# read data
n_data_ch = self._raw_extras[fi]["orig_nchan"]
fmt = self._raw_extras[fi]["fmt"]
if self._raw_extras[fi]["order"] == "C":
_read_segments_c(self, data, idx, fi, start, stop, cals, mult)
elif isinstance(fmt, str):
dtype = _fmt_dtype_dict[fmt]
_read_segments_file(
self,
data,
idx,
fi,
start,
stop,
cals,
mult,
dtype=dtype,
n_channels=n_data_ch,
)
else:
offsets = self._raw_extras[fi]["offsets"]
with open(self.filenames[fi], "rb") as fid:
fid.seek(offsets[start])
block = np.empty((n_data_ch, stop - start))
for ii in range(stop - start):
line = fid.readline().decode("ASCII")
line = line.strip()
# Not sure why we special-handle the "," character here, but let's
# just keep this for historical and backward- compat reasons
if (
isinstance(fmt, dict)
and "decimalsymbol" in fmt
and fmt["decimalsymbol"] != "."
):
line = line.replace(",", ".")
if " " in line:
line_data = line.split()
elif "," in line:
# likely exported from BrainVision Analyzer?
line_data = line.split(",")
else:
raise RuntimeError(
"Unknown BrainVision data format encountered. "
"Please contact the MNE-Python developers."
)
block[:n_data_ch, ii] = [float(part) for part in line_data]
_mult_cal_one(data, block, idx, cals, mult)
def _read_segments_c(raw, data, idx, fi, start, stop, cals, mult):
"""Read chunk of vectorized raw data."""
n_samples = raw._raw_extras[fi]["n_samples"]
fmt = raw._raw_extras[fi]["fmt"]
dtype = _fmt_dtype_dict[fmt]
n_bytes = _fmt_byte_dict[fmt]
n_channels = raw._raw_extras[fi]["orig_nchan"]
block = np.zeros((n_channels, stop - start))
with open(raw.filenames[fi], "rb", buffering=0) as fid:
ids = np.arange(idx.start, idx.stop) if isinstance(idx, slice) else idx
for ch_id in ids:
fid.seek(start * n_bytes + ch_id * n_bytes * n_samples)
block[ch_id] = np.fromfile(fid, dtype, stop - start)
_mult_cal_one(data, block, idx, cals, mult)
def _read_mrk(fname):
"""Read annotations from a vmrk/amrk file.
Parameters
----------
fname : str
vmrk/amrk file to be read.
Returns
-------
onset : list of float
The onsets in seconds.
duration : list of float
The onsets in seconds.
type_ : list of str
The marker types.
description : list of str
The marker descriptions.
date_str : str
The recording time. Defaults to empty string if no recording time is found.
"""
# read marker file
with open(fname, "rb") as fid:
txt = fid.read()
# we don't actually need to know the encoding for the header line. the characters in
# it all belong to ASCII and are thus the same in Latin-1 and UTF-8
header = txt.decode("ascii", "ignore").split("\n")[0].strip()
_check_bv_version(header, "marker")
# although the markers themselves are guaranteed to be ASCII (they consist of
# numbers and a few reserved words), we should still decode the file properly here
# because other (currently unused) blocks are not guaranteed to be ASCII
try:
# if there is an explicit codepage set, use it; we pretend like it's ASCII when
# searching for the codepage
cp_setting = re.search(
"Codepage=(.+)", txt.decode("ascii", "ignore"), re.IGNORECASE & re.MULTILINE
)
codepage = "utf-8"
if cp_setting:
codepage = cp_setting.group(1).strip()
# BrainAmp Recorder also uses ANSI codepage; an ANSI codepage raises a
# LookupError exception; Python recognize ANSI decoding as cp1252
if codepage == "ANSI":
codepage = "cp1252"
txt = txt.decode(codepage)
except UnicodeDecodeError:
# if UTF-8 (new standard) or explicit codepage setting fails, fallback to
# Latin-1, which is Windows default and implicit standard in older recordings
txt = txt.decode("latin-1")
# extract Marker Infos block
onset, duration, type_, description = [], [], [], []
