[7f9fb8]: / mne / dipole.py

Download this file

1989 lines (1788 with data), 63.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
"""Single-dipole functions and classes."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import functools
import re
from copy import deepcopy
from functools import partial
import numpy as np
from scipy.linalg import eigh
from scipy.optimize import fmin_cobyla
from ._fiff.constants import FIFF
from ._fiff.pick import pick_types
from ._fiff.proj import _needs_eeg_average_ref_proj, make_projector
from ._freesurfer import _get_aseg, head_to_mni, head_to_mri, read_freesurfer_lut
from .bem import _bem_find_surface, _bem_surf_name, _fit_sphere
from .cov import _ensure_cov, compute_whitener
from .evoked import _aspect_rev, _read_evoked, _write_evokeds
from .fixes import _safe_svd
from .forward._compute_forward import _compute_forwards_meeg, _prep_field_computation
from .forward._make_forward import (
_get_trans,
_prep_eeg_channels,
_prep_meg_channels,
_setup_bem,
)
from .parallel import parallel_func
from .source_space._source_space import SourceSpaces, _make_volume_source_space
from .surface import _compute_nearest, _points_outside_surface, transform_surface_to
from .transforms import _coord_frame_name, _print_coord_trans, apply_trans
from .utils import (
ExtendedTimeMixin,
TimeMixin,
_check_fname,
_check_option,
_get_blas_funcs,
_pl,
_repeated_svd,
_svd_lwork,
_time_mask,
_validate_type,
_verbose_safe_false,
check_fname,
copy_function_doc_to_method_doc,
fill_doc,
logger,
pinvh,
verbose,
warn,
)
from .viz import plot_dipole_amplitudes, plot_dipole_locations
from .viz.evoked import _plot_evoked
@fill_doc
class Dipole(TimeMixin):
"""Dipole class for sequential dipole fits.
.. note::
This class should usually not be instantiated directly via
``mne.Dipole(...)``. Instead, use one of the functions
listed in the See Also section below.
Used to store positions, orientations, amplitudes, times, goodness of fit
of dipoles, typically obtained with Neuromag/xfit, mne_dipole_fit
or certain inverse solvers. Note that dipole position vectors are given in
the head coordinate frame.
Parameters
----------
times : array, shape (n_dipoles,)
The time instants at which each dipole was fitted (s).
pos : array, shape (n_dipoles, 3)
The dipoles positions (m) in head coordinates.
amplitude : array, shape (n_dipoles,)
The amplitude of the dipoles (Am).
ori : array, shape (n_dipoles, 3)
The dipole orientations (normalized to unit length).
gof : array, shape (n_dipoles,)
The goodness of fit.
name : str | None
Name of the dipole.
conf : dict
Confidence limits in dipole orientation for "vol" in m^3 (volume),
"depth" in m (along the depth axis), "long" in m (longitudinal axis),
"trans" in m (transverse axis), "qlong" in Am, and "qtrans" in Am
(currents). The current confidence limit in the depth direction is
assumed to be zero (although it can be non-zero when a BEM is used).
.. versionadded:: 0.15
khi2 : array, shape (n_dipoles,)
The χ^2 values for the fits.
.. versionadded:: 0.15
nfree : array, shape (n_dipoles,)
The number of free parameters for each fit.
.. versionadded:: 0.15
%(verbose)s
See Also
--------
fit_dipole
DipoleFixed
read_dipole
Notes
-----
This class is for sequential dipole fits, where the position
changes as a function of time. For fixed dipole fits, where the
position is fixed as a function of time, use :class:`mne.DipoleFixed`.
