# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# The computations in this code were primarily derived from Matti Hämäläinen's
# C code.
import os
import re
import shutil
import tempfile
from copy import deepcopy
from os import PathLike
from os import path as op
from pathlib import Path
from time import time
import numpy as np
from scipy import sparse
from .._fiff.constants import FIFF
from .._fiff.matrix import (
_read_named_matrix,
_transpose_named_matrix,
write_named_matrix,
)
from .._fiff.meas_info import (
Info,
_make_ch_names_mapping,
_read_bad_channels,
_read_extended_ch_info,
_write_bad_channels,
_write_ch_infos,
write_info,
)
from .._fiff.open import fiff_open
from .._fiff.pick import pick_channels, pick_channels_forward, pick_info, pick_types
from .._fiff.tag import find_tag, read_tag
from .._fiff.tree import dir_tree_find
from .._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_coord_trans,
write_id,
write_int,
write_string,
)
from ..epochs import BaseEpochs
from ..evoked import Evoked, EvokedArray
from ..html_templates import _get_html_template
from ..io import BaseRaw, RawArray
from ..label import Label
from ..source_estimate import _BaseSourceEstimate, _BaseVectorSourceEstimate
from ..source_space._source_space import (
SourceSpaces,
_get_src_nn,
_read_source_spaces_from_tree,
_set_source_space_vertices,
_src_kind_dict,
_write_source_spaces_to_fid,
find_source_space_hemi,
)
from ..surface import _normal_orth
from ..transforms import invert_transform, transform_surface_to, write_trans
from ..utils import (
_check_compensation_grade,
_check_fname,
_check_option,
_check_stc_units,
_import_h5io_funcs,
_on_missing,
_stamp_to_dt,
_validate_type,
check_fname,
fill_doc,
get_subjects_dir,
has_mne_c,
logger,
repr_html,
run_subprocess,
verbose,
warn,
)
class Forward(dict):
"""Forward class to represent info from forward solution.
Like :class:`mne.Info`, this data structure behaves like a dictionary.
It contains all metadata necessary for a forward solution.
.. warning::
This class should not be modified or created by users.
Forward objects should be obtained using
:func:`mne.make_forward_solution` or :func:`mne.read_forward_solution`.
Attributes
----------
ch_names : list of str
A convenience wrapper accessible as ``fwd.ch_names`` which wraps
``fwd['info']['ch_names']``.
See Also
--------
mne.make_forward_solution
mne.read_forward_solution
Notes
-----
Forward data is accessible via string keys using standard
:class:`python:dict` access (e.g., ``fwd['nsource'] == 4096``):
source_ori : int
The source orientation, either ``FIFF.FIFFV_MNE_FIXED_ORI`` or
``FIFF.FIFFV_MNE_FREE_ORI``.
coord_frame : int
The coordinate frame of the forward solution, usually
``FIFF.FIFFV_COORD_HEAD``.
nsource : int
The number of source locations.
nchan : int
The number of channels.
sol : dict
The forward solution, with entries:
``'data'`` : ndarray, shape (n_channels, nsource * n_ori)
The forward solution data. The shape will be
``(n_channels, nsource)`` for a fixed-orientation forward and
``(n_channels, nsource * 3)`` for a free-orientation forward.
``'row_names'`` : list of str
The channel names.
mri_head_t : instance of Transform
The mri ↔ head transformation that was used.
info : instance of :class:`~mne.Info`
The measurement information (with contents reduced compared to that
of the original data).
src : instance of :class:`~mne.SourceSpaces`
The source space used during forward computation. This can differ
from the original source space as:
1. Source points are removed due to proximity to (or existing
outside)
the inner skull surface.
2. The source space will be converted to the ``coord_frame`` of the
forward solution, which typically means it gets converted from
MRI to head coordinates.
source_rr : ndarray, shape (n_sources, 3)
The source locations.
source_nn : ndarray, shape (n_sources, 3)
The source normals. Will be all +Z (``(0, 0, 1.)``) for volume
source spaces. For surface source spaces, these are normal to the
cortical surface.
surf_ori : int
Whether ``sol`` is surface-oriented with the surface normal in the
Z component (``FIFF.FIFFV_MNE_FIXED_ORI``) or +Z in the given
``coord_frame`` in the Z component (``FIFF.FIFFV_MNE_FREE_ORI``).
Forward objects also have some attributes that are accessible via ``.``
access, like ``fwd.ch_names``.
"""
def copy(self):
"""Copy the Forward instance."""
return Forward(deepcopy(self))
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save the forward solution.
Parameters
----------
%(fname_fwd)s
%(overwrite)s
%(verbose)s
"""
write_forward_solution(fname, self, overwrite=overwrite)
def _get_src_type_and_ori_for_repr(self):
src_types = np.array([src["type"] for src in self["src"]])
if (src_types == "surf").all():
src_type = f"Surface with {self['nsource']} vertices"
elif (src_types == "vol").all():
src_type = f"Volume with {self['nsource']} grid points"
elif (src_types == "discrete").all():
src_type = f"Discrete with {self['nsource']} dipoles"
else:
count_string = ""
if (src_types == "surf").any():
count_string += f"{(src_types == 'surf').sum()} surface, "
if (src_types == "vol").any():
count_string += f"{(src_types == 'vol').sum()} volume, "
if (src_types == "discrete").any():
count_string += f"{(src_types == 'discrete').sum()} discrete, "
count_string = count_string.rstrip(", ")
src_type = f"Mixed ({count_string}) with {self['nsource']} vertices"
if self["source_ori"] == FIFF.FIFFV_MNE_UNKNOWN_ORI:
src_ori = "Unknown"
elif self["source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI:
src_ori = "Fixed"
elif self["source_ori"] == FIFF.FIFFV_MNE_FREE_ORI:
src_ori = "Free"
return src_type, src_ori
def __repr__(self):
"""Summarize forward info instead of printing all."""
entr = "<Forward"
nchan = len(pick_types(self["info"], meg=True, eeg=False, exclude=[]))
entr += " | " + f"MEG channels: {nchan}"
nchan = len(pick_types(self["info"], meg=False, eeg=True, exclude=[]))
entr += " | " + f"EEG channels: {nchan}"
src_type, src_ori = self._get_src_type_and_ori_for_repr()
entr += f" | Source space: {src_type}"
entr += f" | Source orientation: {src_ori}"
entr += ">"
return entr
@repr_html
def _repr_html_(self):
src_descr, src_ori = self._get_src_type_and_ori_for_repr()
t = _get_html_template("repr", "forward.html.jinja")
html = t.render(
info=self["info"],
source_space_descr=src_descr,
source_orientation=src_ori,
)
return html
@property
def ch_names(self):
return self["info"]["ch_names"]
def pick_channels(self, ch_names, ordered=False):
"""Pick channels from this forward operator.
Parameters
----------
ch_names : list of str
List of channels to include.
ordered : bool
If true (default False), treat ``include`` as an ordered list
rather than a set.
Returns
-------
fwd : instance of Forward.
The modified forward model.
Notes
-----
Operates in-place.
.. versionadded:: 0.20.0
"""
return pick_channels_forward(
self, ch_names, exclude=[], ordered=ordered, copy=False, verbose=False
)
def _block_diag(A, n):
"""Construct a block diagonal from a packed structure.
You have to try it on a matrix to see what it's doing.
If A is not sparse, then returns a sparse block diagonal "bd",
diagonalized from the
elements in "A".
"A" is ma x na, comprising bdn=(na/"n") blocks of submatrices.
Each submatrix is ma x "n", and these submatrices are
placed down the diagonal of the matrix.
If A is already sparse, then the operation is reversed, yielding
a block
row matrix, where each set of n columns corresponds to a block element
from the block diagonal.
Parameters
----------
A : array
The matrix
n : int
The block size
Returns
-------
bd : scipy.sparse.csc_array
The block diagonal matrix
"""
if sparse.issparse(A): # then make block sparse
raise NotImplementedError("sparse reversal not implemented yet")
ma, na = A.shape
bdn = na // int(n) # number of submatrices
if na % n > 0:
raise ValueError("Width of matrix must be a multiple of n")
tmp = np.arange(ma * bdn, dtype=np.int64).reshape(bdn, ma)
tmp = np.tile(tmp, (1, n))
ii = tmp.ravel()
jj = np.arange(na, dtype=np.int64)[None, :]
jj = jj * np.ones(ma, dtype=np.int64)[:, None]
jj = jj.T.ravel() # column indices foreach sparse bd
bd = sparse.coo_array((A.T.ravel(), np.c_[ii, jj].T)).tocsc()
return bd
def _get_tag_int(fid, node, name, id_):
"""Check we have an appropriate tag."""
tag = find_tag(fid, node, id_)
if tag is None:
fid.close()
raise ValueError(name + " tag not found")
return int(tag.data.item())
def _read_one(fid, node):
"""Read all interesting stuff for one forward solution."""
