[7f9fb8]: / mne / forward / forward.py

Download this file

2201 lines (1921 with data), 75.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# The computations in this code were primarily derived from Matti Hämäläinen's
# C code.
import os
import re
import shutil
import tempfile
from copy import deepcopy
from os import PathLike
from os import path as op
from pathlib import Path
from time import time
import numpy as np
from scipy import sparse
from .._fiff.constants import FIFF
from .._fiff.matrix import (
_read_named_matrix,
_transpose_named_matrix,
write_named_matrix,
)
from .._fiff.meas_info import (
Info,
_make_ch_names_mapping,
_read_bad_channels,
_read_extended_ch_info,
_write_bad_channels,
_write_ch_infos,
write_info,
)
from .._fiff.open import fiff_open
from .._fiff.pick import pick_channels, pick_channels_forward, pick_info, pick_types
from .._fiff.tag import find_tag, read_tag
from .._fiff.tree import dir_tree_find
from .._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_coord_trans,
write_id,
write_int,
write_string,
)
from ..epochs import BaseEpochs
from ..evoked import Evoked, EvokedArray
from ..html_templates import _get_html_template
from ..io import BaseRaw, RawArray
from ..label import Label
from ..source_estimate import _BaseSourceEstimate, _BaseVectorSourceEstimate
from ..source_space._source_space import (
SourceSpaces,
_get_src_nn,
_read_source_spaces_from_tree,
_set_source_space_vertices,
_src_kind_dict,
_write_source_spaces_to_fid,
find_source_space_hemi,
)
from ..surface import _normal_orth
from ..transforms import invert_transform, transform_surface_to, write_trans
from ..utils import (
_check_compensation_grade,
_check_fname,
_check_option,
_check_stc_units,
_import_h5io_funcs,
_on_missing,
_stamp_to_dt,
_validate_type,
check_fname,
fill_doc,
get_subjects_dir,
has_mne_c,
logger,
repr_html,
run_subprocess,
verbose,
warn,
)
class Forward(dict):
"""Forward class to represent info from forward solution.
Like :class:`mne.Info`, this data structure behaves like a dictionary.
It contains all metadata necessary for a forward solution.
.. warning::
This class should not be modified or created by users.
Forward objects should be obtained using
:func:`mne.make_forward_solution` or :func:`mne.read_forward_solution`.
Attributes
----------
ch_names : list of str
A convenience wrapper accessible as ``fwd.ch_names`` which wraps
``fwd['info']['ch_names']``.
See Also
--------
mne.make_forward_solution
mne.read_forward_solution
Notes
-----
Forward data is accessible via string keys using standard
:class:`python:dict` access (e.g., ``fwd['nsource'] == 4096``):
source_ori : int
The source orientation, either ``FIFF.FIFFV_MNE_FIXED_ORI`` or
``FIFF.FIFFV_MNE_FREE_ORI``.
coord_frame : int
The coordinate frame of the forward solution, usually
``FIFF.FIFFV_COORD_HEAD``.
nsource : int
The number of source locations.
nchan : int
The number of channels.
sol : dict
The forward solution, with entries:
``'data'`` : ndarray, shape (n_channels, nsource * n_ori)
The forward solution data. The shape will be
``(n_channels, nsource)`` for a fixed-orientation forward and
``(n_channels, nsource * 3)`` for a free-orientation forward.
``'row_names'`` : list of str
The channel names.
mri_head_t : instance of Transform
The mri ↔ head transformation that was used.
info : instance of :class:`~mne.Info`
The measurement information (with contents reduced compared to that
of the original data).
src : instance of :class:`~mne.SourceSpaces`
The source space used during forward computation. This can differ
from the original source space as:
1. Source points are removed due to proximity to (or existing
outside)
the inner skull surface.
2. The source space will be converted to the ``coord_frame`` of the
forward solution, which typically means it gets converted from
MRI to head coordinates.
source_rr : ndarray, shape (n_sources, 3)
The source locations.
source_nn : ndarray, shape (n_sources, 3)
The source normals. Will be all +Z (``(0, 0, 1.)``) for volume
source spaces. For surface source spaces, these are normal to the
cortical surface.
surf_ori : int
Whether ``sol`` is surface-oriented with the surface normal in the
Z component (``FIFF.FIFFV_MNE_FIXED_ORI``) or +Z in the given
``coord_frame`` in the Z component (``FIFF.FIFFV_MNE_FREE_ORI``).
Forward objects also have some attributes that are accessible via ``.``
access, like ``fwd.ch_names``.
"""
def copy(self):
"""Copy the Forward instance."""
return Forward(deepcopy(self))
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save the forward solution.
Parameters
----------
%(fname_fwd)s
%(overwrite)s
%(verbose)s
"""
write_forward_solution(fname, self, overwrite=overwrite)
def _get_src_type_and_ori_for_repr(self):
src_types = np.array([src["type"] for src in self["src"]])
if (src_types == "surf").all():
src_type = f"Surface with {self['nsource']} vertices"
elif (src_types == "vol").all():
src_type = f"Volume with {self['nsource']} grid points"
elif (src_types == "discrete").all():
src_type = f"Discrete with {self['nsource']} dipoles"
else:
count_string = ""
if (src_types == "surf").any():
count_string += f"{(src_types == 'surf').sum()} surface, "
if (src_types == "vol").any():
count_string += f"{(src_types == 'vol').sum()} volume, "
if (src_types == "discrete").any():
count_string += f"{(src_types == 'discrete').sum()} discrete, "
count_string = count_string.rstrip(", ")
src_type = f"Mixed ({count_string}) with {self['nsource']} vertices"
if self["source_ori"] == FIFF.FIFFV_MNE_UNKNOWN_ORI:
src_ori = "Unknown"
elif self["source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI:
src_ori = "Fixed"
elif self["source_ori"] == FIFF.FIFFV_MNE_FREE_ORI:
src_ori = "Free"
return src_type, src_ori
def __repr__(self):
"""Summarize forward info instead of printing all."""
entr = "<Forward"
nchan = len(pick_types(self["info"], meg=True, eeg=False, exclude=[]))
entr += " | " + f"MEG channels: {nchan}"
nchan = len(pick_types(self["info"], meg=False, eeg=True, exclude=[]))
entr += " | " + f"EEG channels: {nchan}"
src_type, src_ori = self._get_src_type_and_ori_for_repr()
entr += f" | Source space: {src_type}"
entr += f" | Source orientation: {src_ori}"
entr += ">"
return entr
@repr_html
def _repr_html_(self):
src_descr, src_ori = self._get_src_type_and_ori_for_repr()
t = _get_html_template("repr", "forward.html.jinja")
html = t.render(
info=self["info"],
source_space_descr=src_descr,
source_orientation=src_ori,
)
return html
@property
def ch_names(self):
return self["info"]["ch_names"]
def pick_channels(self, ch_names, ordered=False):
"""Pick channels from this forward operator.
Parameters
----------
ch_names : list of str
List of channels to include.
ordered : bool
If true (default False), treat ``include`` as an ordered list
rather than a set.
Returns
-------
fwd : instance of Forward.
The modified forward model.
Notes
-----
Operates in-place.
.. versionadded:: 0.20.0
"""
return pick_channels_forward(
self, ch_names, exclude=[], ordered=ordered, copy=False, verbose=False
)
def _block_diag(A, n):
"""Construct a block diagonal from a packed structure.
You have to try it on a matrix to see what it's doing.
If A is not sparse, then returns a sparse block diagonal "bd",
diagonalized from the
elements in "A".
"A" is ma x na, comprising bdn=(na/"n") blocks of submatrices.
Each submatrix is ma x "n", and these submatrices are
placed down the diagonal of the matrix.
If A is already sparse, then the operation is reversed, yielding
a block
row matrix, where each set of n columns corresponds to a block element
from the block diagonal.
Parameters
----------
A : array
The matrix
n : int
The block size
Returns
-------
bd : scipy.sparse.csc_array
The block diagonal matrix
"""
if sparse.issparse(A): # then make block sparse
raise NotImplementedError("sparse reversal not implemented yet")
ma, na = A.shape
bdn = na // int(n) # number of submatrices
if na % n > 0:
raise ValueError("Width of matrix must be a multiple of n")
tmp = np.arange(ma * bdn, dtype=np.int64).reshape(bdn, ma)
tmp = np.tile(tmp, (1, n))
ii = tmp.ravel()
jj = np.arange(na, dtype=np.int64)[None, :]
jj = jj * np.ones(ma, dtype=np.int64)[:, None]
jj = jj.T.ravel() # column indices foreach sparse bd
bd = sparse.coo_array((A.T.ravel(), np.c_[ii, jj].T)).tocsc()
return bd
def _get_tag_int(fid, node, name, id_):
"""Check we have an appropriate tag."""
tag = find_tag(fid, node, id_)
if tag is None:
fid.close()
raise ValueError(name + " tag not found")
return int(tag.data.item())
def _read_one(fid, node):
"""Read all interesting stuff for one forward solution."""