"""
@verbose
def __init__(
self,
times,
pos,
amplitude,
ori,
gof,
name=None,
conf=None,
khi2=None,
nfree=None,
*,
verbose=None,
):
self._set_times(np.array(times))
self._pos = np.array(pos)
self._amplitude = np.array(amplitude)
self._ori = np.array(ori)
self._gof = np.array(gof)
self._name = name
self._conf = dict()
if conf is not None:
for key, value in conf.items():
self._conf[key] = np.array(value)
self._khi2 = np.array(khi2) if khi2 is not None else None
self._nfree = np.array(nfree) if nfree is not None else None
def __repr__(self): # noqa: D105
s = f"n_times : {len(self.times)}"
s += f", tmin : {np.min(self.times):0.3f}"
s += f", tmax : {np.max(self.times):0.3f}"
return f"<Dipole | {s}>"
@property
def pos(self):
"""The dipoles positions (m) in head coordinates."""
return self._pos
@property
def amplitude(self):
"""The amplitude of the dipoles (Am)."""
return self._amplitude
@property
def ori(self):
"""The dipole orientations (normalized to unit length)."""
return self._ori
@property
def gof(self):
"""The goodness of fit."""
return self._gof
@property
def name(self):
"""Name of the dipole."""
return self._name
@name.setter
def name(self, name):
_validate_type(name, str, "name")
self._name = name
@property
def conf(self):
"""Confidence limits in dipole orientation."""
return self._conf
@property
def khi2(self):
"""The χ^2 values for the fits."""
return self._khi2
@property
def nfree(self):
"""The number of free parameters for each fit."""
return self._nfree
@verbose
def save(self, fname, overwrite=False, *, verbose=None):
"""Save dipole in a ``.dip`` or ``.bdip`` file.
The ``.[b]dip`` format is for :class:`mne.Dipole` objects, that is,
fixed-position dipole fits. For these fits, the amplitude, orientation,
and position vary as a function of time.
Parameters
----------
fname : path-like
The name of the ``.dip`` or ``.bdip`` file.
%(overwrite)s
.. versionadded:: 0.20
%(verbose)s
See Also
--------
read_dipole
Notes
-----
.. versionchanged:: 0.20
Support for writing bdip (Xfit binary) files.
"""
# obligatory fields
fname = _check_fname(fname, overwrite=overwrite)
if fname.suffix == ".bdip":
_write_dipole_bdip(fname, self)
else:
_write_dipole_text(fname, self)
@verbose
def crop(self, tmin=None, tmax=None, include_tmax=True, verbose=None):
"""Crop data to a given time interval.
Parameters
----------
tmin : float | None
Start time of selection in seconds.
tmax : float | None
End time of selection in seconds.
%(include_tmax)s
%(verbose)s
Returns
-------
self : instance of Dipole
The cropped instance.
"""
sfreq = None
if len(self.times) > 1:
sfreq = 1.0 / np.median(np.diff(self.times))
mask = _time_mask(
self.times, tmin, tmax, sfreq=sfreq, include_tmax=include_tmax
)
self._set_times(self.times[mask])
for attr in ("_pos", "_gof", "_amplitude", "_ori", "_khi2", "_nfree"):
if getattr(self, attr) is not None:
setattr(self, attr, getattr(self, attr)[mask])
for key in self.conf.keys():
self.conf[key] = self.conf[key][mask]
return self
def copy(self):
"""Copy the Dipoles object.
Returns
-------
dip : instance of Dipole
The copied dipole instance.
"""
return deepcopy(self)
@verbose
@copy_function_doc_to_method_doc(plot_dipole_locations)
def plot_locations(
self,
trans,
subject,
subjects_dir=None,
mode="orthoview",
coord_frame="mri",
idx="gof",
show_all=True,
ax=None,
block=False,
show=True,
scale=None,
color=None,
*,
highlight_color="r",
fig=None,
title=None,
head_source="seghead",
surf="pial",
width=None,
verbose=None,
):
return plot_dipole_locations(
self,
trans,
subject,
subjects_dir,
mode,
coord_frame,
idx,
show_all,
ax,
block,
show,
scale=scale,
color=color,
highlight_color=highlight_color,
fig=fig,
title=title,
head_source=head_source,
surf=surf,
width=width,
)
@verbose
def to_mni(self, subject, trans, subjects_dir=None, verbose=None):
"""Convert dipole location from head to MNI coordinates.
