[7f9fb8]: / mne / io / ant / ant.py

Download this file

339 lines (305 with data), 12.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from __future__ import annotations
import re
from collections import defaultdict
from typing import TYPE_CHECKING
import numpy as np
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import create_info
from ...annotations import Annotations
from ...utils import (
_check_fname,
_soft_import,
_validate_type,
copy_doc,
fill_doc,
logger,
verbose,
warn,
)
from ..base import BaseRaw
if TYPE_CHECKING:
from pathlib import Path
from numpy.typing import NDArray
_UNITS: dict[str, float] = {"uv": 1e-6, "µv": 1e-6}
@fill_doc
class RawANT(BaseRaw):
r"""Reader for Raw ANT files in .cnt format.
Parameters
----------
fname : file-like
Path to the ANT raw file to load. The file should have the extension ``.cnt``.
eog : str | None
Regex pattern to find EOG channel labels. If None, no EOG channels are
automatically detected.
misc : str | None
Regex pattern to find miscellaneous channels. If None, no miscellaneous channels
are automatically detected. The default pattern ``"BIP\d+"`` will mark all
bipolar channels as ``misc``.
.. note::
A bipolar channel might actually contain ECG, EOG or other signal types
which might have a dedicated channel type in MNE-Python. In this case, use
:meth:`mne.io.Raw.set_channel_types` to change the channel type of the
channel.
bipolars : list of str | tuple of str | None
The list of channels to treat as bipolar EEG channels. Each element should be
a string of the form ``'anode-cathode'`` or in ANT terminology as ``'label-
reference'``. If None, all channels are interpreted as ``'eeg'`` channels
referenced to the same reference electrode. Bipolar channels are treated
as EEG channels with a special coil type in MNE-Python, see also
:func:`mne.set_bipolar_reference`
.. warning::
Do not provide auxiliary channels in this argument, provide them in the
``eog`` and ``misc`` arguments.
impedance_annotation : str
The string to use for impedance annotations. Defaults to ``"impedance"``,
however, the impedance measurement might mark the end of a segment and the
beginning of a new segment, in which case a discontinuity similar to what
:func:`mne.concatenate_raws` produces is present. In this case, it's better to
include a ``BAD_xxx`` annotation to mark the discontinuity.
.. note::
Note that the impedance annotation will likely have a duration of ``0``.
If the measurement marks a discontinuity, the duration should be modified to
cover the discontinuity in its entirety.
encoding : str
Encoding to use for :class:`str` in the CNT file. Defaults to ``'latin-1'``.
%(preload)s
%(verbose)s
"""
@verbose
def __init__(
self,
fname: str | Path,
eog: str | None,
misc: str | None,
bipolars: list[str] | tuple[str, ...] | None,
impedance_annotation: str,
*,
encoding: str = "latin-1",
preload: bool | NDArray,
verbose=None,
) -> None:
logger.info("Reading ANT file %s", fname)
_soft_import("antio", "reading ANT files", min_version="0.5.0")
from antio import read_cnt
from antio.parser import (
read_device_info,
read_info,
read_meas_date,
read_subject_info,
read_triggers,
)
fname = _check_fname(fname, overwrite="read", must_exist=True, name="fname")
_validate_type(eog, (str, None), "eog")
_validate_type(misc, (str, None), "misc")
_validate_type(bipolars, (list, tuple, None), "bipolar")
_validate_type(impedance_annotation, (str,), "impedance_annotation")
if len(impedance_annotation) == 0:
raise ValueError("The impedance annotation cannot be an empty string.")
cnt = read_cnt(fname)
# parse channels, sampling frequency, and create info
ch_names, ch_units, ch_refs, _, _ = read_info(cnt, encoding=encoding)
ch_types = _parse_ch_types(ch_names, eog, misc, ch_refs)
if bipolars is not None: # handle bipolar channels
bipolars_idx = _handle_bipolar_channels(ch_names, ch_refs, bipolars)
for idx, ch in zip(bipolars_idx, bipolars):
if ch_types[idx] != "eeg":
warn(
f"Channel {ch} was not parsed as an EEG channel, changing to "
"EEG channel type since bipolar EEG was requested."