date_str = ""
m = re.search(r"\[Marker Infos\]", txt, re.IGNORECASE)
if not m:
return onset, duration, type_, description, date_str
mk_txt = txt[m.end() :]
m = re.search(r"^\[.*\]$", mk_txt)
if m:
mk_txt = mk_txt[: m.start()]
# extract event information
items = re.findall(r"^Mk\d+=(.*)", mk_txt, re.MULTILINE)
for info in items:
info_data = info.split(",")
mtype, mdesc, this_onset, this_duration = info_data[:4]
# commas in mtype and mdesc are handled as "\1", convert back to comma
mtype = mtype.replace(r"\1", ",")
mdesc = mdesc.replace(r"\1", ",")
if date_str == "" and len(info_data) == 5 and mtype == "New Segment":
# to handle the origin of time and handle the presence of multiple New
# Segment annotations, we only keep the first one that is different from an
# empty string for date_str
date_str = info_data[-1]
this_duration = int(this_duration) if this_duration.isdigit() else 0
duration.append(this_duration)
onset.append(int(this_onset) - 1) # BV is 1-indexed, not 0-indexed
type_.append(mtype)
description.append(mdesc)
return onset, duration, type_, description, date_str
def _read_annotations_brainvision(fname, sfreq="auto", ignore_marker_types=False):
"""Create Annotations from BrainVision vmrk/amrk.
This function reads a .vmrk or .amrk file and creates an :class:`mne.Annotations`
object.
Parameters
----------
fname : str | object
The path to the .vmrk/.amrk file.
sfreq : float | 'auto'
The sampling frequency in the file. This is necessary because Annotations are
expressed in seconds and vmrk/amrk files are in samples. If set to 'auto' then
the sfreq is taken from the .vhdr/.ahdr file with the same name (without file
extension). So data.vmrk/amrk looks for sfreq in data.vhdr or, if it does not
exist, in data.ahdr.
ignore_marker_types : bool
If True, ignore marker types and only use marker descriptions. Default is False.
Returns
-------
annotations : instance of Annotations
The annotations present in the file.
"""
onset, duration, type_, description, date_str = _read_mrk(fname)
orig_time = _str_to_meas_date(date_str)
if sfreq == "auto":
hdr_fname = op.splitext(fname)[0] + ".vhdr"
# if vhdr file does not exist assume that the format is ahdr
if not op.exists(hdr_fname):
hdr_fname = op.splitext(fname)[0] + ".ahdr"
logger.info(f"Finding 'sfreq' from header file: {hdr_fname}")
_, _, _, info = _aux_hdr_info(hdr_fname)
sfreq = info["sfreq"]
# skip the first "New Segment" marker (as it only contains the recording time)
if len(type_) > 0 and type_[0] == "New Segment":
onset = onset[1:]
duration = duration[1:]
type_ = type_[1:]
description = description[1:]
onset = np.array(onset, dtype=float) / sfreq
duration = np.array(duration, dtype=float) / sfreq
if not ignore_marker_types:
description = [f"{t}/{d}" for t, d in zip(type_, description)]
annotations = Annotations(
onset=onset, duration=duration, description=description, orig_time=orig_time
)
return annotations
def _check_bv_version(header, kind):
"""Check the header version."""
_data_err = (
"MNE-Python currently only supports %s versions 1.0 and 2.0, got unparsable "
"%r. Contact MNE-Python developers for support."
)
# optional space, optional Core or V-Amp, optional Exchange, Version/Header,
# optional comma, 1/2
_data_re = r"Brain ?Vision( Core| V-Amp)? Data( Exchange)? %s File,? Version %s\.0"
assert kind in ("header", "marker")
for version in range(1, 3):
this_re = _data_re % (kind.capitalize(), version)
if re.search(this_re, header) is not None:
return version
else:
if header == "":
warn(f"Missing header in {kind} file.")