# This function assumes the fid is open as a context manager
if node is None:
return None
one = Forward()
one["source_ori"] = _get_tag_int(
fid, node, "Source orientation", FIFF.FIFF_MNE_SOURCE_ORIENTATION
)
one["coord_frame"] = _get_tag_int(
fid, node, "Coordinate frame", FIFF.FIFF_MNE_COORD_FRAME
)
one["nsource"] = _get_tag_int(
fid, node, "Number of sources", FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS
)
one["nchan"] = _get_tag_int(fid, node, "Number of channels", FIFF.FIFF_NCHAN)
try:
one["sol"] = _read_named_matrix(
fid, node, FIFF.FIFF_MNE_FORWARD_SOLUTION, transpose=True
)
one["_orig_sol"] = one["sol"]["data"].copy()
except Exception:
logger.error("Forward solution data not found")
raise
try:
fwd_type = FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD
one["sol_grad"] = _read_named_matrix(fid, node, fwd_type, transpose=True)
one["_orig_sol_grad"] = one["sol_grad"]["data"].copy()
except Exception:
one["sol_grad"] = None
if one["sol"]["data"].shape[0] != one["nchan"] or (
one["sol"]["data"].shape[1] != one["nsource"]
and one["sol"]["data"].shape[1] != 3 * one["nsource"]
):
raise ValueError("Forward solution matrix has wrong dimensions")
if one["sol_grad"] is not None:
if one["sol_grad"]["data"].shape[0] != one["nchan"] or (
one["sol_grad"]["data"].shape[1] != 3 * one["nsource"]
and one["sol_grad"]["data"].shape[1] != 3 * 3 * one["nsource"]
):
raise ValueError("Forward solution gradient matrix has wrong dimensions")
return one
@fill_doc
def _read_forward_meas_info(tree, fid):
"""Read light measurement info from forward operator.
Parameters
----------
tree : tree
FIF tree structure.
fid : file id
The file id.
Returns
-------
%(info_not_none)s
"""
# This function assumes fid is being used as a context manager
info = Info()
info._unlocked = True
# Information from the MRI file
parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
raise ValueError("No parent MEG information found in operator")
parent_mri = parent_mri[0]
tag = find_tag(fid, parent_mri, FIFF.FIFF_MNE_FILE_NAME)
info["mri_file"] = tag.data if tag is not None else None
tag = find_tag(fid, parent_mri, FIFF.FIFF_PARENT_FILE_ID)
info["mri_id"] = tag.data if tag is not None else None
# Information from the MEG file
parent_meg = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
if len(parent_meg) == 0:
raise ValueError("No parent MEG information found in operator")
parent_meg = parent_meg[0]
tag = find_tag(fid, parent_meg, FIFF.FIFF_MNE_FILE_NAME)
info["meas_file"] = tag.data if tag is not None else None
tag = find_tag(fid, parent_meg, FIFF.FIFF_PARENT_FILE_ID)
info["meas_id"] = tag.data if tag is not None else None
# Add channel information
info["chs"] = chs = list()
for k in range(parent_meg["nent"]):
kind = parent_meg["directory"][k].kind
pos = parent_meg["directory"][k].pos
if kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
ch_names_mapping = _read_extended_ch_info(chs, parent_meg, fid)
info._update_redundant()
# Get the MRI <-> head coordinate transformation
tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
coord_head = FIFF.FIFFV_COORD_HEAD
coord_mri = FIFF.FIFFV_COORD_MRI
coord_device = FIFF.FIFFV_COORD_DEVICE
coord_ctf_head = FIFF.FIFFV_MNE_COORD_CTF_HEAD
if tag is None:
raise ValueError("MRI/head coordinate transformation not found")
cand = tag.data
if cand["from"] == coord_mri and cand["to"] == coord_head:
info["mri_head_t"] = cand
else:
raise ValueError("MRI/head coordinate transformation not found")
# Get the MEG device <-> head coordinate transformation
tag = find_tag(fid, parent_meg, FIFF.FIFF_COORD_TRANS)
if tag is None:
raise ValueError("MEG/head coordinate transformation not found")
cand = tag.data
if cand["from"] == coord_device and cand["to"] == coord_head:
info["dev_head_t"] = cand
elif cand["from"] == coord_ctf_head and cand["to"] == coord_head:
info["ctf_head_t"] = cand
else:
raise ValueError("MEG/head coordinate transformation not found")
bads = _read_bad_channels(fid, parent_meg, ch_names_mapping=ch_names_mapping)
# clean up our bad list, old versions could have non-existent bads
info["bads"] = [bad for bad in bads if bad in info["ch_names"]]
# Check if a custom reference has been applied
tag = find_tag(fid, parent_mri, FIFF.FIFF_MNE_CUSTOM_REF)
if tag is None:
tag = find_tag(fid, parent_mri, 236) # Constant 236 used before v0.11
info["custom_ref_applied"] = int(tag.data.item()) if tag is not None else False
info._unlocked = False
return info
def _subject_from_forward(forward):
"""Get subject id from inverse operator."""
return forward["src"]._subject
# This sets the forward solution order (and gives human-readable names)
_FWD_ORDER = dict(
meg="MEG",
eeg="EEG",
)
@verbose
def _merge_fwds(fwds, *, verbose=None):
"""Merge loaded forward dicts into one dict."""
fwd = None
first_key = None
combined = list()
for key in _FWD_ORDER:
if key not in fwds:
continue
if fwd is None: # assign
fwd = fwds[key]
first_key = key
combined.append(_FWD_ORDER[key])
continue
a = fwd
b = fwds[key]
a_kind, b_kind = _FWD_ORDER[first_key], _FWD_ORDER[key]
combined.append(b_kind)
if (
a["sol"]["data"].shape[1] != b["sol"]["data"].shape[1]
or a["source_ori"] != b["source_ori"]
or a["nsource"] != b["nsource"]
or a["coord_frame"] != b["coord_frame"]
):
raise ValueError(
f"The {a_kind} and {b_kind} forward solutions do not match"
)
for k in ("sol", "sol_grad"):
if a[k] is None:
continue
a[k]["data"] = np.r_[a[k]["data"], b[k]["data"]]
a[f"_orig_{k}"] = np.r_[a[f"_orig_{k}"], b[f"_orig_{k}"]]
a[k]["nrow"] = a[k]["nrow"] + b[k]["nrow"]
a[k]["row_names"] = a[k]["row_names"] + b[k]["row_names"]
a["nchan"] = a["nchan"] + b["nchan"]
if len(fwds) > 1:
logger.info(f" Forward solutions combined: {', '.join(combined)}")
return fwd
@verbose
def read_forward_solution(fname, include=(), exclude=(), *, ordered=True, verbose=None):
"""Read a forward solution a.k.a. lead field.
Parameters
----------
fname : path-like
The file name, which should end with ``-fwd.fif``, ``-fwd.fif.gz``,
``_fwd.fif``, ``_fwd.fif.gz``, ``-fwd.h5``, or ``_fwd.h5``.
include : list, optional
List of names of channels to include. If empty all channels
are included.
exclude : list, optional
List of names of channels to exclude. If empty include all channels.
%(ordered)s
%(verbose)s
Returns
-------
fwd : instance of Forward
The forward solution.
See Also
--------
write_forward_solution, make_forward_solution
Notes
-----
Forward solutions, which are derived from an original forward solution with
free orientation, are always stored on disk as forward solution with free
orientation in X/Y/Z RAS coordinates. To apply any transformation to the
forward operator (surface orientation, fixed orientation) please apply
:func:`convert_forward_solution` after reading the forward solution with
:func:`read_forward_solution`.
Forward solutions, which are derived from an original forward solution with
fixed orientation, are stored on disk as forward solution with fixed
surface-based orientations. Please note that the transformation to
surface-based, fixed orientation cannot be reverted after loading the
forward solution with :func:`read_forward_solution`.