# This function assumes the fid is open as a context manager
if node is None:
return None
one = Forward()
one["source_ori"] = _get_tag_int(
fid, node, "Source orientation", FIFF.FIFF_MNE_SOURCE_ORIENTATION
)
one["coord_frame"] = _get_tag_int(
fid, node, "Coordinate frame", FIFF.FIFF_MNE_COORD_FRAME
)
one["nsource"] = _get_tag_int(
fid, node, "Number of sources", FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS
)
one["nchan"] = _get_tag_int(fid, node, "Number of channels", FIFF.FIFF_NCHAN)
try:
one["sol"] = _read_named_matrix(
fid, node, FIFF.FIFF_MNE_FORWARD_SOLUTION, transpose=True
)
one["_orig_sol"] = one["sol"]["data"].copy()
except Exception:
logger.error("Forward solution data not found")
raise
try:
fwd_type = FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD
one["sol_grad"] = _read_named_matrix(fid, node, fwd_type, transpose=True)
one["_orig_sol_grad"] = one["sol_grad"]["data"].copy()
except Exception:
one["sol_grad"] = None
if one["sol"]["data"].shape[0] != one["nchan"] or (
one["sol"]["data"].shape[1] != one["nsource"]
and one["sol"]["data"].shape[1] != 3 * one["nsource"]
):
raise ValueError("Forward solution matrix has wrong dimensions")
if one["sol_grad"] is not None:
if one["sol_grad"]["data"].shape[0] != one["nchan"] or (
one["sol_grad"]["data"].shape[1] != 3 * one["nsource"]
and one["sol_grad"]["data"].shape[1] != 3 * 3 * one["nsource"]
):
raise ValueError("Forward solution gradient matrix has wrong dimensions")
return one
@fill_doc
def _read_forward_meas_info(tree, fid):
"""Read light measurement info from forward operator.
Parameters
----------
tree : tree
FIF tree structure.
fid : file id
The file id.
Returns
-------
%(info_not_none)s
"""
# This function assumes fid is being used as a context manager
info = Info()
info._unlocked = True
# Information from the MRI file
parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
raise ValueError("No parent MEG information found in operator")
parent_mri = parent_mri[0]
tag = find_tag(fid, parent_mri, FIFF.FIFF_MNE_FILE_NAME)
info["mri_file"] = tag.data if tag is not None else None
tag = find_tag(fid, parent_mri, FIFF.FIFF_PARENT_FILE_ID)
info["mri_id"] = tag.data if tag is not None else None
# Information from the MEG file
parent_meg = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
if len(parent_meg) == 0:
raise ValueError("No parent MEG information found in operator")
parent_meg = parent_meg[0]
tag = find_tag(fid, parent_meg, FIFF.FIFF_MNE_FILE_NAME)
info["meas_file"] = tag.data if tag is not None else None
tag = find_tag(fid, parent_meg, FIFF.FIFF_PARENT_FILE_ID)
info["meas_id"] = tag.data if tag is not None else None
# Add channel information
info["chs"] = chs = list()
for k in range(parent_meg["nent"]):
kind = parent_meg["directory"][k].kind
pos = parent_meg["directory"][k].pos
if kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
ch_names_mapping = _read_extended_ch_info(chs, parent_meg, fid)
info._update_redundant()
# Get the MRI <-> head coordinate transformation
tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
coord_head = FIFF.FIFFV_COORD_HEAD
coord_mri = FIFF.FIFFV_COORD_MRI
coord_device = FIFF.FIFFV_COORD_DEVICE
coord_ctf_head = FIFF.FIFFV_MNE_COORD_CTF_HEAD
if tag is None:
raise ValueError("MRI/head coordinate transformation not found")
cand = tag.data
if cand["from"] == coord_mri and cand["to"] == coord_head:
info["mri_head_t"] = cand
else:
raise ValueError("MRI/head coordinate transformation not found")
# Get the MEG device <-> head coordinate transformation
tag = find_tag(fid, parent_meg, FIFF.FIFF_COORD_TRANS)
if tag is None:
raise ValueError("MEG/head coordinate transformation not found")
cand = tag.data
if cand["from"] == coord_device and cand["to"] == coord_head:
info["dev_head_t"] = cand
elif cand["from"] == coord_ctf_head and cand["to"] == coord_head:
info["ctf_head_t"] = cand
else:
raise ValueError("MEG/head coordinate transformation not found")
bads = _read_bad_channels(fid, parent_meg, ch_names_mapping=ch_names_mapping)
# clean up our bad list, old versions could have non-existent bads
info["bads"] = [bad for bad in bads if bad in info["ch_names"]]
# Check if a custom reference has been applied
tag = find_tag(fid, parent_mri, FIFF.FIFF_MNE_CUSTOM_REF)
if tag is None:
tag = find_tag(fid, parent_mri, 236) # Constant 236 used before v0.11
info["custom_ref_applied"] = int(tag.data.item()) if tag is not None else False
info._unlocked = False
return info
def _subject_from_forward(forward):
"""Get subject id from inverse operator."""
return forward["src"]._subject
# This sets the forward solution order (and gives human-readable names)
_FWD_ORDER = dict(
meg="MEG",
eeg="EEG",
)
@verbose
def _merge_fwds(fwds, *, verbose=None):
"""Merge loaded forward dicts into one dict."""
fwd = None
first_key = None
combined = list()
for key in _FWD_ORDER:
if key not in fwds:
continue
if fwd is None: # assign
fwd = fwds[key]
first_key = key
combined.append(_FWD_ORDER[key])
continue
a = fwd
b = fwds[key]
a_kind, b_kind = _FWD_ORDER[first_key], _FWD_ORDER[key]
combined.append(b_kind)
if (
a["sol"]["data"].shape[1] != b["sol"]["data"].shape[1]
or a["source_ori"] != b["source_ori"]
or a["nsource"] != b["nsource"]
or a["coord_frame"] != b["coord_frame"]
):
raise ValueError(
f"The {a_kind} and {b_kind} forward solutions do not match"
)
for k in ("sol", "sol_grad"):
if a[k] is None:
continue
a[k]["data"] = np.r_[a[k]["data"], b[k]["data"]]
a[f"_orig_{k}"] = np.r_[a[f"_orig_{k}"], b[f"_orig_{k}"]]
a[k]["nrow"] = a[k]["nrow"] + b[k]["nrow"]
a[k]["row_names"] = a[k]["row_names"] + b[k]["row_names"]
a["nchan"] = a["nchan"] + b["nchan"]
if len(fwds) > 1:
logger.info(f" Forward solutions combined: {', '.join(combined)}")
return fwd
@verbose
def read_forward_solution(fname, include=(), exclude=(), *, ordered=True, verbose=None):
"""Read a forward solution a.k.a. lead field.
Parameters
----------
fname : path-like
The file name, which should end with ``-fwd.fif``, ``-fwd.fif.gz``,
``_fwd.fif``, ``_fwd.fif.gz``, ``-fwd.h5``, or ``_fwd.h5``.
include : list, optional
List of names of channels to include. If empty all channels
are included.
exclude : list, optional
List of names of channels to exclude. If empty include all channels.
%(ordered)s
%(verbose)s
Returns
-------
fwd : instance of Forward
The forward solution.
See Also
--------
write_forward_solution, make_forward_solution
Notes
-----
Forward solutions, which are derived from an original forward solution with
free orientation, are always stored on disk as forward solution with free
orientation in X/Y/Z RAS coordinates. To apply any transformation to the
forward operator (surface orientation, fixed orientation) please apply
:func:`convert_forward_solution` after reading the forward solution with
:func:`read_forward_solution`.
Forward solutions, which are derived from an original forward solution with
fixed orientation, are stored on disk as forward solution with fixed
surface-based orientations. Please note that the transformation to
surface-based, fixed orientation cannot be reverted after loading the
forward solution with :func:`read_forward_solution`.