Parameters
----------
%(subject)s
%(trans_not_none)s
%(subjects_dir)s
%(verbose)s
Returns
-------
pos_mni : array, shape (n_pos, 3)
The MNI coordinates (in mm) of pos.
"""
mri_head_t, trans = _get_trans(trans)
return head_to_mni(
self.pos, subject, mri_head_t, subjects_dir=subjects_dir, verbose=verbose
)
@verbose
def to_mri(self, subject, trans, subjects_dir=None, verbose=None):
"""Convert dipole location from head to MRI surface RAS coordinates.
Parameters
----------
%(subject)s
%(trans_not_none)s
%(subjects_dir)s
%(verbose)s
Returns
-------
pos_mri : array, shape (n_pos, 3)
The Freesurfer surface RAS coordinates (in mm) of pos.
"""
mri_head_t, trans = _get_trans(trans)
return head_to_mri(
self.pos,
subject,
mri_head_t,
subjects_dir=subjects_dir,
verbose=verbose,
kind="mri",
)
@verbose
def to_volume_labels(
self,
trans,
subject="fsaverage",
aseg="aparc+aseg",
subjects_dir=None,
verbose=None,
):
"""Find an ROI in atlas for the dipole positions.
Parameters
----------
%(trans)s
.. versionchanged:: 0.19
Support for 'fsaverage' argument.
%(subject)s
%(aseg)s
%(subjects_dir)s
%(verbose)s
Returns
-------
labels : list
List of anatomical region names from anatomical segmentation atlas.
Notes
-----
.. versionadded:: 0.24
"""
aseg_img, aseg_data = _get_aseg(aseg, subject, subjects_dir)
mri_vox_t = np.linalg.inv(aseg_img.header.get_vox2ras_tkr())
# Load freesurface atlas LUT
lut_inv = read_freesurfer_lut()[0]
lut = {v: k for k, v in lut_inv.items()}
# transform to voxel space from head space
pos = self.to_mri(subject, trans, subjects_dir=subjects_dir, verbose=verbose)
pos = apply_trans(mri_vox_t, pos)
pos = np.rint(pos).astype(int)
# Get voxel value and label from LUT
labels = [lut.get(aseg_data[tuple(coord)], "Unknown") for coord in pos]
return labels
def plot_amplitudes(self, color="k", show=True):
"""Plot the dipole amplitudes as a function of time.
Parameters
----------
color : matplotlib color
Color to use for the trace.
show : bool
Show figure if True.
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
"""
return plot_dipole_amplitudes([self], [color], show)
def __getitem__(self, item):
"""Get a time slice.
Parameters
----------
item : array-like or slice
The slice of time points to use.
Returns
-------
dip : instance of Dipole
The sliced dipole.
"""
if isinstance(item, int): # make sure attributes stay 2d
item = [item]
selected_times = self.times[item].copy()
selected_pos = self.pos[item, :].copy()
selected_amplitude = self.amplitude[item].copy()
selected_ori = self.ori[item, :].copy()
selected_gof = self.gof[item].copy()
selected_name = self.name
selected_conf = dict()
for key in self.conf.keys():
selected_conf[key] = self.conf[key][item]
selected_khi2 = self.khi2[item] if self.khi2 is not None else None
selected_nfree = self.nfree[item] if self.nfree is not None else None
return Dipole(
selected_times,
selected_pos,
selected_amplitude,
selected_ori,
selected_gof,
selected_name,
selected_conf,
selected_khi2,
selected_nfree,
)
def __len__(self):
"""Return the number of dipoles.
Returns
-------
len : int
The number of dipoles.