"""
check_fname(
fname,
"forward",
("-fwd.fif", "-fwd.fif.gz", "_fwd.fif", "_fwd.fif.gz", "-fwd.h5", "_fwd.h5"),
)
fname = _check_fname(fname=fname, must_exist=True, overwrite="read")
# Open the file, create directory
logger.info(f"Reading forward solution from {fname}...")
if fname.suffix == ".h5":
return _read_forward_hdf5(fname)
f, tree, _ = fiff_open(fname)
with f as fid:
# Find all forward solutions
fwds = dir_tree_find(tree, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
if len(fwds) == 0:
raise ValueError(f"No forward solutions in {fname}")
# Parent MRI data
parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
raise ValueError(f"No parent MRI information in {fname}")
parent_mri = parent_mri[0]
src = _read_source_spaces_from_tree(fid, tree, patch_stats=False)
for s in src:
s["id"] = find_source_space_hemi(s)
fwd = None
# Locate and read the forward solutions
megnode = None
eegnode = None
for k in range(len(fwds)):
tag = find_tag(fid, fwds[k], FIFF.FIFF_MNE_INCLUDED_METHODS)
if tag is None:
raise ValueError("Methods not listed for one of the forward solutions")
if tag.data == FIFF.FIFFV_MNE_MEG:
megnode = fwds[k]
elif tag.data == FIFF.FIFFV_MNE_EEG:
eegnode = fwds[k]
fwds = dict()
megfwd = _read_one(fid, megnode)
if megfwd is not None:
fwds["meg"] = megfwd
if is_fixed_orient(megfwd):
ori = "fixed"
else:
ori = "free"
logger.info(
" Read MEG forward solution (%d sources, "
"%d channels, %s orientations)",
megfwd["nsource"],
megfwd["nchan"],
ori,
)
del megfwd
eegfwd = _read_one(fid, eegnode)
if eegfwd is not None:
fwds["eeg"] = eegfwd
if is_fixed_orient(eegfwd):
ori = "fixed"
else:
ori = "free"
logger.info(
" Read EEG forward solution (%d sources, "
"%d channels, %s orientations)",
eegfwd["nsource"],
eegfwd["nchan"],
ori,
)
del eegfwd
fwd = _merge_fwds(fwds)
del fwds
# Get the MRI <-> head coordinate transformation
tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
if tag is None:
raise ValueError("MRI/head coordinate transformation not found")
mri_head_t = tag.data
if (
mri_head_t["from"] != FIFF.FIFFV_COORD_MRI
or mri_head_t["to"] != FIFF.FIFFV_COORD_HEAD
):
mri_head_t = invert_transform(mri_head_t)
if (
mri_head_t["from"] != FIFF.FIFFV_COORD_MRI
or mri_head_t["to"] != FIFF.FIFFV_COORD_HEAD
):
fid.close()
raise ValueError("MRI/head coordinate transformation not found")
fwd["mri_head_t"] = mri_head_t
#
# get parent MEG info
#
fwd["info"] = _read_forward_meas_info(tree, fid)
# MNE environment
parent_env = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
if len(parent_env) > 0:
parent_env = parent_env[0]
tag = find_tag(fid, parent_env, FIFF.FIFF_MNE_ENV_WORKING_DIR)
if tag is not None:
with fwd["info"]._unlock():
fwd["info"]["working_dir"] = tag.data
tag = find_tag(fid, parent_env, FIFF.FIFF_MNE_ENV_COMMAND_LINE)
if tag is not None:
with fwd["info"]._unlock():
fwd["info"]["command_line"] = tag.data
# Transform the source spaces to the correct coordinate frame
# if necessary
# Make sure forward solution is in either the MRI or HEAD coordinate frame
if fwd["coord_frame"] not in (FIFF.FIFFV_COORD_MRI, FIFF.FIFFV_COORD_HEAD):
raise ValueError(
"Only forward solutions computed in MRI or head coordinates are acceptable"
)
# Transform each source space to the HEAD or MRI coordinate frame,
# depending on the coordinate frame of the forward solution
# NOTE: the function transform_surface_to will also work on discrete and
# volume sources
nuse = 0
for s in src:
try:
s = transform_surface_to(s, fwd["coord_frame"], mri_head_t)
except Exception as inst:
raise ValueError(f"Could not transform source space ({inst})")
nuse += s["nuse"]
# Make sure the number of sources match after transformation
if nuse != fwd["nsource"]:
raise ValueError("Source spaces do not match the forward solution.")
logger.info(
" Source spaces transformed to the forward solution coordinate frame"
)
fwd["src"] = src
# Handle the source locations and orientations
fwd["source_rr"] = np.concatenate([ss["rr"][ss["vertno"], :] for ss in src], axis=0)
# Store original source orientations
fwd["_orig_source_ori"] = fwd["source_ori"]
# Deal with include and exclude
pick_channels_forward(fwd, include=include, exclude=exclude, copy=False)
if is_fixed_orient(fwd, orig=True):
fwd["source_nn"] = np.concatenate(
[_src["nn"][_src["vertno"], :] for _src in fwd["src"]], axis=0
)
fwd["source_ori"] = FIFF.FIFFV_MNE_FIXED_ORI
fwd["surf_ori"] = True
else:
fwd["source_nn"] = np.kron(np.ones((fwd["nsource"], 1)), np.eye(3))
fwd["source_ori"] = FIFF.FIFFV_MNE_FREE_ORI
fwd["surf_ori"] = False
return Forward(fwd)
@verbose
def convert_forward_solution(
fwd, surf_ori=False, force_fixed=False, copy=True, use_cps=True, *, verbose=None
):
"""Convert forward solution between different source orientations.
Parameters
----------
fwd : Forward
The forward solution to modify.
surf_ori : bool, optional (default False)
Use surface-based source coordinate system? Note that force_fixed=True
implies surf_ori=True.
force_fixed : bool, optional (default False)
If True, force fixed source orientation mode.
copy : bool
Whether to return a new instance or modify in place.
%(use_cps)s
%(verbose)s
Returns
-------
fwd : Forward
The modified forward solution.
"""
fwd = fwd.copy() if copy else fwd
if force_fixed is True:
surf_ori = True
if any([src["type"] == "vol" for src in fwd["src"]]) and force_fixed:
raise ValueError(
"Forward operator was generated with sources from a "
"volume source space. Conversion to fixed orientation is not "
"possible. Consider using a discrete source space if you have "
"meaningful normal orientations."
)
if surf_ori and use_cps:
if any(s.get("patch_inds") is not None for s in fwd["src"]):
logger.info(
" Average patch normals will be employed in "
"the rotation to the local surface coordinates.."
".."
)
else:
use_cps = False
logger.info(
" No patch info available. The standard source "
"space normals will be employed in the rotation "
"to the local surface coordinates...."
)
# We need to change these entries (only):
# 1. source_nn
# 2. sol['data']
# 3. sol['ncol']
# 4. sol_grad['data']
# 5. sol_grad['ncol']
# 6. source_ori
if is_fixed_orient(fwd, orig=True) or (force_fixed and not use_cps):
# Fixed
fwd["source_nn"] = np.concatenate(
[_get_src_nn(s, use_cps) for s in fwd["src"]], axis=0
)
if not is_fixed_orient(fwd, orig=True):
logger.info(
" Changing to fixed-orientation forward "
"solution with surface-based source orientations..."
)
fix_rot = _block_diag(fwd["source_nn"].T, 1)
# newer versions of numpy require explicit casting here, so *= no
# longer works
fwd["sol"]["data"] = (fwd["_orig_sol"] @ fix_rot).astype("float32")
fwd["sol"]["ncol"] = fwd["nsource"]
if fwd["sol_grad"] is not None:
x = sparse.block_diag([fix_rot] * 3)
fwd["sol_grad"]["data"] = fwd["_orig_sol_grad"] @ x
fwd["sol_grad"]["ncol"] = 3 * fwd["nsource"]
fwd["source_ori"] = FIFF.FIFFV_MNE_FIXED_ORI
fwd["surf_ori"] = True
elif surf_ori: # Free, surf-oriented
# Rotate the local source coordinate systems
fwd["source_nn"] = np.kron(np.ones((fwd["nsource"], 1)), np.eye(3))
logger.info(" Converting to surface-based source orientations...")