"""
check_fname(
fname,
"forward",
("-fwd.fif", "-fwd.fif.gz", "_fwd.fif", "_fwd.fif.gz", "-fwd.h5", "_fwd.h5"),
)
fname = _check_fname(fname=fname, must_exist=True, overwrite="read")
# Open the file, create directory
logger.info(f"Reading forward solution from {fname}...")
if fname.suffix == ".h5":
return _read_forward_hdf5(fname)
f, tree, _ = fiff_open(fname)
with f as fid:
# Find all forward solutions
fwds = dir_tree_find(tree, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
if len(fwds) == 0:
raise ValueError(f"No forward solutions in {fname}")
# Parent MRI data
parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
raise ValueError(f"No parent MRI information in {fname}")
parent_mri = parent_mri[0]
src = _read_source_spaces_from_tree(fid, tree, patch_stats=False)
for s in src:
s["id"] = find_source_space_hemi(s)
fwd = None
# Locate and read the forward solutions
megnode = None
eegnode = None
for k in range(len(fwds)):
tag = find_tag(fid, fwds[k], FIFF.FIFF_MNE_INCLUDED_METHODS)
if tag is None:
raise ValueError("Methods not listed for one of the forward solutions")
if tag.data == FIFF.FIFFV_MNE_MEG:
megnode = fwds[k]
elif tag.data == FIFF.FIFFV_MNE_EEG:
eegnode = fwds[k]
fwds = dict()
megfwd = _read_one(fid, megnode)
if megfwd is not None:
fwds["meg"] = megfwd
if is_fixed_orient(megfwd):
ori = "fixed"
else:
ori = "free"
logger.info(
" Read MEG forward solution (%d sources, "
"%d channels, %s orientations)",
megfwd["nsource"],
megfwd["nchan"],
ori,
)
del megfwd
eegfwd = _read_one(fid, eegnode)
if eegfwd is not None:
fwds["eeg"] = eegfwd
if is_fixed_orient(eegfwd):
ori = "fixed"
else:
ori = "free"
logger.info(
" Read EEG forward solution (%d sources, "
"%d channels, %s orientations)",
eegfwd["nsource"],
eegfwd["nchan"],
ori,
)
del eegfwd
fwd = _merge_fwds(fwds)
del fwds
# Get the MRI <-> head coordinate transformation
tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
if tag is None:
raise ValueError("MRI/head coordinate transformation not found")
mri_head_t = tag.data
if (
mri_head_t["from"] != FIFF.FIFFV_COORD_MRI
or mri_head_t["to"] != FIFF.FIFFV_COORD_HEAD
):
mri_head_t = invert_transform(mri_head_t)
if (
mri_head_t["from"] != FIFF.FIFFV_COORD_MRI
or mri_head_t["to"] != FIFF.FIFFV_COORD_HEAD
):
fid.close()
raise ValueError("MRI/head coordinate transformation not found")
fwd["mri_head_t"] = mri_head_t
#
# get parent MEG info
#
fwd["info"] = _read_forward_meas_info(tree, fid)
# MNE environment
parent_env = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
if len(parent_env) > 0:
parent_env = parent_env[0]
tag = find_tag(fid, parent_env, FIFF.FIFF_MNE_ENV_WORKING_DIR)
if tag is not None:
with fwd["info"]._unlock():
fwd["info"]["working_dir"] = tag.data
tag = find_tag(fid, parent_env, FIFF.FIFF_MNE_ENV_COMMAND_LINE)
if tag is not None:
with fwd["info"]._unlock():
fwd["info"]["command_line"] = tag.data
# Transform the source spaces to the correct coordinate frame
# if necessary
# Make sure forward solution is in either the MRI or HEAD coordinate frame
if fwd["coord_frame"] not in (FIFF.FIFFV_COORD_MRI, FIFF.FIFFV_COORD_HEAD):
raise ValueError(
"Only forward solutions computed in MRI or head coordinates are acceptable"
)
# Transform each source space to the HEAD or MRI coordinate frame,
# depending on the coordinate frame of the forward solution
# NOTE: the function transform_surface_to will also work on discrete and
# volume sources
nuse = 0
for s in src:
try:
s = transform_surface_to(s, fwd["coord_frame"], mri_head_t)
except Exception as inst:
raise ValueError(f"Could not transform source space ({inst})")
nuse += s["nuse"]
# Make sure the number of sources match after transformation
if nuse != fwd["nsource"]:
raise ValueError("Source spaces do not match the forward solution.")
logger.info(
" Source spaces transformed to the forward solution coordinate frame"
)
fwd["src"] = src
# Handle the source locations and orientations
fwd["source_rr"] = np.concatenate([ss["rr"][ss["vertno"], :] for ss in src], axis=0)
# Store original source orientations
fwd["_orig_source_ori"] = fwd["source_ori"]
# Deal with include and exclude
pick_channels_forward(fwd, include=include, exclude=exclude, copy=False)
if is_fixed_orient(fwd, orig=True):
fwd["source_nn"] = np.concatenate(
[_src["nn"][_src["vertno"], :] for _src in fwd["src"]], axis=0
)
fwd["source_ori"] = FIFF.FIFFV_MNE_FIXED_ORI
fwd["surf_ori"] = True
else:
fwd["source_nn"] = np.kron(np.ones((fwd["nsource"], 1)), np.eye(3))
fwd["source_ori"] = FIFF.FIFFV_MNE_FREE_ORI
fwd["surf_ori"] = False
return Forward(fwd)
@verbose
def convert_forward_solution(
fwd, surf_ori=False, force_fixed=False, copy=True, use_cps=True, *, verbose=None
):
"""Convert forward solution between different source orientations.
Parameters
----------
fwd : Forward
The forward solution to modify.
surf_ori : bool, optional (default False)
Use surface-based source coordinate system? Note that force_fixed=True
implies surf_ori=True.
force_fixed : bool, optional (default False)
If True, force fixed source orientation mode.
copy : bool
Whether to return a new instance or modify in place.
%(use_cps)s
%(verbose)s
Returns
-------
fwd : Forward
The modified forward solution.
"""
fwd = fwd.copy() if copy else fwd
if force_fixed is True:
surf_ori = True
if any([src["type"] == "vol" for src in fwd["src"]]) and force_fixed:
raise ValueError(
"Forward operator was generated with sources from a "
"volume source space. Conversion to fixed orientation is not "
"possible. Consider using a discrete source space if you have "
"meaningful normal orientations."
)
if surf_ori and use_cps:
if any(s.get("patch_inds") is not None for s in fwd["src"]):
logger.info(
" Average patch normals will be employed in "
"the rotation to the local surface coordinates.."
".."
)
else:
use_cps = False
logger.info(
" No patch info available. The standard source "
"space normals will be employed in the rotation "
"to the local surface coordinates...."
)
# We need to change these entries (only):
# 1. source_nn
# 2. sol['data']
# 3. sol['ncol']
# 4. sol_grad['data']
# 5. sol_grad['ncol']
# 6. source_ori
if is_fixed_orient(fwd, orig=True) or (force_fixed and not use_cps):
# Fixed
fwd["source_nn"] = np.concatenate(
[_get_src_nn(s, use_cps) for s in fwd["src"]], axis=0
)
if not is_fixed_orient(fwd, orig=True):
logger.info(
" Changing to fixed-orientation forward "
"solution with surface-based source orientations..."
)
fix_rot = _block_diag(fwd["source_nn"].T, 1)
# newer versions of numpy require explicit casting here, so *= no
# longer works
fwd["sol"]["data"] = (fwd["_orig_sol"] @ fix_rot).astype("float32")
fwd["sol"]["ncol"] = fwd["nsource"]
if fwd["sol_grad"] is not None:
x = sparse.block_diag([fix_rot] * 3)
fwd["sol_grad"]["data"] = fwd["_orig_sol_grad"] @ x
fwd["sol_grad"]["ncol"] = 3 * fwd["nsource"]
fwd["source_ori"] = FIFF.FIFFV_MNE_FIXED_ORI
fwd["surf_ori"] = True
elif surf_ori: # Free, surf-oriented
# Rotate the local source coordinate systems
fwd["source_nn"] = np.kron(np.ones((fwd["nsource"], 1)), np.eye(3))
logger.info(" Converting to surface-based source orientations...")