Examples
--------
This can be used as::
>>> len(dipoles) # doctest: +SKIP
10
"""
return self.pos.shape[0]
def _read_dipole_fixed(fname):
"""Read a fixed dipole FIF file."""
logger.info(f"Reading {fname} ...")
info, nave, aspect_kind, comment, times, data, _ = _read_evoked(fname)
return DipoleFixed(info, data, times, nave, aspect_kind, comment=comment)
@fill_doc
class DipoleFixed(ExtendedTimeMixin):
"""Dipole class for fixed-position dipole fits.
.. note::
This class should usually not be instantiated directly
via ``mne.DipoleFixed(...)``. Instead, use one of the functions
listed in the See Also section below.
Parameters
----------
%(info_not_none)s
data : array, shape (n_channels, n_times)
The dipole data.
times : array, shape (n_times,)
The time points.
nave : int
Number of averages.
aspect_kind : int
The kind of data.
comment : str
The dipole comment.
%(verbose)s
See Also
--------
read_dipole
Dipole
fit_dipole
Notes
-----
This class is for fixed-position dipole fits, where the position
(and maybe orientation) is static over time. For sequential dipole fits,
where the position can change a function of time, use :class:`mne.Dipole`.
.. versionadded:: 0.12
"""
@verbose
def __init__(
self, info, data, times, nave, aspect_kind, comment="", *, verbose=None
):
self.info = info
self.nave = nave
self._aspect_kind = aspect_kind
self.kind = _aspect_rev.get(aspect_kind, "unknown")
self.comment = comment
self._set_times(np.array(times))
self.data = data
self.preload = True
self._update_first_last()
def __repr__(self): # noqa: D105
s = f"n_times : {len(self.times)}"
s += f", tmin : {np.min(self.times)}"
s += f", tmax : {np.max(self.times)}"
return f"<DipoleFixed | {s}>"
def copy(self):
"""Copy the DipoleFixed object.
Returns
-------
inst : instance of DipoleFixed
The copy.
Notes
-----
.. versionadded:: 0.16
"""
return deepcopy(self)
@property
def ch_names(self):
"""Channel names."""
return self.info["ch_names"]
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save fixed dipole in FIF format.
The ``.fif[.gz]`` format is for :class:`mne.DipoleFixed` objects, that is,
fixed-position and optionally fixed-orientation dipole fits. For these fits,
the amplitude (and optionally orientation) vary as a function of time,
but not the position.
Parameters
----------
fname : path-like
The name of the FIF file. Must end with ``'-dip.fif'`` or
``'-dip.fif.gz'`` to make it explicit that the file contains
dipole information in FIF format.
%(overwrite)s
.. versionadded:: 1.10.0
%(verbose)s
See Also
--------
read_dipole
"""
check_fname(
fname,
"DipoleFixed",
(
"-dip.fif",
"-dip.fif.gz",
"_dip.fif",
"_dip.fif.gz",
),
(".fif", ".fif.gz"),
)
_write_evokeds(fname, self, check=False, overwrite=overwrite)
def plot(self, show=True, time_unit="s"):
"""Plot dipole data.
Parameters
----------
show : bool
Call pyplot.show() at the end or not.
time_unit : str
The units for the time axis, can be "ms" or "s" (default).
.. versionadded:: 0.16
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure containing the time courses.
"""
return _plot_evoked(
self,
picks=None,
exclude=(),
unit=True,
show=show,
ylim=None,
xlim="tight",
proj=False,
hline=None,
units=None,
scalings=None,
titles=None,
axes=None,
gfp=False,
window_title=None,
spatial_colors=False,
plot_type="butterfly",
selectable=False,
time_unit=time_unit,
)
# #############################################################################
# IO
@verbose
def read_dipole(fname, verbose=None):
"""Read a dipole object from a file.
Non-fixed-position :class:`mne.Dipole` objects are usually saved in ``.[b]dip``
format. Fixed-position :class:`mne.DipoleFixed` objects are usually saved in
FIF format.