# Actually determine the source orientations
pp = 0
for s in fwd["src"]:
if s["type"] in ["surf", "discrete"]:
nn = _get_src_nn(s, use_cps)
stop = pp + 3 * s["nuse"]
fwd["source_nn"][pp:stop] = _normal_orth(nn).reshape(-1, 3)
pp = stop
del nn
else:
pp += 3 * s["nuse"]
# Rotate the solution components as well
if force_fixed:
fwd["source_nn"] = fwd["source_nn"][2::3, :]
fix_rot = _block_diag(fwd["source_nn"].T, 1)
# newer versions of numpy require explicit casting here, so *= no
# longer works
fwd["sol"]["data"] = (fwd["_orig_sol"] @ fix_rot).astype("float32")
fwd["sol"]["ncol"] = fwd["nsource"]
if fwd["sol_grad"] is not None:
x = sparse.block_diag([fix_rot] * 3)
fwd["sol_grad"]["data"] = fwd["_orig_sol_grad"] @ x
fwd["sol_grad"]["ncol"] = 3 * fwd["nsource"]
fwd["source_ori"] = FIFF.FIFFV_MNE_FIXED_ORI
fwd["surf_ori"] = True
else:
surf_rot = _block_diag(fwd["source_nn"].T, 3)
fwd["sol"]["data"] = fwd["_orig_sol"] @ surf_rot
fwd["sol"]["ncol"] = 3 * fwd["nsource"]
if fwd["sol_grad"] is not None:
x = sparse.block_diag([surf_rot] * 3)
fwd["sol_grad"]["data"] = fwd["_orig_sol_grad"] @ x
fwd["sol_grad"]["ncol"] = 9 * fwd["nsource"]
fwd["source_ori"] = FIFF.FIFFV_MNE_FREE_ORI
fwd["surf_ori"] = True
else: # Free, cartesian
logger.info(" Cartesian source orientations...")
fwd["source_nn"] = np.tile(np.eye(3), (fwd["nsource"], 1))
fwd["sol"]["data"] = fwd["_orig_sol"].copy()
fwd["sol"]["ncol"] = 3 * fwd["nsource"]
if fwd["sol_grad"] is not None:
fwd["sol_grad"]["data"] = fwd["_orig_sol_grad"].copy()
fwd["sol_grad"]["ncol"] = 9 * fwd["nsource"]
fwd["source_ori"] = FIFF.FIFFV_MNE_FREE_ORI
fwd["surf_ori"] = False
logger.info(" [done]")
return fwd
@verbose
def write_forward_solution(fname, fwd, overwrite=False, verbose=None):
"""Write forward solution to a file.
Parameters
----------
%(fname_fwd)s
fwd : Forward
Forward solution.
%(overwrite)s
%(verbose)s
See Also
--------
read_forward_solution
Notes
-----
Forward solutions, which are derived from an original forward solution with
free orientation, are always stored on disk as forward solution with free
orientation in X/Y/Z RAS coordinates. Transformations (surface orientation,
fixed orientation) will be reverted. To reapply any transformation to the
forward operator please apply :func:`convert_forward_solution` after
reading the forward solution with :func:`read_forward_solution`.
Forward solutions, which are derived from an original forward solution with
fixed orientation, are stored on disk as forward solution with fixed
surface-based orientations. Please note that the transformation to
surface-based, fixed orientation cannot be reverted after loading the
forward solution with :func:`read_forward_solution`.
"""
check_fname(
fname,
"forward",
("-fwd.fif", "-fwd.fif.gz", "_fwd.fif", "_fwd.fif.gz", "-fwd.h5", "_fwd.h5"),
)
# check for file existence and expand `~` if present
fname = _check_fname(fname, overwrite)
if fname.suffix == ".h5":
_write_forward_hdf5(fname, fwd)
else:
with start_and_end_file(fname) as fid:
_write_forward_solution(fid, fwd)
def _write_forward_hdf5(fname, fwd):
_, write_hdf5 = _import_h5io_funcs()
write_hdf5(fname, dict(fwd=fwd), overwrite=True)
def _read_forward_hdf5(fname):
read_hdf5, _ = _import_h5io_funcs()
fwd = Forward(read_hdf5(fname)["fwd"])
fwd["info"] = Info(fwd["info"])
fwd["src"] = SourceSpaces(fwd["src"])
return fwd
def _write_forward_solution(fid, fwd):
start_block(fid, FIFF.FIFFB_MNE)
#
# MNE env
#
start_block(fid, FIFF.FIFFB_MNE_ENV)
write_id(fid, FIFF.FIFF_BLOCK_ID)
data = fwd["info"].get("working_dir", None)
if data is not None:
write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
data = fwd["info"].get("command_line", None)
if data is not None:
write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)
end_block(fid, FIFF.FIFFB_MNE_ENV)
#
# Information from the MRI file
#
start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, fwd["info"]["mri_file"])
if fwd["info"]["mri_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_FILE_ID, fwd["info"]["mri_id"])
# store the MRI to HEAD transform in MRI file
write_coord_trans(fid, fwd["info"]["mri_head_t"])
end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
# write measurement info
write_forward_meas_info(fid, fwd["info"])
# invert our original source space transform
src = list()
for s in fwd["src"]:
s = deepcopy(s)
try:
# returns source space to original coordinate frame
# usually MRI
s = transform_surface_to(s, fwd["mri_head_t"]["from"], fwd["mri_head_t"])
except Exception as inst:
raise ValueError(f"Could not transform source space ({inst})")
src.append(s)
#
# Write the source spaces (again)
#
_write_source_spaces_to_fid(fid, src)
n_vert = sum([ss["nuse"] for ss in src])
if fwd["_orig_source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI:
n_col = n_vert
else:
n_col = 3 * n_vert
# Undo transformations
sol = fwd["_orig_sol"].copy()
if fwd["sol_grad"] is not None:
sol_grad = fwd["_orig_sol_grad"].copy()
else:
sol_grad = None
if fwd["surf_ori"] is True:
if fwd["_orig_source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI:
warn(
"The forward solution, which is stored on disk now, is based "
"on a forward solution with fixed orientation. Please note "
"that the transformation to surface-based, fixed orientation "
"cannot be reverted after loading the forward solution with "
"read_forward_solution.",
RuntimeWarning,
)
else:
warn(
"This forward solution is based on a forward solution with "
"free orientation. The original forward solution is stored "
"on disk in X/Y/Z RAS coordinates. Any transformation "
"(surface orientation or fixed orientation) will be "
"reverted. To reapply any transformation to the forward "
"operator please apply convert_forward_solution after "
"reading the forward solution with read_forward_solution.",
RuntimeWarning,
)
#
# MEG forward solution
#
picks_meg = pick_types(fwd["info"], meg=True, eeg=False, ref_meg=False, exclude=[])
picks_eeg = pick_types(fwd["info"], meg=False, eeg=True, ref_meg=False, exclude=[])
n_meg = len(picks_meg)
n_eeg = len(picks_eeg)
row_names_meg = [fwd["sol"]["row_names"][p] for p in picks_meg]
row_names_eeg = [fwd["sol"]["row_names"][p] for p in picks_eeg]
if n_meg > 0:
meg_solution = dict(
data=sol[picks_meg],
nrow=n_meg,
ncol=n_col,
row_names=row_names_meg,
col_names=[],
)
_transpose_named_matrix(meg_solution)
start_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, FIFF.FIFFV_MNE_MEG)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, fwd["coord_frame"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION, fwd["_orig_source_ori"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, n_vert)
write_int(fid, FIFF.FIFF_NCHAN, n_meg)
write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION, meg_solution)
if sol_grad is not None:
meg_solution_grad = dict(
data=sol_grad[picks_meg],
nrow=n_meg,
ncol=n_col * 3,
row_names=row_names_meg,
col_names=[],
)
_transpose_named_matrix(meg_solution_grad)
write_named_matrix(
fid, FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD, meg_solution_grad
)
end_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
#
# EEG forward solution
#
if n_eeg > 0:
eeg_solution = dict(
data=sol[picks_eeg],
nrow=n_eeg,
ncol=n_col,
row_names=row_names_eeg,
col_names=[],
)
_transpose_named_matrix(eeg_solution)
start_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, FIFF.FIFFV_MNE_EEG)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, fwd["coord_frame"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION, fwd["_orig_source_ori"])
write_int(fid, FIFF.FIFF_NCHAN, n_eeg)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, n_vert)
write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION, eeg_solution)
if sol_grad is not None:
eeg_solution_grad = dict(
data=sol_grad[picks_eeg],
nrow=n_eeg,
ncol=n_col * 3,
row_names=row_names_eeg,
col_names=[],
)
_transpose_named_matrix(eeg_solution_grad)
write_named_matrix(
fid, FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD, eeg_solution_grad
)
end_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
end_block(fid, FIFF.FIFFB_MNE)
def is_fixed_orient(forward, orig=False):
"""Check if the forward operator is fixed orientation.