# Actually determine the source orientations
pp = 0
for s in fwd["src"]:
if s["type"] in ["surf", "discrete"]:
nn = _get_src_nn(s, use_cps)
stop = pp + 3 * s["nuse"]
fwd["source_nn"][pp:stop] = _normal_orth(nn).reshape(-1, 3)
pp = stop
del nn
else:
pp += 3 * s["nuse"]
# Rotate the solution components as well
if force_fixed:
fwd["source_nn"] = fwd["source_nn"][2::3, :]
fix_rot = _block_diag(fwd["source_nn"].T, 1)
# newer versions of numpy require explicit casting here, so *= no
# longer works
fwd["sol"]["data"] = (fwd["_orig_sol"] @ fix_rot).astype("float32")
fwd["sol"]["ncol"] = fwd["nsource"]
if fwd["sol_grad"] is not None:
x = sparse.block_diag([fix_rot] * 3)
fwd["sol_grad"]["data"] = fwd["_orig_sol_grad"] @ x
fwd["sol_grad"]["ncol"] = 3 * fwd["nsource"]
fwd["source_ori"] = FIFF.FIFFV_MNE_FIXED_ORI
fwd["surf_ori"] = True
else:
surf_rot = _block_diag(fwd["source_nn"].T, 3)
fwd["sol"]["data"] = fwd["_orig_sol"] @ surf_rot
fwd["sol"]["ncol"] = 3 * fwd["nsource"]
if fwd["sol_grad"] is not None:
x = sparse.block_diag([surf_rot] * 3)
fwd["sol_grad"]["data"] = fwd["_orig_sol_grad"] @ x
fwd["sol_grad"]["ncol"] = 9 * fwd["nsource"]
fwd["source_ori"] = FIFF.FIFFV_MNE_FREE_ORI
fwd["surf_ori"] = True
else: # Free, cartesian
logger.info(" Cartesian source orientations...")
fwd["source_nn"] = np.tile(np.eye(3), (fwd["nsource"], 1))
fwd["sol"]["data"] = fwd["_orig_sol"].copy()
fwd["sol"]["ncol"] = 3 * fwd["nsource"]
if fwd["sol_grad"] is not None:
fwd["sol_grad"]["data"] = fwd["_orig_sol_grad"].copy()
fwd["sol_grad"]["ncol"] = 9 * fwd["nsource"]
fwd["source_ori"] = FIFF.FIFFV_MNE_FREE_ORI
fwd["surf_ori"] = False
logger.info(" [done]")
return fwd
@verbose
def write_forward_solution(fname, fwd, overwrite=False, verbose=None):
"""Write forward solution to a file.
Parameters
----------
%(fname_fwd)s
fwd : Forward
Forward solution.
%(overwrite)s
%(verbose)s
See Also
--------
read_forward_solution
Notes
-----
Forward solutions, which are derived from an original forward solution with
free orientation, are always stored on disk as forward solution with free
orientation in X/Y/Z RAS coordinates. Transformations (surface orientation,
fixed orientation) will be reverted. To reapply any transformation to the
forward operator please apply :func:`convert_forward_solution` after
reading the forward solution with :func:`read_forward_solution`.
Forward solutions, which are derived from an original forward solution with
fixed orientation, are stored on disk as forward solution with fixed
surface-based orientations. Please note that the transformation to
surface-based, fixed orientation cannot be reverted after loading the
forward solution with :func:`read_forward_solution`.
"""
check_fname(
fname,
"forward",
("-fwd.fif", "-fwd.fif.gz", "_fwd.fif", "_fwd.fif.gz", "-fwd.h5", "_fwd.h5"),
)
# check for file existence and expand `~` if present
fname = _check_fname(fname, overwrite)
if fname.suffix == ".h5":
_write_forward_hdf5(fname, fwd)
else:
with start_and_end_file(fname) as fid:
_write_forward_solution(fid, fwd)
def _write_forward_hdf5(fname, fwd):
_, write_hdf5 = _import_h5io_funcs()
write_hdf5(fname, dict(fwd=fwd), overwrite=True)
def _read_forward_hdf5(fname):
read_hdf5, _ = _import_h5io_funcs()
fwd = Forward(read_hdf5(fname)["fwd"])
fwd["info"] = Info(fwd["info"])
fwd["src"] = SourceSpaces(fwd["src"])
return fwd
def _write_forward_solution(fid, fwd):
start_block(fid, FIFF.FIFFB_MNE)
#
# MNE env
#
start_block(fid, FIFF.FIFFB_MNE_ENV)
write_id(fid, FIFF.FIFF_BLOCK_ID)
data = fwd["info"].get("working_dir", None)
if data is not None:
write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
data = fwd["info"].get("command_line", None)
if data is not None:
write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)
end_block(fid, FIFF.FIFFB_MNE_ENV)
#
# Information from the MRI file
#
start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, fwd["info"]["mri_file"])
if fwd["info"]["mri_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_FILE_ID, fwd["info"]["mri_id"])
# store the MRI to HEAD transform in MRI file
write_coord_trans(fid, fwd["info"]["mri_head_t"])
end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
# write measurement info
write_forward_meas_info(fid, fwd["info"])
# invert our original source space transform
src = list()
for s in fwd["src"]:
s = deepcopy(s)
try:
# returns source space to original coordinate frame
# usually MRI
s = transform_surface_to(s, fwd["mri_head_t"]["from"], fwd["mri_head_t"])
except Exception as inst:
raise ValueError(f"Could not transform source space ({inst})")
src.append(s)
#
# Write the source spaces (again)
#
_write_source_spaces_to_fid(fid, src)
n_vert = sum([ss["nuse"] for ss in src])
if fwd["_orig_source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI:
n_col = n_vert
else:
n_col = 3 * n_vert
# Undo transformations
sol = fwd["_orig_sol"].copy()
if fwd["sol_grad"] is not None:
sol_grad = fwd["_orig_sol_grad"].copy()
else:
sol_grad = None
if fwd["surf_ori"] is True:
if fwd["_orig_source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI:
warn(
"The forward solution, which is stored on disk now, is based "
"on a forward solution with fixed orientation. Please note "
"that the transformation to surface-based, fixed orientation "
"cannot be reverted after loading the forward solution with "
"read_forward_solution.",
RuntimeWarning,
)
else:
warn(
"This forward solution is based on a forward solution with "
"free orientation. The original forward solution is stored "
"on disk in X/Y/Z RAS coordinates. Any transformation "
"(surface orientation or fixed orientation) will be "
"reverted. To reapply any transformation to the forward "
"operator please apply convert_forward_solution after "
"reading the forward solution with read_forward_solution.",
RuntimeWarning,
)
#
# MEG forward solution
#
picks_meg = pick_types(fwd["info"], meg=True, eeg=False, ref_meg=False, exclude=[])
picks_eeg = pick_types(fwd["info"], meg=False, eeg=True, ref_meg=False, exclude=[])
n_meg = len(picks_meg)
n_eeg = len(picks_eeg)
row_names_meg = [fwd["sol"]["row_names"][p] for p in picks_meg]
row_names_eeg = [fwd["sol"]["row_names"][p] for p in picks_eeg]
if n_meg > 0:
meg_solution = dict(
data=sol[picks_meg],
nrow=n_meg,
ncol=n_col,
row_names=row_names_meg,
col_names=[],
)
_transpose_named_matrix(meg_solution)
start_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, FIFF.FIFFV_MNE_MEG)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, fwd["coord_frame"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION, fwd["_orig_source_ori"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, n_vert)
write_int(fid, FIFF.FIFF_NCHAN, n_meg)
write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION, meg_solution)
if sol_grad is not None:
meg_solution_grad = dict(
data=sol_grad[picks_meg],
nrow=n_meg,
ncol=n_col * 3,
row_names=row_names_meg,
col_names=[],
)
_transpose_named_matrix(meg_solution_grad)
write_named_matrix(
fid, FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD, meg_solution_grad
)
end_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
#
# EEG forward solution
#
if n_eeg > 0:
eeg_solution = dict(
data=sol[picks_eeg],
nrow=n_eeg,
ncol=n_col,
row_names=row_names_eeg,
col_names=[],
)
_transpose_named_matrix(eeg_solution)
start_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, FIFF.FIFFV_MNE_EEG)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, fwd["coord_frame"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION, fwd["_orig_source_ori"])
write_int(fid, FIFF.FIFF_NCHAN, n_eeg)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, n_vert)
write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION, eeg_solution)
if sol_grad is not None:
eeg_solution_grad = dict(
data=sol_grad[picks_eeg],
nrow=n_eeg,
ncol=n_col * 3,
row_names=row_names_eeg,
col_names=[],
)
_transpose_named_matrix(eeg_solution_grad)
write_named_matrix(
fid, FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD, eeg_solution_grad
)
end_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
end_block(fid, FIFF.FIFFB_MNE)
def is_fixed_orient(forward, orig=False):
"""Check if the forward operator is fixed orientation.