Parameters
----------
fname : path-like
The name of the ``.[b]dip`` or ``.fif[.gz]`` file.
%(verbose)s
Returns
-------
%(dipole)s
See Also
--------
Dipole
DipoleFixed
fit_dipole
Notes
-----
.. versionchanged:: 0.20
Support for reading bdip (Xfit binary) format.
"""
fname = _check_fname(fname, overwrite="read", must_exist=True)
if fname.suffix == ".fif" or fname.name.endswith(".fif.gz"):
return _read_dipole_fixed(fname)
elif fname.suffix == ".bdip":
return _read_dipole_bdip(fname)
else:
return _read_dipole_text(fname)
def _read_dipole_text(fname):
"""Read a dipole text file."""
# Figure out the special fields
need_header = True
def_line = name = None
# There is a bug in older np.loadtxt regarding skipping fields,
# so just read the data ourselves (need to get name and header anyway)
data = list()
with open(fname) as fid:
for line in fid:
if not (line.startswith("%") or line.startswith("#")):
need_header = False
data.append(line.strip().split())
else:
if need_header:
def_line = line
if line.startswith("##") or line.startswith("%%"):
m = re.search('Name "(.*) dipoles"', line)
if m:
name = m.group(1)
del line
data = np.atleast_2d(np.array(data, float))
if def_line is None:
raise OSError(
"Dipole text file is missing field definition comment, cannot parse "
f"{fname}"
)
# actually parse the fields
def_line = def_line.lstrip("%").lstrip("#").strip()
# MNE writes it out differently than Elekta, let's standardize them...
fields = re.sub(
r"([X|Y|Z] )\(mm\)", # "X (mm)", etc.
lambda match: match.group(1).strip() + "/mm",
def_line,
)
fields = re.sub(
r"\((.*?)\)",
lambda match: "/" + match.group(1),
fields, # "Q(nAm)", etc.
)
fields = re.sub(
"(begin|end) ", # "begin" and "end" with no units
lambda match: match.group(1) + "/ms",
fields,
)
fields = fields.lower().split()
required_fields = (
"begin/ms",
"x/mm",
"y/mm",
"z/mm",
"q/nam",
"qx/nam",
"qy/nam",
"qz/nam",
"g/%",
)
optional_fields = (
"khi^2",
"free", # standard ones
# now the confidence fields (up to 5!)
"vol/mm^3",
"depth/mm",
"long/mm",
"trans/mm",
"qlong/nam",
"qtrans/nam",
)
conf_scales = [1e-9, 1e-3, 1e-3, 1e-3, 1e-9, 1e-9]
missing_fields = sorted(set(required_fields) - set(fields))
if len(missing_fields) > 0:
raise RuntimeError(
f"Could not find necessary fields in header: {missing_fields}"
)
handled_fields = set(required_fields) | set(optional_fields)
assert len(handled_fields) == len(required_fields) + len(optional_fields)
ignored_fields = sorted(set(fields) - set(handled_fields) - {"end/ms"})
if len(ignored_fields) > 0:
warn(f"Ignoring extra fields in dipole file: {ignored_fields}")
if len(fields) != data.shape[1]:
raise OSError(
f"More data fields ({len(fields)}) found than data columns ({data.shape[1]}"
f"): {fields}"
)
logger.info(f"{len(data)} dipole(s) found")
if "end/ms" in fields:
if np.diff(
data[:, [fields.index("begin/ms"), fields.index("end/ms")]], 1, -1
).any():
warn(
"begin and end fields differed, but only begin will be used "
"to store time values"
)
# Find the correct column in our data array, then scale to proper units
idx = [fields.index(field) for field in required_fields]