Parameters
----------
forward : instance of Forward
The forward.
orig : bool
If True, consider the original source orientation.
If False (default), consider the current source orientation.
Returns
-------
fixed_ori : bool
Whether or not it is fixed orientation.
"""
if orig: # if we want to know about the original version
fixed_ori = forward["_orig_source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI
else: # most of the time we want to know about the current version
fixed_ori = forward["source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI
return fixed_ori
@fill_doc
def write_forward_meas_info(fid, info):
"""Write measurement info stored in forward solution.
Parameters
----------
fid : file id
The file id
%(info_not_none)s
"""
info._check_consistency()
#
# Information from the MEG file
#
start_block(fid, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, info["meas_file"])
if info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info["meas_id"])
# get transformation from CTF and DEVICE to HEAD coordinate frame
meg_head_t = info.get("dev_head_t", info.get("ctf_head_t"))
if meg_head_t is None:
fid.close()
raise ValueError("Head<-->sensor transform not found")
write_coord_trans(fid, meg_head_t)
ch_names_mapping = dict()
if "chs" in info:
# Channel information
ch_names_mapping = _make_ch_names_mapping(info["chs"])
write_int(fid, FIFF.FIFF_NCHAN, len(info["chs"]))
_write_ch_infos(fid, info["chs"], False, ch_names_mapping)
if "bads" in info and len(info["bads"]) > 0:
# Bad channels
_write_bad_channels(fid, info["bads"], ch_names_mapping)
end_block(fid, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
def _select_orient_forward(forward, info, noise_cov=None, copy=True):
"""Prepare forward solution for inverse solvers."""
# fwd['sol']['row_names'] may be different order from fwd['info']['chs']
fwd_sol_ch_names = forward["sol"]["row_names"]
all_ch_names = set(fwd_sol_ch_names)
all_bads = set(info["bads"])
if noise_cov is not None:
all_ch_names &= set(noise_cov["names"])
all_bads |= set(noise_cov["bads"])
else:
noise_cov = dict(bads=info["bads"])
ch_names = [
c["ch_name"]
for c in info["chs"]
if c["ch_name"] not in all_bads and c["ch_name"] in all_ch_names
]
if not len(info["bads"]) == len(noise_cov["bads"]) or not all(
b in noise_cov["bads"] for b in info["bads"]
):
logger.info(
'info["bads"] and noise_cov["bads"] do not match, '
"excluding bad channels from both"
)
# check the compensation grade
_check_compensation_grade(forward["info"], info, "forward")
n_chan = len(ch_names)
logger.info("Computing inverse operator with %d channels.", n_chan)
forward = pick_channels_forward(forward, ch_names, ordered=True, copy=copy)
info_idx = [info["ch_names"].index(name) for name in ch_names]
info_picked = pick_info(info, info_idx)
forward["info"]._check_consistency()
info_picked._check_consistency()
return forward, info_picked
def _triage_loose(src, loose, fixed="auto"):
_validate_type(loose, (str, dict, "numeric"), "loose")
_validate_type(fixed, (str, bool), "fixed")
orig_loose = loose
if isinstance(loose, str):
_check_option("loose", loose, ("auto",))
if fixed is True:
loose = 0.0
else: # False or auto
loose = 0.2 if src.kind == "surface" else 1.0
src_types = set(_src_kind_dict[s["type"]] for s in src)
if not isinstance(loose, dict):
loose = float(loose)
loose = {key: loose for key in src_types}
loose_keys = set(loose.keys())
if loose_keys != src_types:
raise ValueError(
f"loose, if dict, must have keys {sorted(src_types)} to match the "
f"source space, got {sorted(loose_keys)}"
)
# if fixed is auto it can be ignored, if it's False it can be ignored,
# only really need to care about fixed=True
if fixed is True:
if not all(v == 0.0 for v in loose.values()):
raise ValueError(
f'When using fixed=True, loose must be 0. or "auto", got {orig_loose}'
)
elif fixed is False:
if any(v == 0.0 for v in loose.values()):
raise ValueError(
'If loose==0., then fixed must be True or "auto", got False'
)
del fixed
for key, this_loose in loose.items():
if key not in ("surface", "discrete") and this_loose != 1:
raise ValueError(
'loose parameter has to be 1 or "auto" for non-surface/'
f'discrete source spaces, got loose["{key}"] = {this_loose}'
)
if not 0 <= this_loose <= 1:
raise ValueError(f"loose ({key}) must be between 0 and 1, got {this_loose}")
return loose
@verbose
def compute_orient_prior(forward, loose="auto", verbose=None):
"""Compute orientation prior.
Parameters
----------
forward : instance of Forward
Forward operator.
%(loose)s
%(verbose)s
Returns
-------
orient_prior : ndarray, shape (n_sources,)
Orientation priors.
See Also
--------
compute_depth_prior
"""
_validate_type(forward, Forward, "forward")
n_sources = forward["sol"]["data"].shape[1]
loose = _triage_loose(forward["src"], loose)
orient_prior = np.ones(n_sources, dtype=np.float64)
if is_fixed_orient(forward):
if any(v > 0.0 for v in loose.values()):
raise ValueError(
"loose must be 0. with forward operator "
f"with fixed orientation, got {loose}"
)
return orient_prior
if all(v == 1.0 for v in loose.values()):
return orient_prior
# We actually need non-unity prior, compute it for each source space
# separately
if not forward["surf_ori"]:
raise ValueError(
"Forward operator is not oriented in surface "
"coordinates. loose parameter should be 1. "
f"not {loose}."
)
start = 0
logged = dict()
for s in forward["src"]:
this_type = _src_kind_dict[s["type"]]
use_loose = loose[this_type]
if not logged.get(this_type):
if use_loose == 1.0:
name = "free"
else:
name = "fixed" if use_loose == 0.0 else "loose"
logger.info(
f"Applying {name.ljust(5)} dipole orientations to "
f"{this_type.ljust(7)} source spaces: {use_loose}"
)
logged[this_type] = True
stop = start + 3 * s["nuse"]
orient_prior[start:stop:3] *= use_loose
orient_prior[start + 1 : stop : 3] *= use_loose
start = stop
return orient_prior
def _restrict_gain_matrix(G, info):
"""Restrict gain matrix entries for optimal depth weighting."""
# Figure out which ones have been used
if len(info["chs"]) != G.shape[0]:
raise ValueError(
f'G.shape[0] ({G.shape[0]}) and length of info["chs"] ({len(info["chs"])}) '
"do not match."
)
for meg, eeg, kind in (
("grad", False, "planar"),
("mag", False, "magnetometer or axial gradiometer"),
(False, True, "EEG"),
):
sel = pick_types(info, meg=meg, eeg=eeg, ref_meg=False, exclude=[])
if len(sel) > 0:
logger.info(" %d %s channels", len(sel), kind)
break
else:
warn("Could not find MEG or EEG channels to limit depth channels")
sel = slice(None)
return G[sel]
@verbose
def compute_depth_prior(
forward,
info,
exp=0.8,
limit=10.0,
limit_depth_chs=False,
combine_xyz="spectral",
noise_cov=None,
rank=None,
verbose=None,
):
"""Compute depth prior for depth weighting.
Parameters
----------
forward : instance of Forward
The forward solution.
%(info_not_none)s
exp : float
Exponent for the depth weighting, must be between 0 and 1.
limit : float | None
The upper bound on depth weighting.
Can be None to be bounded by the largest finite prior.
limit_depth_chs : bool | 'whiten'
How to deal with multiple channel types in depth weighting.
The default is True, which whitens based on the source sensitivity
of the highest-SNR channel type. See Notes for details.
.. versionchanged:: 0.18
Added the "whiten" option.
combine_xyz : 'spectral' | 'fro'
When a loose (or free) orientation is used, how the depth weighting
for each triplet should be calculated.
If 'spectral', use the squared spectral norm of Gk.
If 'fro', use the squared Frobenius norm of Gk.
.. versionadded:: 0.18
noise_cov : instance of Covariance | None
The noise covariance to use to whiten the gain matrix when
``limit_depth_chs='whiten'``.
.. versionadded:: 0.18
%(rank_none)s
.. versionadded:: 0.18
%(verbose)s
Returns
-------
depth_prior : ndarray, shape (n_vertices,)
The depth prior.