else:
warn(_data_err % (kind, header))
_orientation_dict = dict(MULTIPLEXED="F", VECTORIZED="C")
_fmt_dict = dict(INT_16="short", INT_32="int", IEEE_FLOAT_32="single")
_fmt_byte_dict = dict(short=2, int=4, single=4)
_fmt_dtype_dict = dict(short="<i2", int="<i4", single="<f4")
_unit_dict = {
"V": 1.0, # V stands for Volt
"µV": 1e-6,
"uV": 1e-6,
"mV": 1e-3,
"nV": 1e-9,
"C": 1, # C stands for Celsius
"°C": 1, # degrees Celsius
"n/a": 1, # unit "not available" (or applicable)
"µS": 1e-6, # S stands for Siemens
"uS": 1e-6,
"ARU": 1, # ARU is the unity for the breathing data
"S": 1,
"N": 1,
} # Newton
def _str_to_meas_date(date_str):
date_str = date_str.strip()
if date_str in ["", "0", "00000000000000000000"]:
return None
# these calculations are in naive time but should be okay since they are relative
# (subtraction below)
try:
meas_date = datetime.strptime(date_str, "%Y%m%d%H%M%S%f")
except ValueError as e:
if "does not match format" in str(e):
return None
else:
raise
meas_date = meas_date.replace(tzinfo=timezone.utc)
return meas_date
def _aux_hdr_info(hdr_fname):
"""Aux function for _get_hdr_info."""
with open(hdr_fname, "rb") as f:
# extract the first section to resemble a cfg
header = f.readline()
codepage = "utf-8"
# we don't actually need to know the coding for the header line; the characters
# in it all belong to ASCII and are thus the same in Latin-1 and UTF-8
header = header.decode("ascii", "ignore").strip()
_check_bv_version(header, "header")
settings = f.read()
try:
# if there is an explicit codepage set, use it
# we pretend like it's ASCII when searching for the codepage
cp_setting = re.search(
"Codepage=(.+)",
settings.decode("ascii", "ignore"),
re.IGNORECASE & re.MULTILINE,
)
if cp_setting:
codepage = cp_setting.group(1).strip()
# BrainAmp Recorder also uses ANSI codepage; an ANSI codepage raises a
# LookupError exception; Python recognize ANSI decoding as cp1252
if codepage == "ANSI":
codepage = "cp1252"
settings = settings.decode(codepage)
except UnicodeDecodeError:
# if UTF-8 (new standard) or explicit codepage setting fails, fallback to
# Latin-1, which is Windows default and implicit standard in older
# recordings
settings = settings.decode("latin-1")
if settings.find("[Comment]") != -1:
params, settings = settings.split("[Comment]")
else:
params, settings = settings, ""
cfg = configparser.ConfigParser(interpolation=None)
with StringIO(params) as fid:
cfg.read_file(fid)
# get sampling info
# Sampling interval is given in microsec
cinfostr = "Common Infos"
if not cfg.has_section(cinfostr):
cinfostr = "Common infos" # NeurOne BrainVision export workaround
# get sampling info
# Sampling interval is given in microsec
sfreq = 1e6 / cfg.getfloat(cinfostr, "SamplingInterval")
info = _empty_info(sfreq)
info._unlocked = False
return settings, cfg, cinfostr, info
@fill_doc
def _get_hdr_info(hdr_fname, eog, misc, scale):
"""Extract all the information from the header file.
Parameters
----------
hdr_fname : str
Raw EEG header to be read.
eog : list of str
Names of channels that should be designated EOG channels. Names should
correspond to the header file.
misc : list or tuple of str | 'auto'
Names of channels or list of indices that should be designated MISC channels.
Values should correspond to the electrodes in the header file. If 'auto', units
in header file are used for inferring misc channels. Default is ``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by header file,
units are in microvolts. Default scale factor is 1.
Returns
-------
%(info_not_none)s
data_fname : str
Path to the binary data file.
fmt : str
The format of the binary data file.
order : str
Orientation of the binary data.
n_samples : int
Number of data points in the binary data file.
mrk_fname : str
Path to the marker file.
montage : DigMontage
Coordinates of the channels, if present in the header file.
orig_units : dict
Dictionary mapping channel names to their units as specified in the header file.
Example: {'FC1': 'nV'}
"""
scale = float(scale)
ext = op.splitext(hdr_fname)[-1]
ahdr_format = ext == ".ahdr"
if ext not in (".vhdr", ".ahdr"):
raise OSError(
"The header file must be given to read the data, not a file with extension "
f"'{ext}'."