Parameters
----------
forward : instance of Forward
The forward.
orig : bool
If True, consider the original source orientation.
If False (default), consider the current source orientation.
Returns
-------
fixed_ori : bool
Whether or not it is fixed orientation.
"""
if orig: # if we want to know about the original version
fixed_ori = forward["_orig_source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI
else: # most of the time we want to know about the current version
fixed_ori = forward["source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI
return fixed_ori
@fill_doc
def write_forward_meas_info(fid, info):
"""Write measurement info stored in forward solution.
Parameters
----------
fid : file id
The file id
%(info_not_none)s
"""
info._check_consistency()
#
# Information from the MEG file
#
start_block(fid, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, info["meas_file"])
if info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info["meas_id"])
# get transformation from CTF and DEVICE to HEAD coordinate frame
meg_head_t = info.get("dev_head_t", info.get("ctf_head_t"))
if meg_head_t is None:
fid.close()
raise ValueError("Head<-->sensor transform not found")
write_coord_trans(fid, meg_head_t)
ch_names_mapping = dict()
if "chs" in info:
# Channel information
ch_names_mapping = _make_ch_names_mapping(info["chs"])
write_int(fid, FIFF.FIFF_NCHAN, len(info["chs"]))
_write_ch_infos(fid, info["chs"], False, ch_names_mapping)
if "bads" in info and len(info["bads"]) > 0:
# Bad channels
_write_bad_channels(fid, info["bads"], ch_names_mapping)
end_block(fid, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
def _select_orient_forward(forward, info, noise_cov=None, copy=True):
"""Prepare forward solution for inverse solvers."""
# fwd['sol']['row_names'] may be different order from fwd['info']['chs']
fwd_sol_ch_names = forward["sol"]["row_names"]
all_ch_names = set(fwd_sol_ch_names)
all_bads = set(info["bads"])
if noise_cov is not None:
all_ch_names &= set(noise_cov["names"])
all_bads |= set(noise_cov["bads"])
else:
noise_cov = dict(bads=info["bads"])
ch_names = [
c["ch_name"]
for c in info["chs"]
if c["ch_name"] not in all_bads and c["ch_name"] in all_ch_names
]
if not len(info["bads"]) == len(noise_cov["bads"]) or not all(
b in noise_cov["bads"] for b in info["bads"]
):
logger.info(
'info["bads"] and noise_cov["bads"] do not match, '
"excluding bad channels from both"
)
# check the compensation grade
_check_compensation_grade(forward["info"], info, "forward")
n_chan = len(ch_names)
logger.info("Computing inverse operator with %d channels.", n_chan)
forward = pick_channels_forward(forward, ch_names, ordered=True, copy=copy)
info_idx = [info["ch_names"].index(name) for name in ch_names]
info_picked = pick_info(info, info_idx)
forward["info"]._check_consistency()
info_picked._check_consistency()
return forward, info_picked
def _triage_loose(src, loose, fixed="auto"):
_validate_type(loose, (str, dict, "numeric"), "loose")
_validate_type(fixed, (str, bool), "fixed")
orig_loose = loose
if isinstance(loose, str):
_check_option("loose", loose, ("auto",))
if fixed is True:
loose = 0.0
else: # False or auto
loose = 0.2 if src.kind == "surface" else 1.0
src_types = set(_src_kind_dict[s["type"]] for s in src)
if not isinstance(loose, dict):
loose = float(loose)
loose = {key: loose for key in src_types}
loose_keys = set(loose.keys())
if loose_keys != src_types:
raise ValueError(
f"loose, if dict, must have keys {sorted(src_types)} to match the "
f"source space, got {sorted(loose_keys)}"
)
# if fixed is auto it can be ignored, if it's False it can be ignored,
# only really need to care about fixed=True
if fixed is True:
if not all(v == 0.0 for v in loose.values()):
raise ValueError(
f'When using fixed=True, loose must be 0. or "auto", got {orig_loose}'
)
elif fixed is False:
if any(v == 0.0 for v in loose.values()):
raise ValueError(
'If loose==0., then fixed must be True or "auto", got False'
)
del fixed
for key, this_loose in loose.items():
if key not in ("surface", "discrete") and this_loose != 1:
raise ValueError(
'loose parameter has to be 1 or "auto" for non-surface/'
f'discrete source spaces, got loose["{key}"] = {this_loose}'
)
if not 0 <= this_loose <= 1:
raise ValueError(f"loose ({key}) must be between 0 and 1, got {this_loose}")
return loose
@verbose
def compute_orient_prior(forward, loose="auto", verbose=None):
"""Compute orientation prior.
Parameters
----------
forward : instance of Forward
Forward operator.
%(loose)s
%(verbose)s
Returns
-------
orient_prior : ndarray, shape (n_sources,)
Orientation priors.
See Also
--------
compute_depth_prior
"""
_validate_type(forward, Forward, "forward")
n_sources = forward["sol"]["data"].shape[1]
loose = _triage_loose(forward["src"], loose)
orient_prior = np.ones(n_sources, dtype=np.float64)
if is_fixed_orient(forward):
if any(v > 0.0 for v in loose.values()):
raise ValueError(
"loose must be 0. with forward operator "
f"with fixed orientation, got {loose}"
)
return orient_prior
if all(v == 1.0 for v in loose.values()):
return orient_prior
# We actually need non-unity prior, compute it for each source space
# separately
if not forward["surf_ori"]:
raise ValueError(
"Forward operator is not oriented in surface "
"coordinates. loose parameter should be 1. "
f"not {loose}."
)
start = 0
logged = dict()
for s in forward["src"]:
this_type = _src_kind_dict[s["type"]]
use_loose = loose[this_type]
if not logged.get(this_type):
if use_loose == 1.0:
name = "free"
else:
name = "fixed" if use_loose == 0.0 else "loose"
logger.info(
f"Applying {name.ljust(5)} dipole orientations to "
f"{this_type.ljust(7)} source spaces: {use_loose}"
)
logged[this_type] = True
stop = start + 3 * s["nuse"]
orient_prior[start:stop:3] *= use_loose
orient_prior[start + 1 : stop : 3] *= use_loose
start = stop
return orient_prior
def _restrict_gain_matrix(G, info):
"""Restrict gain matrix entries for optimal depth weighting."""
# Figure out which ones have been used
if len(info["chs"]) != G.shape[0]:
raise ValueError(
f'G.shape[0] ({G.shape[0]}) and length of info["chs"] ({len(info["chs"])}) '
"do not match."
)
for meg, eeg, kind in (
("grad", False, "planar"),
("mag", False, "magnetometer or axial gradiometer"),
(False, True, "EEG"),
):
sel = pick_types(info, meg=meg, eeg=eeg, ref_meg=False, exclude=[])
if len(sel) > 0:
logger.info(" %d %s channels", len(sel), kind)
break
else:
warn("Could not find MEG or EEG channels to limit depth channels")
sel = slice(None)
return G[sel]
@verbose
def compute_depth_prior(
forward,
info,
exp=0.8,
limit=10.0,
limit_depth_chs=False,
combine_xyz="spectral",
noise_cov=None,
rank=None,
verbose=None,
):
"""Compute depth prior for depth weighting.
Parameters
----------
forward : instance of Forward
The forward solution.
%(info_not_none)s
exp : float
Exponent for the depth weighting, must be between 0 and 1.
limit : float | None
The upper bound on depth weighting.
Can be None to be bounded by the largest finite prior.
limit_depth_chs : bool | 'whiten'
How to deal with multiple channel types in depth weighting.
The default is True, which whitens based on the source sensitivity
of the highest-SNR channel type. See Notes for details.
.. versionchanged:: 0.18
Added the "whiten" option.
combine_xyz : 'spectral' | 'fro'
When a loose (or free) orientation is used, how the depth weighting
for each triplet should be calculated.
If 'spectral', use the squared spectral norm of Gk.
If 'fro', use the squared Frobenius norm of Gk.
.. versionadded:: 0.18
noise_cov : instance of Covariance | None
The noise covariance to use to whiten the gain matrix when
``limit_depth_chs='whiten'``.
.. versionadded:: 0.18
%(rank_none)s
.. versionadded:: 0.18
%(verbose)s
Returns
-------
depth_prior : ndarray, shape (n_vertices,)
The depth prior.