See Also
--------
compute_orient_prior
Notes
-----
The defaults used by the minimum norm code and sparse solvers differ.
In particular, the values for MNE are::
compute_depth_prior(..., limit=10., limit_depth_chs=True,
combine_xyz='spectral')
In sparse solvers and LCMV, the values are::
compute_depth_prior(..., limit=None, limit_depth_chs='whiten',
combine_xyz='fro')
The ``limit_depth_chs`` argument can take the following values:
* :data:`python:True` (default)
Use only grad channels in depth weighting (equivalent to MNE C
minimum-norm code). If grad channels aren't present, only mag
channels will be used (if no mag, then eeg). This makes the depth
prior dependent only on the sensor geometry (and relationship
to the sources).
* ``'whiten'``
Compute a whitener and apply it to the gain matrix before computing
the depth prior. In this case ``noise_cov`` must not be None.
Whitening the gain matrix makes the depth prior
depend on both sensor geometry and the data of interest captured
by the noise covariance (e.g., projections, SNR).
.. versionadded:: 0.18
* :data:`python:False`
Use all channels. Not recommended since the depth weighting will be
biased toward whichever channel type has the largest values in
SI units (such as EEG being orders of magnitude larger than MEG).
"""
from ..cov import Covariance, compute_whitener
_validate_type(forward, Forward, "forward")
patch_areas = forward.get("patch_areas", None)
is_fixed_ori = is_fixed_orient(forward)
G = forward["sol"]["data"]
logger.info("Creating the depth weighting matrix...")
_validate_type(noise_cov, (Covariance, None), "noise_cov", "Covariance or None")
_validate_type(limit_depth_chs, (str, bool), "limit_depth_chs")
if isinstance(limit_depth_chs, str):
if limit_depth_chs != "whiten":
raise ValueError(
f'limit_depth_chs, if str, must be "whiten", got {limit_depth_chs}'
)
if not isinstance(noise_cov, Covariance):
raise ValueError(
'With limit_depth_chs="whiten", noise_cov must be'
f" a Covariance, got {type(noise_cov)}"
)
if combine_xyz is not False: # private / expert option
_check_option("combine_xyz", combine_xyz, ("fro", "spectral"))
# If possible, pick best depth-weighting channels
if limit_depth_chs is True:
G = _restrict_gain_matrix(G, info)
elif limit_depth_chs == "whiten":
whitener, _ = compute_whitener(
noise_cov, info, pca=True, rank=rank, verbose=False
)
G = np.dot(whitener, G)
# Compute the gain matrix
if is_fixed_ori or combine_xyz in ("fro", False):
d = np.sum(G**2, axis=0)
if not (is_fixed_ori or combine_xyz is False):
d = d.reshape(-1, 3).sum(axis=1)
# Spherical leadfield can be zero at the center
d[d == 0.0] = np.min(d[d != 0.0])
else: # 'spectral'
# n_pos = G.shape[1] // 3
# The following is equivalent to this, but 4-10x faster
# d = np.zeros(n_pos)
# for k in range(n_pos):
# Gk = G[:, 3 * k:3 * (k + 1)]
# x = np.dot(Gk.T, Gk)
# d[k] = linalg.svdvals(x)[0]
G.shape = (G.shape[0], -1, 3)
d = np.linalg.norm(
np.einsum("svj,svk->vjk", G, G), # vector dot prods
ord=2, # ord=2 spectral (largest s.v.)
axis=(1, 2),
)
G.shape = (G.shape[0], -1)
# XXX Currently the fwd solns never have "patch_areas" defined
if patch_areas is not None:
if not is_fixed_ori and combine_xyz is False:
patch_areas = np.repeat(patch_areas, 3)
d /= patch_areas**2
logger.info(" Patch areas taken into account in the depth weighting")
w = 1.0 / d
if limit is not None:
ws = np.sort(w)
weight_limit = limit**2
if limit_depth_chs is False:
# match old mne-python behavior
# we used to do ind = np.argmin(ws), but this is 0 by sort above
n_limit = 0
limit = ws[0] * weight_limit
else:
# match C code behavior
limit = ws[-1]
n_limit = len(d)
if ws[-1] > weight_limit * ws[0]:
ind = np.where(ws > weight_limit * ws[0])[0][0]
limit = ws[ind]
n_limit = ind
logger.info(
" limit = %d/%d = %f", n_limit + 1, len(d), np.sqrt(limit / ws[0])
)
scale = 1.0 / limit
logger.info(f" scale = {scale:g} exp = {exp:g}")
w = np.minimum(w / limit, 1)
depth_prior = w**exp
if not (is_fixed_ori or combine_xyz is False):
depth_prior = np.repeat(depth_prior, 3)
return depth_prior
def _stc_src_sel(
src, stc, on_missing="raise", extra=", likely due to forward calculations"
):
"""Select the vertex indices of a source space using a source estimate."""
if isinstance(stc, list):
vertices = stc
else:
assert isinstance(stc, _BaseSourceEstimate)
vertices = stc.vertices
del stc
if not len(src) == len(vertices):
raise RuntimeError(
f"Mismatch between number of source spaces ({len(src)}) and "
f"STC vertices ({len(vertices)})"
)
src_sels, stc_sels, out_vertices = [], [], []
src_offset = stc_offset = 0
for s, v in zip(src, vertices):
joint_sel = np.intersect1d(s["vertno"], v)
src_sels.append(np.searchsorted(s["vertno"], joint_sel) + src_offset)
src_offset += len(s["vertno"])
idx = np.searchsorted(v, joint_sel)
stc_sels.append(idx + stc_offset)
stc_offset += len(v)
out_vertices.append(np.array(v)[idx])
src_sel = np.concatenate(src_sels)
stc_sel = np.concatenate(stc_sels)
assert len(src_sel) == len(stc_sel) == sum(len(v) for v in out_vertices)
n_stc = sum(len(v) for v in vertices)
n_joint = len(src_sel)
if n_joint != n_stc:
msg = (
f"Only {n_joint} of {n_stc} SourceEstimate "
f"{'vertex' if n_stc == 1 else 'vertices'} found in source space{extra}"
)
_on_missing(on_missing, msg)
return src_sel, stc_sel, out_vertices
def _fill_measurement_info(info, fwd, sfreq, data):
"""Fill the measurement info of a Raw or Evoked object."""
sel = pick_channels(info["ch_names"], fwd["sol"]["row_names"], ordered=False)
info = pick_info(info, sel)
info["bads"] = []
now = time()
sec = np.floor(now)
usec = 1e6 * (now - sec)
# this is probably correct based on what's done in meas_info.py...
with info._unlock(check_after=True):
info.update(
meas_id=fwd["info"]["meas_id"],
file_id=info["meas_id"],
meas_date=_stamp_to_dt((int(sec), int(usec))),
highpass=0.0,
lowpass=sfreq / 2.0,
sfreq=sfreq,
projs=[],
)
# reorder data (which is in fwd order) to match that of info
order = [fwd["sol"]["row_names"].index(name) for name in info["ch_names"]]
data = data[order]
return info, data
@verbose
def _apply_forward(
fwd, stc, start=None, stop=None, on_missing="raise", use_cps=True, verbose=None
):
"""Apply forward model and return data, times, ch_names."""
_validate_type(stc, _BaseSourceEstimate, "stc", "SourceEstimate")
_validate_type(fwd, Forward, "fwd")
if isinstance(stc, _BaseVectorSourceEstimate):
vector = True
fwd = convert_forward_solution(fwd, force_fixed=False, surf_ori=False)
else:
vector = False
if not is_fixed_orient(fwd):
fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=use_cps)
if np.all(stc.data > 0):
warn(
"Source estimate only contains currents with positive values. "
'Use pick_ori="normal" when computing the inverse to compute '
"currents not current magnitudes."
)
_check_stc_units(stc)
src_sel, stc_sel, _ = _stc_src_sel(fwd["src"], stc, on_missing=on_missing)
gain = fwd["sol"]["data"]
stc_sel = slice(None) if len(stc_sel) == len(stc.data) else stc_sel
times = stc.times[start:stop].copy()
stc_data = stc.data[stc_sel, ..., start:stop].reshape(-1, len(times))
del stc
if vector:
gain = gain.reshape(len(gain), gain.shape[1] // 3, 3)
gain = gain[:, src_sel].reshape(len(gain), -1)
# save some memory if possible
logger.info("Projecting source estimate to sensor space...")
data = np.dot(gain, stc_data)
logger.info("[done]")
return data, times
@verbose
def apply_forward(
fwd,
stc,
info,
start=None,
stop=None,
use_cps=True,
on_missing="raise",
verbose=None,
):
"""Project source space currents to sensor space using a forward operator.