assert len(idx) >= 9
times = data[:, idx[0]] / 1000.0
pos = 1e-3 * data[:, idx[1:4]] # put data in meters
amplitude = data[:, idx[4]]
norm = amplitude.copy()
amplitude /= 1e9
norm[norm == 0] = 1
ori = data[:, idx[5:8]] / norm[:, np.newaxis]
gof = data[:, idx[8]]
# Deal with optional fields
optional = [None] * 2
for fi, field in enumerate(optional_fields[:2]):
if field in fields:
optional[fi] = data[:, fields.index(field)]
khi2, nfree = optional
conf = dict()
for field, scale in zip(optional_fields[2:], conf_scales): # confidence
if field in fields:
conf[field.split("/")[0]] = scale * data[:, fields.index(field)]
return Dipole(times, pos, amplitude, ori, gof, name, conf, khi2, nfree)
def _write_dipole_text(fname, dip):
fmt = " %7.1f %7.1f %8.2f %8.2f %8.2f %8.3f %8.3f %8.3f %8.3f %6.2f"
header = (
"# begin end X (mm) Y (mm) Z (mm)"
" Q(nAm) Qx(nAm) Qy(nAm) Qz(nAm) g/%"
)
t = dip.times[:, np.newaxis] * 1000.0
gof = dip.gof[:, np.newaxis]
amp = 1e9 * dip.amplitude[:, np.newaxis]
out = (t, t, dip.pos / 1e-3, amp, dip.ori * amp, gof)
# optional fields
fmts = dict(
khi2=(" khi^2", " %8.1f", 1.0),
nfree=(" free", " %5d", 1),
vol=(" vol/mm^3", " %9.3f", 1e9),
depth=(" depth/mm", " %9.3f", 1e3),
long=(" long/mm", " %8.3f", 1e3),
trans=(" trans/mm", " %9.3f", 1e3),
qlong=(" Qlong/nAm", " %10.3f", 1e9),
qtrans=(" Qtrans/nAm", " %11.3f", 1e9),
)
for key in ("khi2", "nfree"):
data = getattr(dip, key)
if data is not None:
header += fmts[key][0]
fmt += fmts[key][1]
out += (data[:, np.newaxis] * fmts[key][2],)
for key in ("vol", "depth", "long", "trans", "qlong", "qtrans"):
data = dip.conf.get(key)
if data is not None:
header += fmts[key][0]
fmt += fmts[key][1]
out += (data[:, np.newaxis] * fmts[key][2],)
out = np.concatenate(out, axis=-1)
# NB CoordinateSystem is hard-coded as Head here
with open(fname, "wb") as fid:
fid.write(b'# CoordinateSystem "Head"\n')
fid.write((header + "\n").encode("utf-8"))
np.savetxt(fid, out, fmt=fmt)
if dip.name is not None:
fid.write((f'## Name "{dip.name} dipoles" Style "Dipoles"').encode())
_BDIP_ERROR_KEYS = ("depth", "long", "trans", "qlong", "qtrans")
def _read_dipole_bdip(fname):
name = None
nfree = None
with open(fname, "rb") as fid:
# Which dipole in a multi-dipole set
times = list()
pos = list()
amplitude = list()
ori = list()
gof = list()
conf = dict(vol=list())
khi2 = list()
has_errors = None
while True:
num = np.frombuffer(fid.read(4), ">i4")
if len(num) == 0:
break
times.append(np.frombuffer(fid.read(4), ">f4")[0])
fid.read(4) # end
fid.read(12) # r0
pos.append(np.frombuffer(fid.read(12), ">f4"))
Q = np.frombuffer(fid.read(12), ">f4")
amplitude.append(np.linalg.norm(Q))
ori.append(Q / amplitude[-1])
gof.append(100 * np.frombuffer(fid.read(4), ">f4")[0])
this_has_errors = bool(np.frombuffer(fid.read(4), ">i4")[0])
if has_errors is None:
has_errors = this_has_errors
for key in _BDIP_ERROR_KEYS:
conf[key] = list()
assert has_errors == this_has_errors
fid.read(4) # Noise level used for error computations