)
settings, cfg, cinfostr, info = _aux_hdr_info(hdr_fname)
info._unlocked = True
order = cfg.get(cinfostr, "DataOrientation")
if order not in _orientation_dict:
raise NotImplementedError(f"Data Orientation {order} is not supported")
order = _orientation_dict[order]
data_format = cfg.get(cinfostr, "DataFormat")
if data_format == "BINARY":
fmt = cfg.get("Binary Infos", "BinaryFormat")
if fmt not in _fmt_dict:
raise NotImplementedError(f"Datatype {fmt} is not supported")
fmt = _fmt_dict[fmt]
else:
if order == "C": # channels in rows
raise NotImplementedError(
"BrainVision files with ASCII data in vectorized order (i.e. channels "
"in rows) are not supported yet."
)
fmt = {key: cfg.get("ASCII Infos", key) for key in cfg.options("ASCII Infos")}
# locate EEG binary file and marker file for the stim channel
path = op.dirname(hdr_fname)
data_fname = op.join(path, cfg.get(cinfostr, "DataFile"))
mrk_fname = op.join(path, cfg.get(cinfostr, "MarkerFile"))
# Try to get measurement date from marker file
# Usually saved with a marker "New Segment", see BrainVision documentation
regexp = r"^Mk\d+=New Segment,.*,\d+,\d+,-?\d+,(\d{20})$"
with open(mrk_fname) as tmp_mrk_f:
lines = tmp_mrk_f.readlines()
for line in lines:
match = re.findall(regexp, line.strip())
# Always take first measurement date we find
if match:
date_str = match[0]
info["meas_date"] = _str_to_meas_date(date_str)
break
else:
info["meas_date"] = None
# load channel labels
nchan = cfg.getint(cinfostr, "NumberOfChannels")
if ahdr_format:
# add one fake channel for ahdr format
nchan += 1
n_samples = None
if order == "C":
try:
n_samples = cfg.getint(cinfostr, "DataPoints")
except configparser.NoOptionError:
warn(
"No info on DataPoints found. Inferring number of samples from the "
"data file size."
)
with open(data_fname, "rb") as fid:
fid.seek(0, 2)
n_bytes = fid.tell()
n_samples = n_bytes // _fmt_byte_dict[fmt] // nchan
ch_names = [""] * nchan
cals = np.empty(nchan)
ranges = np.empty(nchan)
cals.fill(np.nan)
ch_dict = dict()
misc_chs = dict()
orig_units = dict()
for chan, props in cfg.items("Channel Infos"):
n = int(re.findall(r"ch(\d+)", chan)[0]) - 1
props = props.split(",")
# default to µV, following the BV specs; the unit is only allowed to be
# something else if explicitly stated (cf. EEGLAB export below)
if len(props) < 4:
# deal with older files, which have no unit property
props += ("µV",)
elif props[3] == "":
# deal with files where the unit property is simply empty, which
# are created e.g. by PyCorder
props[3] = "µV"
name, _, resolution, unit = props[:4]
# in BrainVision, commas in channel names are encoded as "\1"
name = name.replace(r"\1", ",")
ch_dict[chan] = name
ch_names[n] = name
if resolution == "":
if not unit: # For truncated vhdrs (e.g. EEGLAB export)
resolution = 0.000001
else:
resolution = 1.0 # for files with units specified, but not res
unit = unit.replace("\xc2", "") # Remove unwanted control characters
orig_units[name] = unit # Save the original units to expose later
cals[n] = float(resolution)
ranges[n] = _unit_dict.get(unit, 1) * scale
if unit not in ("V", "mV", "µV", "uV", "nV"):