The sensor space data is computed for all channels present in fwd. Use
pick_channels_forward or pick_types_forward to restrict the solution to a
subset of channels.
The function returns an Evoked object, which is constructed from
evoked_template. The evoked_template should be from the same MEG system on
which the original data was acquired. An exception will be raised if the
forward operator contains channels that are not present in the template.
Parameters
----------
fwd : Forward
Forward operator to use.
stc : SourceEstimate
The source estimate from which the sensor space data is computed.
%(info_not_none)s
start : int, optional
Index of first time sample (index not time is seconds).
stop : int, optional
Index of first time sample not to include (index not time is seconds).
%(use_cps)s
.. versionadded:: 0.15
%(on_missing_fwd)s
Default is "raise".
.. versionadded:: 0.18
%(verbose)s
Returns
-------
evoked : Evoked
Evoked object with computed sensor space data.
See Also
--------
apply_forward_raw: Compute sensor space data and return a Raw object.
"""
_validate_type(info, Info, "info")
_validate_type(fwd, Forward, "forward")
info._check_consistency()
# make sure evoked_template contains all channels in fwd
for ch_name in fwd["sol"]["row_names"]:
if ch_name not in info["ch_names"]:
raise ValueError(
f"Channel {ch_name} of forward operator not present in evoked_template."
)
# project the source estimate to the sensor space
data, times = _apply_forward(
fwd, stc, start, stop, on_missing=on_missing, use_cps=use_cps
)
# fill the measurement info
sfreq = float(1.0 / stc.tstep)
info, data = _fill_measurement_info(info, fwd, sfreq, data)
evoked = EvokedArray(data, info, times[0], nave=1)
evoked._set_times(times)
evoked._update_first_last()
return evoked
@verbose
def apply_forward_raw(
fwd,
stc,
info,
start=None,
stop=None,
on_missing="raise",
use_cps=True,
verbose=None,
):
"""Project source space currents to sensor space using a forward operator.
The sensor space data is computed for all channels present in fwd. Use
pick_channels_forward or pick_types_forward to restrict the solution to a
subset of channels.
The function returns a Raw object, which is constructed using provided
info. The info object should be from the same MEG system on which the
original data was acquired. An exception will be raised if the forward
operator contains channels that are not present in the info.
Parameters
----------
fwd : Forward
Forward operator to use.
stc : SourceEstimate
The source estimate from which the sensor space data is computed.
%(info_not_none)s
start : int, optional
Index of first time sample (index not time is seconds).
stop : int, optional
Index of first time sample not to include (index not time is seconds).
%(on_missing_fwd)s
Default is "raise".
.. versionadded:: 0.18
%(use_cps)s
.. versionadded:: 0.21
%(verbose)s
Returns
-------
raw : Raw object
Raw object with computed sensor space data.
See Also
--------
apply_forward: Compute sensor space data and return an Evoked object.
"""
# make sure info contains all channels in fwd
for ch_name in fwd["sol"]["row_names"]:
if ch_name not in info["ch_names"]:
raise ValueError(
f"Channel {ch_name} of forward operator not present in info."
)
# project the source estimate to the sensor space
data, times = _apply_forward(
fwd, stc, start, stop, on_missing=on_missing, use_cps=use_cps
)
sfreq = 1.0 / stc.tstep
info, data = _fill_measurement_info(info, fwd, sfreq, data)
with info._unlock():
info["projs"] = []
# store sensor data in Raw object using the info
raw = RawArray(data, info, first_samp=int(np.round(times[0] * sfreq)))
raw._projector = None
return raw
@fill_doc
def restrict_forward_to_stc(fwd, stc, on_missing="ignore"):
"""Restrict forward operator to active sources in a source estimate.
Parameters
----------
fwd : instance of Forward
Forward operator.
stc : instance of SourceEstimate
Source estimate.
%(on_missing_fwd)s
Default is "ignore".
.. versionadded:: 0.18
Returns
-------
fwd_out : instance of Forward
Restricted forward operator.
See Also
--------
restrict_forward_to_label
"""
_validate_type(on_missing, str, "on_missing")
_check_option("on_missing", on_missing, ("ignore", "warn", "raise"))
src_sel, _, _ = _stc_src_sel(fwd["src"], stc, on_missing=on_missing)
del stc
return _restrict_forward_to_src_sel(fwd, src_sel)
def _restrict_forward_to_src_sel(fwd, src_sel):
fwd_out = deepcopy(fwd)
# figure out the vertno we are keeping
idx_sel = np.concatenate(
[[[si] * len(s["vertno"]), s["vertno"]] for si, s in enumerate(fwd["src"])],
axis=-1,
)
assert idx_sel.ndim == 2 and idx_sel.shape[0] == 2
assert idx_sel.shape[1] == fwd["nsource"]
idx_sel = idx_sel[:, src_sel]
fwd_out["source_rr"] = fwd["source_rr"][src_sel]
fwd_out["nsource"] = len(src_sel)
if is_fixed_orient(fwd):
idx = src_sel
if fwd["sol_grad"] is not None:
idx_grad = (3 * src_sel[:, None] + np.arange(3)).ravel()
else:
idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
if fwd["sol_grad"] is not None:
idx_grad = (9 * src_sel[:, None] + np.arange(9)).ravel()
fwd_out["source_nn"] = fwd["source_nn"][idx]
fwd_out["sol"]["data"] = fwd["sol"]["data"][:, idx]
if fwd["sol_grad"] is not None:
fwd_out["sol_grad"]["data"] = fwd["sol_grad"]["data"][:, idx_grad]
fwd_out["sol"]["ncol"] = len(idx)
if is_fixed_orient(fwd, orig=True):
idx = src_sel
if fwd["sol_grad"] is not None:
idx_grad = (3 * src_sel[:, None] + np.arange(3)).ravel()
else:
idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
if fwd["sol_grad"] is not None:
idx_grad = (9 * src_sel[:, None] + np.arange(9)).ravel()
fwd_out["_orig_sol"] = fwd["_orig_sol"][:, idx]
if fwd["sol_grad"] is not None:
fwd_out["_orig_sol_grad"] = fwd["_orig_sol_grad"][:, idx_grad]
vertices = [idx_sel[1][idx_sel[0] == si] for si in range(len(fwd_out["src"]))]
_set_source_space_vertices(fwd_out["src"], vertices)
return fwd_out
def restrict_forward_to_label(fwd, labels):
"""Restrict forward operator to labels.
Parameters
----------
fwd : Forward
Forward operator.
labels : instance of Label | list
Label object or list of label objects.
Returns
-------
fwd_out : dict
Restricted forward operator.
See Also
--------
restrict_forward_to_stc
"""
vertices = [np.array([], int), np.array([], int)]
if not isinstance(labels, list):
labels = [labels]
# Get vertices separately of each hemisphere from all label
for label in labels:
_validate_type(label, Label, "label", "Label or list")
i = 0 if label.hemi == "lh" else 1
vertices[i] = np.append(vertices[i], label.vertices)
# Remove duplicates and sort
vertices = [np.unique(vert_hemi) for vert_hemi in vertices]
vertices = [
vert_hemi[np.isin(vert_hemi, s["vertno"])]
for vert_hemi, s in zip(vertices, fwd["src"])
]
src_sel, _, _ = _stc_src_sel(fwd["src"], vertices, on_missing="raise")
return _restrict_forward_to_src_sel(fwd, src_sel)
def _do_forward_solution(
subject,
meas,
fname=None,
src=None,
spacing=None,
mindist=None,
bem=None,
mri=None,
trans=None,
eeg=True,
meg=True,
fixed=False,
grad=False,
mricoord=False,
overwrite=False,
subjects_dir=None,
verbose=None,
):
"""Calculate a forward solution for a subject using MNE-C routines.
This is kept around for testing purposes.
This function wraps to mne_do_forward_solution, so the mne
command-line tools must be installed and accessible from Python.
Parameters
----------
subject : str
Name of the subject.
meas : Raw | Epochs | Evoked | str
If Raw or Epochs, a temporary evoked file will be created and
saved to a temporary directory. If str, then it should be a
filename to a file with measurement information the mne
command-line tools can understand (i.e., raw or evoked).
fname : path-like | None
Destination forward solution filename. If None, the solution
will be created in a temporary directory, loaded, and deleted.
src : str | None
Source space name. If None, the MNE default is used.
spacing : str
The spacing to use. Can be ``'#'`` for spacing in mm, ``'ico#'`` for a
recursively subdivided icosahedron, or ``'oct#'`` for a recursively
subdivided octahedron (e.g., ``spacing='ico4'``). Default is 7 mm.
mindist : float | str | None
Minimum distance measof sources from inner skull surface (in mm).