See Also
--------
compute_orient_prior
Notes
-----
The defaults used by the minimum norm code and sparse solvers differ.
In particular, the values for MNE are::
compute_depth_prior(..., limit=10., limit_depth_chs=True,
combine_xyz='spectral')
In sparse solvers and LCMV, the values are::
compute_depth_prior(..., limit=None, limit_depth_chs='whiten',
combine_xyz='fro')
The ``limit_depth_chs`` argument can take the following values:
* :data:`python:True` (default)
Use only grad channels in depth weighting (equivalent to MNE C
minimum-norm code). If grad channels aren't present, only mag
channels will be used (if no mag, then eeg). This makes the depth
prior dependent only on the sensor geometry (and relationship
to the sources).
* ``'whiten'``
Compute a whitener and apply it to the gain matrix before computing
the depth prior. In this case ``noise_cov`` must not be None.
Whitening the gain matrix makes the depth prior
depend on both sensor geometry and the data of interest captured
by the noise covariance (e.g., projections, SNR).
.. versionadded:: 0.18
* :data:`python:False`
Use all channels. Not recommended since the depth weighting will be
biased toward whichever channel type has the largest values in
SI units (such as EEG being orders of magnitude larger than MEG).
"""
from ..cov import Covariance, compute_whitener
_validate_type(forward, Forward, "forward")
patch_areas = forward.get("patch_areas", None)
is_fixed_ori = is_fixed_orient(forward)
G = forward["sol"]["data"]
logger.info("Creating the depth weighting matrix...")
_validate_type(noise_cov, (Covariance, None), "noise_cov", "Covariance or None")
_validate_type(limit_depth_chs, (str, bool), "limit_depth_chs")
if isinstance(limit_depth_chs, str):
if limit_depth_chs != "whiten":
raise ValueError(
f'limit_depth_chs, if str, must be "whiten", got {limit_depth_chs}'
)
if not isinstance(noise_cov, Covariance):
raise ValueError(
'With limit_depth_chs="whiten", noise_cov must be'
f" a Covariance, got {type(noise_cov)}"
)
if combine_xyz is not False: # private / expert option
_check_option("combine_xyz", combine_xyz, ("fro", "spectral"))
# If possible, pick best depth-weighting channels
if limit_depth_chs is True:
G = _restrict_gain_matrix(G, info)
elif limit_depth_chs == "whiten":
whitener, _ = compute_whitener(
noise_cov, info, pca=True, rank=rank, verbose=False
)
G = np.dot(whitener, G)
# Compute the gain matrix
if is_fixed_ori or combine_xyz in ("fro", False):
d = np.sum(G**2, axis=0)
if not (is_fixed_ori or combine_xyz is False):
d = d.reshape(-1, 3).sum(axis=1)
# Spherical leadfield can be zero at the center
d[d == 0.0] = np.min(d[d != 0.0])
else: # 'spectral'
# n_pos = G.shape[1] // 3
# The following is equivalent to this, but 4-10x faster
# d = np.zeros(n_pos)
# for k in range(n_pos):
# Gk = G[:, 3 * k:3 * (k + 1)]
# x = np.dot(Gk.T, Gk)
# d[k] = linalg.svdvals(x)[0]
G.shape = (G.shape[0], -1, 3)
d = np.linalg.norm(
np.einsum("svj,svk->vjk", G, G), # vector dot prods
ord=2, # ord=2 spectral (largest s.v.)
axis=(1, 2),
)
G.shape = (G.shape[0], -1)
# XXX Currently the fwd solns never have "patch_areas" defined
if patch_areas is not None:
if not is_fixed_ori and combine_xyz is False:
patch_areas = np.repeat(patch_areas, 3)
d /= patch_areas**2
logger.info(" Patch areas taken into account in the depth weighting")
w = 1.0 / d
if limit is not None:
ws = np.sort(w)
weight_limit = limit**2
if limit_depth_chs is False:
# match old mne-python behavior
# we used to do ind = np.argmin(ws), but this is 0 by sort above
n_limit = 0
limit = ws[0] * weight_limit
else:
# match C code behavior
limit = ws[-1]
n_limit = len(d)
if ws[-1] > weight_limit * ws[0]:
ind = np.where(ws > weight_limit * ws[0])[0][0]
limit = ws[ind]
n_limit = ind
logger.info(
" limit = %d/%d = %f", n_limit + 1, len(d), np.sqrt(limit / ws[0])
)
scale = 1.0 / limit
logger.info(f" scale = {scale:g} exp = {exp:g}")
w = np.minimum(w / limit, 1)
depth_prior = w**exp
if not (is_fixed_ori or combine_xyz is False):
depth_prior = np.repeat(depth_prior, 3)
return depth_prior
def _stc_src_sel(
src, stc, on_missing="raise", extra=", likely due to forward calculations"
):
"""Select the vertex indices of a source space using a source estimate."""
if isinstance(stc, list):
vertices = stc
else:
assert isinstance(stc, _BaseSourceEstimate)
vertices = stc.vertices
del stc
if not len(src) == len(vertices):
raise RuntimeError(
f"Mismatch between number of source spaces ({len(src)}) and "
f"STC vertices ({len(vertices)})"
)
src_sels, stc_sels, out_vertices = [], [], []
src_offset = stc_offset = 0
for s, v in zip(src, vertices):
joint_sel = np.intersect1d(s["vertno"], v)
src_sels.append(np.searchsorted(s["vertno"], joint_sel) + src_offset)
src_offset += len(s["vertno"])
idx = np.searchsorted(v, joint_sel)
stc_sels.append(idx + stc_offset)
stc_offset += len(v)
out_vertices.append(np.array(v)[idx])
src_sel = np.concatenate(src_sels)
stc_sel = np.concatenate(stc_sels)
assert len(src_sel) == len(stc_sel) == sum(len(v) for v in out_vertices)
n_stc = sum(len(v) for v in vertices)
n_joint = len(src_sel)
if n_joint != n_stc:
msg = (
f"Only {n_joint} of {n_stc} SourceEstimate "
f"{'vertex' if n_stc == 1 else 'vertices'} found in source space{extra}"
)
_on_missing(on_missing, msg)
return src_sel, stc_sel, out_vertices
def _fill_measurement_info(info, fwd, sfreq, data):
"""Fill the measurement info of a Raw or Evoked object."""
sel = pick_channels(info["ch_names"], fwd["sol"]["row_names"], ordered=False)
info = pick_info(info, sel)
info["bads"] = []
now = time()
sec = np.floor(now)
usec = 1e6 * (now - sec)
# this is probably correct based on what's done in meas_info.py...
with info._unlock(check_after=True):
info.update(
meas_id=fwd["info"]["meas_id"],
file_id=info["meas_id"],
meas_date=_stamp_to_dt((int(sec), int(usec))),
highpass=0.0,
lowpass=sfreq / 2.0,
sfreq=sfreq,
projs=[],
)
# reorder data (which is in fwd order) to match that of info
order = [fwd["sol"]["row_names"].index(name) for name in info["ch_names"]]
data = data[order]
return info, data
@verbose
def _apply_forward(
fwd, stc, start=None, stop=None, on_missing="raise", use_cps=True, verbose=None
):
"""Apply forward model and return data, times, ch_names."""
_validate_type(stc, _BaseSourceEstimate, "stc", "SourceEstimate")
_validate_type(fwd, Forward, "fwd")
if isinstance(stc, _BaseVectorSourceEstimate):
vector = True
fwd = convert_forward_solution(fwd, force_fixed=False, surf_ori=False)
else:
vector = False
if not is_fixed_orient(fwd):
fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=use_cps)
if np.all(stc.data > 0):
warn(
"Source estimate only contains currents with positive values. "
'Use pick_ori="normal" when computing the inverse to compute '
"currents not current magnitudes."
)
_check_stc_units(stc)
src_sel, stc_sel, _ = _stc_src_sel(fwd["src"], stc, on_missing=on_missing)
gain = fwd["sol"]["data"]
stc_sel = slice(None) if len(stc_sel) == len(stc.data) else stc_sel
times = stc.times[start:stop].copy()
stc_data = stc.data[stc_sel, ..., start:stop].reshape(-1, len(times))
del stc
if vector:
gain = gain.reshape(len(gain), gain.shape[1] // 3, 3)
gain = gain[:, src_sel].reshape(len(gain), -1)
# save some memory if possible
logger.info("Projecting source estimate to sensor space...")
data = np.dot(gain, stc_data)
logger.info("[done]")
return data, times
@verbose
def apply_forward(
fwd,
stc,
info,
start=None,
stop=None,
use_cps=True,
on_missing="raise",
verbose=None,
):
"""Project source space currents to sensor space using a forward operator.