misc_chs[name] = FIFF.FIFF_UNIT_CEL if unit == "C" else FIFF.FIFF_UNIT_NONE
if ahdr_format:
ch_dict[_AHDR_CHANNEL_NAME] = _AHDR_CHANNEL_NAME
ch_names[-1] = _AHDR_CHANNEL_NAME
orig_units[_AHDR_CHANNEL_NAME] = "V"
cals[-1] = 1.0
ranges[-1] = 1
misc = list(misc_chs.keys()) if misc == "auto" else misc
# create montage: 'Coordinates' section in VHDR/AHDR file corresponds to "BVEF"
# BrainVision Electrode File. The data are based on BrainVision Analyzer coordinate
# system: Defined between standard electrode positions: X-axis from T7 to T8, Y-axis
# from Oz to Fpz, Z-axis orthogonal from XY-plane through Cz, fit to a sphere if
# idealized (when radius=1), specified in mm
montage = None
if cfg.has_section("Coordinates"):
montage_pos = list()
montage_names = list()
to_misc = list()
# Go through channels
for ch in cfg.items("Coordinates"):
ch_name = ch_dict[ch[0]]
montage_names.append(ch_name)
# 1: radius, 2: theta, 3: phi
rad, theta, phi = (float(c) for c in ch[1].split(","))
pol = np.deg2rad(theta)
az = np.deg2rad(phi)
# Coordinates could be "idealized" (spherical head model)
if rad == 1:
# scale up to realistic head radius: *1000 to convert m to mm
rad *= HEAD_SIZE_DEFAULT * 1000
pos = _sph_to_cart(np.array([[rad, az, pol]]))[0]
if (pos == 0).all() and ch_name not in list(eog) + misc:
to_misc.append(ch_name)
montage_pos.append(pos)
# Make a montage, normalizing from BrainVision units "mm" to "m", the unit used
# for montages in MNE
montage_pos = np.array(montage_pos) / 1e3
montage = make_dig_montage(
ch_pos=dict(zip(montage_names, montage_pos)), coord_frame="head"
)
if len(to_misc) > 0:
misc += to_misc
warn(
f"No coordinate information found for channels {to_misc}. Setting "
"channel types to misc. To avoid this warning, set channel types "
"explicitly."
)
if np.isnan(cals).any():
raise RuntimeError("Missing channel units")
# Attempts to extract filtering info from header. If not found, both are set to
# zero.
settings = settings.splitlines()
idx = None
if "Channels" in settings:
idx = settings.index("Channels")
settings = settings[idx + 1 :]
hp_col, lp_col = 4, 5
for idx, setting in enumerate(settings):
if re.match(r"#\s+Name", setting):
break
else:
idx = None
# If software filters are active, then they override the hardware setup; we still
# want to be able to double check the channel names for alignment purposes, we keep
# track of the hardware setting idx
idx_amp = idx
filter_list_has_ch_name = True
if "S o f t w a r e F i l t e r s" in settings:
idx = settings.index("S o f t w a r e F i l t e r s")
for idx, setting in enumerate(settings[idx + 1 :], idx + 1):
if re.match(r"#\s+Low Cutoff", setting):
hp_col, lp_col = 1, 2
filter_list_has_ch_name = False
warn(
"Online software filter detected. Using software filter settings "
"and ignoring hardware values"
)
break
else:
idx = idx_amp
if idx:
lowpass = []
highpass = []
# for newer BV files, the unit is specified for every channel separated by a
# single space, while for older files, the unit is specified in the column
# headers
divider = r"\s+"
if "Resolution / Unit" in settings[idx]:
shift = 1 # shift for unit
else:
shift = 0
# Extract filter units and convert from seconds to Hz if necessary. this cannot
# be done as post-processing as the inverse t-f relationship means that the
# min/max comparisons don't make sense unless we know the units.
#
# For reasoning about the s to Hz conversion, see this reference:
# `Ebersole, J. S., & Pedley, T. A. (Eds.). (2003).
# Current practice of clinical electroencephalography.
# Lippincott Williams & Wilkins.`, page 40-41
header = re.split(r"\s\s+", settings[idx])
hp_s = "[s]" in header[hp_col]
lp_s = "[s]" in header[lp_col]
for i, ch in enumerate(ch_names, 1):
if ahdr_format and i == len(ch_names) and ch == _AHDR_CHANNEL_NAME:
break
# double check alignment with channel by using the hw settings
if idx == idx_amp:
line_amp = settings[idx + i]
else:
line_amp = settings[idx_amp + i]
assert line_amp.find(ch) > -1
# Correct shift for channel names with spaces
# Header already gives 1 therefore has to be subtracted
if filter_list_has_ch_name:
ch_name_parts = re.split(divider, ch)
real_shift = shift + len(ch_name_parts) - 1
else:
real_shift = shift
line = re.split(divider, settings[idx + i])
highpass.append(line[hp_col + real_shift])
lowpass.append(line[lp_col + real_shift])
if len(highpass) == 0:
pass
elif len(set(highpass)) == 1:
if highpass[0] in ("NaN", "Off"):
pass # Placeholder for future use. Highpass set in _empty_info
elif highpass[0] == "DC":
info["highpass"] = 0.0
else:
info["highpass"] = float(highpass[0])
if hp_s:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info["highpass"] = 1.0 / (2 * np.pi * info["highpass"])
else:
heterogeneous_hp_filter = True
if hp_s:
# We convert channels with disabled filters to having highpass relaxed /
# no filters
highpass = [
float(filt) if filt not in ("NaN", "Off", "DC") else np.inf
for filt in highpass
]
info["highpass"] = np.max(np.array(highpass, dtype=np.float64))
# Conveniently enough 1 / np.inf = 0.0, so this works for DC / no
# highpass filter
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info["highpass"] = 1.0 / (2 * np.pi * info["highpass"])
# not exactly the cleanest use of FP, but this makes us more
# conservative in *not* warning.
if info["highpass"] == 0.0 and len(set(highpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_hp_filter = False
else:
highpass = [
float(filt) if filt not in ("NaN", "Off", "DC") else 0.0
for filt in highpass
]
info["highpass"] = np.min(np.array(highpass, dtype=np.float64))
if info["highpass"] == 0.0 and len(set(highpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_hp_filter = False
if heterogeneous_hp_filter:
warn(
"Channels contain different highpass filters. Lowest (weakest) "
f"filter setting ({info['highpass']:0.2f} Hz) will be stored."
)
if len(lowpass) == 0:
pass
elif len(set(lowpass)) == 1:
if lowpass[0] in ("NaN", "Off", "0"):
pass # Placeholder for future use. Lowpass set in _empty_info
else:
info["lowpass"] = float(lowpass[0])
if lp_s:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info["lowpass"] = 1.0 / (2 * np.pi * info["lowpass"])
else:
heterogeneous_lp_filter = True
if lp_s:
# We convert channels with disabled filters to having infinitely relaxed
# / no filters
lowpass = [
float(filt) if filt not in ("NaN", "Off", "0") else 0.0
for filt in lowpass
]
info["lowpass"] = np.min(np.array(lowpass, dtype=np.float64))
try:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info["lowpass"] = 1.0 / (2 * np.pi * info["lowpass"])
except ZeroDivisionError:
if len(set(lowpass)) == 1:
# No lowpass actually set for the weakest setting so we set
# lowpass to the Nyquist frequency
info["lowpass"] = info["sfreq"] / 2.0
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_lp_filter = False
else:
# no lowpass filter is the weakest filter, but it wasn't the
# only filter
pass
else:
# We convert channels with disabled filters to having infinitely relaxed
# / no filters
lowpass = [
float(filt) if filt not in ("NaN", "Off", "0") else np.inf
for filt in lowpass
]
info["lowpass"] = np.max(np.array(lowpass, dtype=np.float64))
if np.isinf(info["lowpass"]):
# No lowpass actually set for the weakest setting so we set lowpass
# to the Nyquist frequency
info["lowpass"] = info["sfreq"] / 2.0
if len(set(lowpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_lp_filter = False
if heterogeneous_lp_filter:
# this isn't clean FP, but then again, we only want to provide the
# Nyquist hint when the lowpass filter was actually calculated from
# dividing the sampling frequency by 2, so the exact/direct comparison
# (instead of tolerance) makes sense
if info["lowpass"] == info["sfreq"] / 2.0:
nyquist = ", Nyquist limit"
else:
nyquist = ""
warn(
"Channels contain different lowpass filters. "
f"Highest (weakest) filter setting ({info['lowpass']:0.2f} "
f"Hz{nyquist}) will be stored."