If None, the MNE default value is used. If string, ``'all'``
indicates to include all points.
bem : str | None
Name of the BEM to use (e.g., ``"sample-5120-5120-5120"``). If None
(Default), the MNE default will be used.
mri : dict | path-like | None
The name of the trans file in FIF format.
If None, ``trans`` must not be None.
trans : dict | path-like | None
File name of the trans file in text format.
If None, ``mri`` must not be None.
eeg : bool
If True (Default), include EEG computations.
meg : bool
If True (Default), include MEG computations.
fixed : bool
If True, make a fixed-orientation forward solution (Default:
False). Note that fixed-orientation inverses can still be
created from free-orientation forward solutions.
grad : bool
If True, compute the gradient of the field with respect to the
dipole coordinates as well (Default: False).
mricoord : bool
If True, calculate in MRI coordinates (Default: False)
%(overwrite)s
%(subjects_dir)s
%(verbose)s
See Also
--------
make_forward_solution
Returns
-------
fwd : Forward
The generated forward solution.
"""
if not has_mne_c():
raise RuntimeError("mne command line tools could not be found")
# check for file existence
temp_dir = Path(tempfile.mkdtemp())
if fname is None:
fname = temp_dir / "temp-fwd.fif"
_check_fname(fname, overwrite)
_validate_type(subject, "str", "subject")
# check for meas to exist as string, or try to make evoked
_validate_type(meas, ("path-like", BaseRaw, BaseEpochs, Evoked), "meas")
if isinstance(meas, BaseRaw | BaseEpochs | Evoked):
meas_file = op.join(temp_dir, "info.fif")
write_info(meas_file, meas.info)
meas = meas_file
else:
meas = str(_check_fname(meas, overwrite="read", must_exist=True))
# deal with trans/mri
if mri is not None and trans is not None:
raise ValueError("trans and mri cannot both be specified")
if mri is None and trans is None:
# MNE allows this to default to a trans/mri in the subject's dir,
# but let's be safe here and force the user to pass us a trans/mri
raise ValueError("Either trans or mri must be specified")
if trans is not None:
if isinstance(trans, dict):
trans_data = deepcopy(trans)
trans = temp_dir / "trans-trans.fif"
try:
write_trans(trans, trans_data)
except Exception:
raise OSError(
"trans was a dict, but could not be "
"written to disk as a transform file"
)
elif isinstance(trans, str | Path | PathLike):
_check_fname(trans, "read", must_exist=True, name="trans")
trans = Path(trans)
else:
raise ValueError("trans must be a path or dict")
if mri is not None:
if isinstance(mri, dict):
mri_data = deepcopy(trans)
mri = temp_dir / "mri-trans.fif"
try:
write_trans(mri, mri_data)
except Exception:
raise OSError(
"mri was a dict, but could not be "
"written to disk as a transform file"
)
elif isinstance(mri, str | Path | PathLike):
_check_fname(mri, "read", must_exist=True, name="mri")
mri = Path(mri)
else:
raise ValueError("mri must be a path or dict")
# deal with meg/eeg
if not meg and not eeg:
raise ValueError("meg or eeg (or both) must be True")
if not fname.suffix == ".fif":
raise ValueError("Forward name does not end with .fif")
path = fname.parent.absolute()
fname = fname.name
# deal with mindist
if mindist is not None:
if isinstance(mindist, str):
if not mindist.lower() == "all":
raise ValueError('mindist, if string, must be "all"')
mindist = ["--all"]
else:
mindist = ["--mindist", f"{mindist:g}"]
# src, spacing, bem
for element, name, kind in zip(
(src, spacing, bem),
("src", "spacing", "bem"),
("path-like", "str", "path-like"),
):
if element is not None:
_validate_type(element, kind, name, f"{kind} or None")
# put together the actual call
cmd = [
"mne_do_forward_solution",
"--subject",
subject,
"--meas",
meas,
"--fwd",
fname,
"--destdir",
str(path),
]
if src is not None:
cmd += ["--src", src]
if spacing is not None:
if spacing.isdigit():
pass # spacing in mm
else:
# allow both "ico4" and "ico-4" style values
match = re.match(r"(oct|ico)-?(\d+)$", spacing)
if match is None:
raise ValueError(f"Invalid spacing parameter: {spacing!r}")
spacing = "-".join(match.groups())
cmd += ["--spacing", spacing]
if mindist is not None:
cmd += mindist
if bem is not None:
cmd += ["--bem", bem]
if mri is not None:
cmd += ["--mri", f"{mri.absolute()}"]
if trans is not None:
cmd += ["--trans", f"{trans.absolute()}"]
if not meg:
cmd.append("--eegonly")
if not eeg:
cmd.append("--megonly")
if fixed:
cmd.append("--fixed")
if grad:
cmd.append("--grad")
if mricoord:
cmd.append("--mricoord")
if overwrite:
cmd.append("--overwrite")
env = os.environ.copy()
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
env["SUBJECTS_DIR"] = subjects_dir
try:
logger.info(
"Running forward solution generation command with "
f"subjects_dir {subjects_dir}"
)
run_subprocess(cmd, env=env)
except Exception:
raise
else:
fwd = read_forward_solution(path / fname, verbose=False)
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
return fwd
@verbose
def average_forward_solutions(fwds, weights=None, verbose=None):
"""Average forward solutions.
Parameters
----------
fwds : list of Forward
Forward solutions to average. Each entry (dict) should be a
forward solution.
weights : array | None
Weights to apply to each forward solution in averaging. If None,
forward solutions will be equally weighted. Weights must be
non-negative, and will be adjusted to sum to one.
%(verbose)s
Returns
-------
fwd : Forward
The averaged forward solution.
"""
# check for fwds being a list
_validate_type(fwds, list, "fwds")
if not len(fwds) > 0:
raise ValueError("fwds must not be empty")
# check weights
if weights is None:
weights = np.ones(len(fwds))
weights = np.asanyarray(weights) # in case it's a list, convert it
if not np.all(weights >= 0):
raise ValueError("weights must be non-negative")
if not len(weights) == len(fwds):
raise ValueError("weights must be None or the same length as fwds")
w_sum = np.sum(weights)
if not w_sum > 0:
raise ValueError("weights cannot all be zero")
weights /= w_sum
# check our forward solutions
for fwd in fwds:
# check to make sure it's a forward solution
_validate_type(fwd, dict, "each entry in fwds", "dict")
# check to make sure the dict is actually a fwd
check_keys = [
"info",
"sol_grad",
"nchan",
"src",
"source_nn",
"sol",
"source_rr",
"source_ori",
"surf_ori",
"coord_frame",
"mri_head_t",
"nsource",
]
if not all(key in fwd for key in check_keys):
raise KeyError(
"forward solution dict does not have all standard "
"entries, cannot compute average."
)
# check forward solution compatibility
if any(
fwd["sol"][k] != fwds[0]["sol"][k] for fwd in fwds[1:] for k in ["nrow", "ncol"]
):
raise ValueError("Forward solutions have incompatible dimensions")
if any(
fwd[k] != fwds[0][k]
for fwd in fwds[1:]
for k in ["source_ori", "surf_ori", "coord_frame"]
):
raise ValueError("Forward solutions have incompatible orientations")
# actually average them (solutions and gradients)
fwd_ave = deepcopy(fwds[0])
fwd_ave["sol"]["data"] *= weights[0]
fwd_ave["_orig_sol"] *= weights[0]
for fwd, w in zip(fwds[1:], weights[1:]):
fwd_ave["sol"]["data"] += w * fwd["sol"]["data"]
fwd_ave["_orig_sol"] += w * fwd["_orig_sol"]
if fwd_ave["sol_grad"] is not None:
fwd_ave["sol_grad"]["data"] *= weights[0]
fwd_ave["_orig_sol_grad"] *= weights[0]
for fwd, w in zip(fwds[1:], weights[1:]):
fwd_ave["sol_grad"]["data"] += w * fwd["sol_grad"]["data"]
fwd_ave["_orig_sol_grad"] += w * fwd["_orig_sol_grad"]
return fwd_ave