)
ch_names[idx] = ch
ch_types[idx] = "eeg"
info = create_info(
ch_names, sfreq=cnt.get_sample_frequency(), ch_types=ch_types
)
info.set_meas_date(read_meas_date(cnt))
make, model, serial, site = read_device_info(cnt, encoding=encoding)
info["device_info"] = dict(type=make, model=model, serial=serial, site=site)
his_id, name, sex, birthday = read_subject_info(cnt, encoding=encoding)
info["subject_info"] = dict(
his_id=his_id,
first_name=name,
sex=sex,
)
if birthday is not None:
info["subject_info"]["birthday"] = birthday
if bipolars is not None:
with info._unlock():
for idx in bipolars_idx:
info["chs"][idx]["coil_type"] = FIFF.FIFFV_COIL_EEG_BIPOLAR
first_samps = np.array((0,))
last_samps = (cnt.get_sample_count() - 1,)
raw_extras = {
"orig_nchan": cnt.get_channel_count(),
"orig_ch_units": ch_units,
"first_samples": np.array(first_samps),
"last_samples": np.array(last_samps),
}
super().__init__(
info,
preload=preload,
first_samps=first_samps,
last_samps=last_samps,
filenames=[fname],
verbose=verbose,
raw_extras=[raw_extras],
)
# look for annotations (called trigger by ant)
onsets, durations, descriptions, _, disconnect = read_triggers(cnt)
onsets, durations, descriptions = _prepare_annotations(
onsets, durations, descriptions, disconnect, impedance_annotation
)
onsets = np.array(onsets) / self.info["sfreq"]
durations = np.array(durations) / self.info["sfreq"]
annotations = Annotations(onsets, duration=durations, description=descriptions)
self.set_annotations(annotations)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
from antio import read_cnt
from antio.parser import read_data
ch_units = self._raw_extras[0]["orig_ch_units"]
first_samples = self._raw_extras[0]["first_samples"]
n_times = self._raw_extras[0]["last_samples"] + 1
for first_samp, this_n_times in zip(first_samples, n_times):
i_start = max(start, first_samp)
i_stop = min(stop, this_n_times + first_samp)
# read and scale data array
cnt = read_cnt(self.filenames[fi])
one = read_data(cnt, i_start, i_stop)
_scale_data(one, ch_units)
data_view = data[:, i_start - start : i_stop - start]
if isinstance(idx, slice):
data_view[:] = one[idx]
else:
# faster than doing one = one[idx]
np.take(one, idx, axis=0, out=data_view)
def _handle_bipolar_channels(
ch_names: list[str], ch_refs: list[str], bipolars: list[str] | tuple[str, ...]
) -> list[int]:
"""Handle bipolar channels."""
bipolars_idx = []
for ch in bipolars:
_validate_type(ch, (str,), "bipolar_channel")
if "-" not in ch:
raise ValueError(
"Bipolar channels should be provided as 'anode-cathode' or "
f"'label-reference'. '{ch}' is not valid."
)
anode, cathode = ch.split("-")
if anode not in ch_names:
raise ValueError(f"Anode channel {anode} not found in the channels.")
idx = ch_names.index(anode)
if cathode != ch_refs[idx]:
raise ValueError(
f"Reference electrode for {anode} is {ch_refs[idx]}, not {cathode}."
)
# store idx for later FIFF coil type change
bipolars_idx.append(idx)
return bipolars_idx
def _parse_ch_types(
ch_names: list[str], eog: str | None, misc: str | None, ch_refs: list[str]
) -> list[str]:
"""Parse the channel types."""
eog = re.compile(eog) if eog is not None else None
misc = re.compile(misc) if misc is not None else None
ch_types = []
for ch in ch_names:
if eog is not None and re.fullmatch(eog, ch):
ch_types.append("eog")
elif misc is not None and re.fullmatch(misc, ch):
ch_types.append("misc")
else:
ch_types.append("eeg")
eeg_refs = [ch_refs[k] for k, elt in enumerate(ch_types) if elt == "eeg"]
if len(set(eeg_refs)) == 1:
logger.info(
"All %i EEG channels are referenced to %s.", len(eeg_refs), eeg_refs[0]
)
else:
warn("All EEG channels are not referenced to the same electrode.")
return ch_types
def _prepare_annotations(
onsets: list[int],
durations: list[int],
descriptions: list[str],
disconnect: dict[str, list[int]],
impedance_annotation: str,
) -> tuple[list[int], list[int], list[str]]:
"""Parse the ANT triggers into better Annotations."""
# first, let's replace the description 'impedance' with impedance_annotation
for k, desc in enumerate(descriptions):
if desc.lower() == "impedance":
descriptions[k] = impedance_annotation
# next, let's look for amplifier connection/disconnection and let's try to create
# BAD_disconnection annotations from them.
if (
len(disconnect["start"]) == len(disconnect["stop"])
and len(disconnect["start"]) != 0
and all(
0 <= stop - start
for start, stop in zip(disconnect["start"], disconnect["stop"])
)
):
for start, stop in zip(disconnect["start"], disconnect["stop"]):
onsets.append(start)
durations.append(stop - start)
descriptions.append("BAD_disconnection")
else:
for elt in disconnect["start"]:
onsets.append(elt)
durations.append(0)
descriptions.append("Amplifier disconnected")
for elt in disconnect["stop"]:
onsets.append(elt)
durations.append(0)
descriptions.append("Amplifier reconnected")
return onsets, durations, descriptions
def _scale_data(data: NDArray[np.float64], ch_units: list[str]) -> None:
"""Scale the data array based on the human-readable units reported by ANT.
Operates in-place.
"""
units_index = defaultdict(list)
for idx, unit in enumerate(ch_units):
units_index[unit].append(idx)
for unit, value in units_index.items():
if unit in _UNITS:
data[np.array(value, dtype=np.int16), :] *= _UNITS[unit]
else:
warn(
f"Unit {unit} not recognized, not scaling. Please report the unit on "
"a github issue on https://github.com/mne-tools/mne-python."
)
@copy_doc(RawANT)
def read_raw_ant(
fname,
eog=None,
misc=r"BIP\d+",
bipolars=None,
impedance_annotation="impedance",
*,
encoding: str = "latin-1",
preload=False,
verbose=None,
) -> RawANT:
"""
Returns
-------
raw : instance of RawANT
A Raw object containing ANT data.
See :class:`mne.io.Raw` for documentation of attributes and methods.
Notes
-----
.. versionadded:: 1.9
"""
return RawANT(
fname,
eog=eog,
misc=misc,
bipolars=bipolars,
impedance_annotation=impedance_annotation,
encoding=encoding,
preload=preload,
verbose=verbose,
)