)
# Creates a list of dicts of eeg channels for raw.info
logger.info("Setting channel info structure...")
info["chs"] = []
for idx, ch_name in enumerate(ch_names):
if ch_name in eog or idx in eog or idx - nchan in eog:
kind = FIFF.FIFFV_EOG_CH
coil_type = FIFF.FIFFV_COIL_NONE
unit = FIFF.FIFF_UNIT_V
elif ch_name in misc or idx in misc or idx - nchan in misc:
kind = FIFF.FIFFV_MISC_CH
coil_type = FIFF.FIFFV_COIL_NONE
if ch_name in misc_chs:
unit = misc_chs[ch_name]
else:
unit = FIFF.FIFF_UNIT_NONE
elif ch_name == "STI 014":
kind = FIFF.FIFFV_STIM_CH
coil_type = FIFF.FIFFV_COIL_NONE
unit = FIFF.FIFF_UNIT_NONE
else:
kind = FIFF.FIFFV_EEG_CH
coil_type = FIFF.FIFFV_COIL_EEG
unit = FIFF.FIFF_UNIT_V
info["chs"].append(
dict(
ch_name=ch_name,
coil_type=coil_type,
kind=kind,
logno=idx + 1,
scanno=idx + 1,
cal=cals[idx],
range=ranges[idx],
loc=np.full(12, np.nan),
unit=unit,
unit_mul=FIFF.FIFF_UNITM_NONE,
coord_frame=FIFF.FIFFV_COORD_HEAD,
)
)
info._unlocked = False
info._update_redundant()
return (info, data_fname, fmt, order, n_samples, mrk_fname, montage, orig_units)
@fill_doc
def read_raw_brainvision(
vhdr_fname,
eog=("HEOGL", "HEOGR", "VEOGb"),
misc="auto",
scale=1.0,
ignore_marker_types=False,
preload=False,
verbose=None,
) -> RawBrainVision:
"""Reader for Brain Vision EEG file.
Parameters
----------
vhdr_fname : path-like
Path to the EEG header file.
eog : list of (int | str) | tuple of (int | str)
Names of channels or list of indices that should be designated EOG channels.
Values should correspond to the header file Default is ``('HEOGL', 'HEOGR',
'VEOGb')``.
misc : list of (int | str) | tuple of (int | str) | ``'auto'``
Names of channels or list of indices that should be designated MISC channels.
Values should correspond to the electrodes in the header file. If ``'auto'``,
units in header file are used for inferring misc channels. Default is
``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by header file,
units are in microvolts. Default scale factor is 1.
ignore_marker_types : bool
If ``True``, ignore marker types and only use marker descriptions. Default is
``False``.
.. versionadded:: 1.8
%(preload)s
%(verbose)s
Returns
-------
raw : instance of RawBrainVision
A Raw object containing BrainVision data. See :class:`mne.io.Raw` for
documentation of attributes and methods.
See Also
--------
mne.io.Raw : Documentation of attributes and methods of RawBrainVision.
Notes
-----
If the BrainVision header file contains impedance measurements, these may be
accessed using ``raw.impedances`` after reading using this function. However, this
attribute will NOT be available after a save and re-load of the data. That is, it is
only available when reading data directly from the BrainVision header file.
BrainVision markers consist of a type and a description (in addition to other fields
like onset and duration). In contrast, annotations in MNE only have a description.
Therefore, a BrainVision marker of type "Stimulus" and description "S 1" will be
converted to an annotation "Stimulus/S 1" by default. If you want to ignore the
type and instead only use the description, set ``ignore_marker_types=True``, which
will convert the same marker to an annotation "S 1".
The first marker in a BrainVision file is usually a "New Segment" marker, which
contains the recording time. This time is stored in the ``info['meas_date']``
attribute of the returned object and is not converted to an annotation.
"""
return RawBrainVision(
vhdr_fname=vhdr_fname,
eog=eog,
misc=misc,
scale=scale,
ignore_marker_types=ignore_marker_types,
preload=preload,
verbose=verbose,
)
_BV_EVENT_IO_OFFSETS = {
"Event/": 0,
"Stimulus/S": 0,
"Response/R": 1000,
"Optic/O": 2000,
}
_OTHER_ACCEPTED_MARKERS = {"New Segment/": 99999, "SyncStatus/Sync On": 99998}
_OTHER_OFFSET = 10001 # where to start "unknown" event_ids
_AHDR_CHANNEL_NAME = "AHDR_CHANNEL"
class _BVEventParser(_DefaultEventParser):
"""Parse standard brainvision events, accounting for non-standard ones."""