The sensor space data is computed for all channels present in fwd. Use
pick_channels_forward or pick_types_forward to restrict the solution to a
subset of channels.
The function returns an Evoked object, which is constructed from
evoked_template. The evoked_template should be from the same MEG system on
which the original data was acquired. An exception will be raised if the
forward operator contains channels that are not present in the template.
Parameters
----------
fwd : Forward
Forward operator to use.
stc : SourceEstimate
The source estimate from which the sensor space data is computed.
%(info_not_none)s
start : int, optional
Index of first time sample (index not time is seconds).
stop : int, optional
Index of first time sample not to include (index not time is seconds).
%(use_cps)s
.. versionadded:: 0.15
%(on_missing_fwd)s
Default is "raise".
.. versionadded:: 0.18
%(verbose)s
Returns
-------
evoked : Evoked
Evoked object with computed sensor space data.
See Also
--------
apply_forward_raw: Compute sensor space data and return a Raw object.
"""
_validate_type(info, Info, "info")
_validate_type(fwd, Forward, "forward")
info._check_consistency()
# make sure evoked_template contains all channels in fwd
for ch_name in fwd["sol"]["row_names"]:
if ch_name not in info["ch_names"]:
raise ValueError(
f"Channel {ch_name} of forward operator not present in evoked_template."
)
# project the source estimate to the sensor space
data, times = _apply_forward(
fwd, stc, start, stop, on_missing=on_missing, use_cps=use_cps
)
# fill the measurement info
sfreq = float(1.0 / stc.tstep)
info, data = _fill_measurement_info(info, fwd, sfreq, data)
evoked = EvokedArray(data, info, times[0], nave=1)
evoked._set_times(times)
evoked._update_first_last()
return evoked
@verbose
def apply_forward_raw(
fwd,
stc,
info,
start=None,
stop=None,
on_missing="raise",
use_cps=True,
verbose=None,
):
"""Project source space currents to sensor space using a forward operator.
The sensor space data is computed for all channels present in fwd. Use
pick_channels_forward or pick_types_forward to restrict the solution to a
subset of channels.
The function returns a Raw object, which is constructed using provided
info. The info object should be from the same MEG system on which the
original data was acquired. An exception will be raised if the forward
operator contains channels that are not present in the info.
Parameters
----------
fwd : Forward
Forward operator to use.
stc : SourceEstimate
The source estimate from which the sensor space data is computed.
%(info_not_none)s
start : int, optional
Index of first time sample (index not time is seconds).
stop : int, optional
Index of first time sample not to include (index not time is seconds).
%(on_missing_fwd)s
Default is "raise".
.. versionadded:: 0.18
%(use_cps)s
.. versionadded:: 0.21
%(verbose)s
Returns
-------
raw : Raw object
Raw object with computed sensor space data.
See Also
--------
apply_forward: Compute sensor space data and return an Evoked object.
"""
# make sure info contains all channels in fwd
for ch_name in fwd["sol"]["row_names"]:
if ch_name not in info["ch_names"]:
raise ValueError(
f"Channel {ch_name} of forward operator not present in info."
)
# project the source estimate to the sensor space
data, times = _apply_forward(
fwd, stc, start, stop, on_missing=on_missing, use_cps=use_cps
)
sfreq = 1.0 / stc.tstep
info, data = _fill_measurement_info(info, fwd, sfreq, data)
with info._unlock():
info["projs"] = []
# store sensor data in Raw object using the info
raw = RawArray(data, info, first_samp=int(np.round(times[0] * sfreq)))
raw._projector = None
return raw
@fill_doc
def restrict_forward_to_stc(fwd, stc, on_missing="ignore"):
"""Restrict forward operator to active sources in a source estimate.
Parameters
----------
fwd : instance of Forward
Forward operator.
stc : instance of SourceEstimate
Source estimate.
%(on_missing_fwd)s
Default is "ignore".
.. versionadded:: 0.18
Returns
-------
fwd_out : instance of Forward
Restricted forward operator.
See Also
--------
restrict_forward_to_label
"""
_validate_type(on_missing, str, "on_missing")
_check_option("on_missing", on_missing, ("ignore", "warn", "raise"))
src_sel, _, _ = _stc_src_sel(fwd["src"], stc, on_missing=on_missing)
del stc
return _restrict_forward_to_src_sel(fwd, src_sel)
def _restrict_forward_to_src_sel(fwd, src_sel):
fwd_out = deepcopy(fwd)
# figure out the vertno we are keeping
idx_sel = np.concatenate(
[[[si] * len(s["vertno"]), s["vertno"]] for si, s in enumerate(fwd["src"])],
axis=-1,
)
assert idx_sel.ndim == 2 and idx_sel.shape[0] == 2
assert idx_sel.shape[1] == fwd["nsource"]
idx_sel = idx_sel[:, src_sel]
fwd_out["source_rr"] = fwd["source_rr"][src_sel]
fwd_out["nsource"] = len(src_sel)
if is_fixed_orient(fwd):
idx = src_sel
if fwd["sol_grad"] is not None:
idx_grad = (3 * src_sel[:, None] + np.arange(3)).ravel()
else:
idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
if fwd["sol_grad"] is not None:
idx_grad = (9 * src_sel[:, None] + np.arange(9)).ravel()
fwd_out["source_nn"] = fwd["source_nn"][idx]
fwd_out["sol"]["data"] = fwd["sol"]["data"][:, idx]
if fwd["sol_grad"] is not None:
fwd_out["sol_grad"]["data"] = fwd["sol_grad"]["data"][:, idx_grad]
fwd_out["sol"]["ncol"] = len(idx)
if is_fixed_orient(fwd, orig=True):
idx = src_sel
if fwd["sol_grad"] is not None:
idx_grad = (3 * src_sel[:, None] + np.arange(3)).ravel()
else:
idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
if fwd["sol_grad"] is not None:
idx_grad = (9 * src_sel[:, None] + np.arange(9)).ravel()
fwd_out["_orig_sol"] = fwd["_orig_sol"][:, idx]
if fwd["sol_grad"] is not None:
fwd_out["_orig_sol_grad"] = fwd["_orig_sol_grad"][:, idx_grad]
vertices = [idx_sel[1][idx_sel[0] == si] for si in range(len(fwd_out["src"]))]
_set_source_space_vertices(fwd_out["src"], vertices)
return fwd_out
def restrict_forward_to_label(fwd, labels):
"""Restrict forward operator to labels.
Parameters
----------
fwd : Forward
Forward operator.
labels : instance of Label | list
Label object or list of label objects.
Returns
-------
fwd_out : dict
Restricted forward operator.
See Also
--------
restrict_forward_to_stc
"""
vertices = [np.array([], int), np.array([], int)]
if not isinstance(labels, list):
labels = [labels]
# Get vertices separately of each hemisphere from all label
for label in labels:
_validate_type(label, Label, "label", "Label or list")
i = 0 if label.hemi == "lh" else 1
vertices[i] = np.append(vertices[i], label.vertices)
# Remove duplicates and sort
vertices = [np.unique(vert_hemi) for vert_hemi in vertices]
vertices = [
vert_hemi[np.isin(vert_hemi, s["vertno"])]
for vert_hemi, s in zip(vertices, fwd["src"])
]
src_sel, _, _ = _stc_src_sel(fwd["src"], vertices, on_missing="raise")
return _restrict_forward_to_src_sel(fwd, src_sel)
def _do_forward_solution(
subject,
meas,
fname=None,
src=None,
spacing=None,
mindist=None,
bem=None,
mri=None,
trans=None,
eeg=True,
meg=True,
fixed=False,
grad=False,
mricoord=False,
overwrite=False,
subjects_dir=None,
verbose=None,
):
"""Calculate a forward solution for a subject using MNE-C routines.
This is kept around for testing purposes.
This function wraps to mne_do_forward_solution, so the mne
command-line tools must be installed and accessible from Python.
Parameters
----------
subject : str
Name of the subject.
meas : Raw | Epochs | Evoked | str
If Raw or Epochs, a temporary evoked file will be created and
saved to a temporary directory. If str, then it should be a
filename to a file with measurement information the mne
command-line tools can understand (i.e., raw or evoked).
fname : path-like | None
Destination forward solution filename. If None, the solution
will be created in a temporary directory, loaded, and deleted.
src : str | None
Source space name. If None, the MNE default is used.
spacing : str
The spacing to use. Can be ``'#'`` for spacing in mm, ``'ico#'`` for a
recursively subdivided icosahedron, or ``'oct#'`` for a recursively
subdivided octahedron (e.g., ``spacing='ico4'``). Default is 7 mm.
mindist : float | str | None
Minimum distance measof sources from inner skull surface (in mm).
If None, the MNE default value is used. If string, ``'all'``
indicates to include all points.
bem : str | None
Name of the BEM to use (e.g., ``"sample-5120-5120-5120"``). If None
(Default), the MNE default will be used.
mri : dict | path-like | None
The name of the trans file in FIF format.
If None, ``trans`` must not be None.
trans : dict | path-like | None
File name of the trans file in text format.
If None, ``mri`` must not be None.
eeg : bool
If True (Default), include EEG computations.
meg : bool
If True (Default), include MEG computations.
fixed : bool
If True, make a fixed-orientation forward solution (Default:
False). Note that fixed-orientation inverses can still be
created from free-orientation forward solutions.
grad : bool
If True, compute the gradient of the field with respect to the
dipole coordinates as well (Default: False).
mricoord : bool
If True, calculate in MRI coordinates (Default: False)
%(overwrite)s
%(subjects_dir)s
%(verbose)s
See Also
--------
make_forward_solution
Returns
-------
fwd : Forward
The generated forward solution.
"""
if not has_mne_c():
raise RuntimeError("mne command line tools could not be found")
# check for file existence
temp_dir = Path(tempfile.mkdtemp())
if fname is None:
fname = temp_dir / "temp-fwd.fif"
_check_fname(fname, overwrite)
_validate_type(subject, "str", "subject")
# check for meas to exist as string, or try to make evoked
_validate_type(meas, ("path-like", BaseRaw, BaseEpochs, Evoked), "meas")
if isinstance(meas, BaseRaw | BaseEpochs | Evoked):
meas_file = op.join(temp_dir, "info.fif")
write_info(meas_file, meas.info)
meas = meas_file
else:
meas = str(_check_fname(meas, overwrite="read", must_exist=True))
# deal with trans/mri
if mri is not None and trans is not None:
raise ValueError("trans and mri cannot both be specified")
if mri is None and trans is None:
# MNE allows this to default to a trans/mri in the subject's dir,
# but let's be safe here and force the user to pass us a trans/mri
raise ValueError("Either trans or mri must be specified")
if trans is not None:
if isinstance(trans, dict):
trans_data = deepcopy(trans)
trans = temp_dir / "trans-trans.fif"
try:
write_trans(trans, trans_data)
except Exception:
raise OSError(
"trans was a dict, but could not be "
"written to disk as a transform file"
)
elif isinstance(trans, str | Path | PathLike):
_check_fname(trans, "read", must_exist=True, name="trans")
trans = Path(trans)
else:
raise ValueError("trans must be a path or dict")
if mri is not None:
if isinstance(mri, dict):
mri_data = deepcopy(trans)
mri = temp_dir / "mri-trans.fif"
try:
write_trans(mri, mri_data)
except Exception:
raise OSError(
"mri was a dict, but could not be "
"written to disk as a transform file"
)
elif isinstance(mri, str | Path | PathLike):
_check_fname(mri, "read", must_exist=True, name="mri")
mri = Path(mri)
else:
raise ValueError("mri must be a path or dict")
# deal with meg/eeg
if not meg and not eeg:
raise ValueError("meg or eeg (or both) must be True")
if not fname.suffix == ".fif":
raise ValueError("Forward name does not end with .fif")
path = fname.parent.absolute()
fname = fname.name
# deal with mindist
if mindist is not None:
if isinstance(mindist, str):
if not mindist.lower() == "all":
raise ValueError('mindist, if string, must be "all"')
mindist = ["--all"]
else:
mindist = ["--mindist", f"{mindist:g}"]
# src, spacing, bem
for element, name, kind in zip(
(src, spacing, bem),
("src", "spacing", "bem"),
("path-like", "str", "path-like"),
):
if element is not None:
_validate_type(element, kind, name, f"{kind} or None")
# put together the actual call
cmd = [
"mne_do_forward_solution",
"--subject",
subject,
"--meas",
meas,
"--fwd",
fname,
"--destdir",
str(path),
]
if src is not None:
cmd += ["--src", src]
if spacing is not None:
if spacing.isdigit():
pass # spacing in mm
else:
# allow both "ico4" and "ico-4" style values
match = re.match(r"(oct|ico)-?(\d+)$", spacing)
if match is None:
raise ValueError(f"Invalid spacing parameter: {spacing!r}")
spacing = "-".join(match.groups())
cmd += ["--spacing", spacing]
if mindist is not None:
cmd += mindist
if bem is not None:
cmd += ["--bem", bem]
if mri is not None:
cmd += ["--mri", f"{mri.absolute()}"]
if trans is not None:
cmd += ["--trans", f"{trans.absolute()}"]
if not meg:
cmd.append("--eegonly")
if not eeg:
cmd.append("--megonly")
if fixed:
cmd.append("--fixed")
if grad:
cmd.append("--grad")
if mricoord:
cmd.append("--mricoord")
if overwrite:
cmd.append("--overwrite")
env = os.environ.copy()
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
env["SUBJECTS_DIR"] = subjects_dir
try:
logger.info(
"Running forward solution generation command with "
f"subjects_dir {subjects_dir}"
)
run_subprocess(cmd, env=env)
except Exception:
raise
else:
fwd = read_forward_solution(path / fname, verbose=False)
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
return fwd
@verbose
def average_forward_solutions(fwds, weights=None, verbose=None):
"""Average forward solutions.
Parameters
----------
fwds : list of Forward
Forward solutions to average. Each entry (dict) should be a
forward solution.
weights : array | None
Weights to apply to each forward solution in averaging. If None,
forward solutions will be equally weighted. Weights must be
non-negative, and will be adjusted to sum to one.
%(verbose)s
Returns
-------
fwd : Forward
The averaged forward solution.
"""
# check for fwds being a list
_validate_type(fwds, list, "fwds")
if not len(fwds) > 0:
raise ValueError("fwds must not be empty")
# check weights
if weights is None:
weights = np.ones(len(fwds))
weights = np.asanyarray(weights) # in case it's a list, convert it
if not np.all(weights >= 0):
raise ValueError("weights must be non-negative")
if not len(weights) == len(fwds):
raise ValueError("weights must be None or the same length as fwds")
w_sum = np.sum(weights)
if not w_sum > 0:
raise ValueError("weights cannot all be zero")
weights /= w_sum
# check our forward solutions
for fwd in fwds:
# check to make sure it's a forward solution
_validate_type(fwd, dict, "each entry in fwds", "dict")
# check to make sure the dict is actually a fwd
check_keys = [
"info",
"sol_grad",
"nchan",
"src",
"source_nn",
"sol",
"source_rr",
"source_ori",
"surf_ori",
"coord_frame",
"mri_head_t",
"nsource",
]
if not all(key in fwd for key in check_keys):
raise KeyError(
"forward solution dict does not have all standard "
"entries, cannot compute average."
)
# check forward solution compatibility
if any(
fwd["sol"][k] != fwds[0]["sol"][k] for fwd in fwds[1:] for k in ["nrow", "ncol"]
):
raise ValueError("Forward solutions have incompatible dimensions")
if any(
fwd[k] != fwds[0][k]
for fwd in fwds[1:]
for k in ["source_ori", "surf_ori", "coord_frame"]
):
raise ValueError("Forward solutions have incompatible orientations")
# actually average them (solutions and gradients)
fwd_ave = deepcopy(fwds[0])
fwd_ave["sol"]["data"] *= weights[0]
fwd_ave["_orig_sol"] *= weights[0]
for fwd, w in zip(fwds[1:], weights[1:]):
fwd_ave["sol"]["data"] += w * fwd["sol"]["data"]
fwd_ave["_orig_sol"] += w * fwd["_orig_sol"]
if fwd_ave["sol_grad"] is not None:
fwd_ave["sol_grad"]["data"] *= weights[0]
fwd_ave["_orig_sol_grad"] *= weights[0]
for fwd, w in zip(fwds[1:], weights[1:]):
fwd_ave["sol_grad"]["data"] += w * fwd["sol_grad"]["data"]
fwd_ave["_orig_sol_grad"] += w * fwd["_orig_sol_grad"]
return fwd_ave