def __call__(self, description):
"""Parse BrainVision event codes (like `Stimulus/S 11`) to ints."""
offsets = _BV_EVENT_IO_OFFSETS
maybe_digit = description[-3:].strip()
kind = description[:-3]
if maybe_digit.isdigit() and kind in offsets:
code = int(maybe_digit) + offsets[kind]
elif description in _OTHER_ACCEPTED_MARKERS:
code = _OTHER_ACCEPTED_MARKERS[description]
else:
code = super().__call__(description, offset=_OTHER_OFFSET)
return code
def _check_bv_annot(descriptions):
markers_basename = set([dd.rstrip("0123456789 ") for dd in descriptions])
bv_markers = set(_BV_EVENT_IO_OFFSETS.keys()).union(
set(_OTHER_ACCEPTED_MARKERS.keys())
)
return len(markers_basename - bv_markers) == 0
def _parse_impedance(settings, recording_date=None):
"""Parse impedances from the header file.
Parameters
----------
settings : list
The header settings lines from the VHDR/AHDR file.
recording_date : datetime.datetime | None
The date of the recording as extracted from the VMRK/AMRK file.
Returns
-------
impedances : dict
A dictionary of all electrodes and their impedances.
"""
ranges = _parse_impedance_ranges(settings)
impedance_setting_lines = [
i for i in settings if i.startswith("Impedance [") and i.endswith(" :")
]
impedances = dict()
if len(impedance_setting_lines) > 0:
idx = settings.index(impedance_setting_lines[0])
impedance_setting = impedance_setting_lines[0].split()
impedance_unit = impedance_setting[1].lstrip("[").rstrip("]")
impedance_time = None
# If we have a recording date, we can update it with the time of impedance
# measurement
if recording_date is not None:
meas_time = [int(i) for i in impedance_setting[3].split(":")]
impedance_time = recording_date.replace(
hour=meas_time[0],
minute=meas_time[1],
second=meas_time[2],
microsecond=0,
)
for setting in settings[idx + 1 :]:
# Parse channel impedances until we find a line that doesn't start with a
# channel name and optional +/- polarity for passive elecs
match = re.match(r"[ a-zA-Z0-9_+-]+:", setting)
if match:
channel_name = match.group().rstrip(":")
channel_imp_line = setting.split()
imp_as_number = re.findall(r"[-+]?\d*\.\d+|\d+", channel_imp_line[-1])
channel_impedance = dict(
imp=float(imp_as_number[0]) if imp_as_number else np.nan,
imp_unit=impedance_unit,
)
if impedance_time is not None:
channel_impedance.update({"imp_meas_time": impedance_time})
if channel_name == "Ref" and "Reference" in ranges:
channel_impedance.update(ranges["Reference"])
elif channel_name == "Gnd" and "Ground" in ranges:
channel_impedance.update(ranges["Ground"])
elif "Data" in ranges:
channel_impedance.update(ranges["Data"])
impedances[channel_name] = channel_impedance
else:
break
return impedances
def _parse_impedance_ranges(settings):
"""Parse the selected electrode impedance ranges from the header.
Parameters
----------
settings : list
The header settings lines from the VHDR/AHDR file.
Returns
-------
electrode_imp_ranges : dict
A dictionary of impedance ranges for each type of electrode.
"""
impedance_ranges = [
item for item in settings if "Selected Impedance Measurement Range" in item
]
electrode_imp_ranges = dict()
if impedance_ranges:
if len(impedance_ranges) == 1:
img_range = impedance_ranges[0].split()
for electrode_type in ["Data", "Reference", "Ground"]:
electrode_imp_ranges[electrode_type] = {
"imp_lower_bound": float(img_range[-4]),
"imp_upper_bound": float(img_range[-2]),
"imp_range_unit": img_range[-1],
}
else:
for electrode_range in impedance_ranges:
electrode_range = electrode_range.split()
electrode_imp_ranges[electrode_range[0]] = {
"imp_lower_bound": float(electrode_range[6]),
"imp_upper_bound": float(electrode_range[8]),
"imp_range_unit": electrode_range[9],
}
return electrode_imp_ranges