limits = np.frombuffer(fid.read(20), ">f4") # error limits
for key, lim in zip(_BDIP_ERROR_KEYS, limits):
conf[key].append(lim)
fid.read(100) # (5, 5) fully describes the conf. ellipsoid
conf["vol"].append(np.frombuffer(fid.read(4), ">f4")[0])
khi2.append(np.frombuffer(fid.read(4), ">f4")[0])
fid.read(4) # prob
fid.read(4) # total noise estimate
return Dipole(times, pos, amplitude, ori, gof, name, conf, khi2, nfree)
def _write_dipole_bdip(fname, dip):
with open(fname, "wb+") as fid:
for ti, t in enumerate(dip.times):
fid.write(np.zeros(1, ">i4").tobytes()) # int dipole
fid.write(np.array([t, 0]).astype(">f4").tobytes())
fid.write(np.zeros(3, ">f4").tobytes()) # r0
fid.write(dip.pos[ti].astype(">f4").tobytes()) # pos
Q = dip.amplitude[ti] * dip.ori[ti]
fid.write(Q.astype(">f4").tobytes())
fid.write(np.array(dip.gof[ti] / 100.0, ">f4").tobytes())
has_errors = int(bool(len(dip.conf)))
fid.write(np.array(has_errors, ">i4").tobytes()) # has_errors
fid.write(np.zeros(1, ">f4").tobytes()) # noise level
for key in _BDIP_ERROR_KEYS:
val = dip.conf[key][ti] if key in dip.conf else 0.0
assert val.shape == ()
fid.write(np.array(val, ">f4").tobytes())
fid.write(np.zeros(25, ">f4").tobytes())
conf = dip.conf["vol"][ti] if "vol" in dip.conf else 0.0
fid.write(np.array(conf, ">f4").tobytes())
khi2 = dip.khi2[ti] if dip.khi2 is not None else 0
fid.write(np.array(khi2, ">f4").tobytes())
fid.write(np.zeros(1, ">f4").tobytes()) # prob
fid.write(np.zeros(1, ">f4").tobytes()) # total noise est
# #############################################################################
# Fitting
def _dipole_forwards(*, sensors, fwd_data, whitener, rr, n_jobs=None):
"""Compute the forward solution and do other nice stuff."""
B = _compute_forwards_meeg(
rr, sensors=sensors, fwd_data=fwd_data, n_jobs=n_jobs, silent=True
)
B = np.concatenate(list(B.values()), axis=1)
assert np.isfinite(B).all()
B_orig = B.copy()
# Apply projection and whiten (cov has projections already)
_, _, dgemm = _get_ddot_dgemv_dgemm()
B = dgemm(1.0, B, whitener.T)
# column normalization doesn't affect our fitting, so skip for now
# S = np.sum(B * B, axis=1) # across channels
# scales = np.repeat(3. / np.sqrt(np.sum(np.reshape(S, (len(rr), 3)),
# axis=1)), 3)
# B *= scales[:, np.newaxis]
scales = np.ones(3)
return B, B_orig, scales
@verbose
def _make_guesses(surf, grid, exclude, mindist, n_jobs=None, verbose=None):
"""Make a guess space inside a sphere or BEM surface."""
if "rr" in surf:
logger.info(
"Guess surface ({}) is in {} coordinates".format(
_bem_surf_name[surf["id"]], _coord_frame_name(surf["coord_frame"])
)
)
else:
logger.info(
"Making a spherical guess space with radius {:7.1f} mm...".format(
1000 * surf["R"]
)
)
logger.info("Filtering (grid = %6.f mm)..." % (1000 * grid))
src = _make_volume_source_space(
surf, grid, exclude, 1000 * mindist, do_neighbors=False, n_jobs=n_jobs
)[0]
assert "vertno" in src
# simplify the result to make things easier later
src = dict(
rr=src["rr"][src["vertno"]],
nn=src["nn"][src["vertno"]],
nuse=src["nuse"],
coord_frame=src["coord_frame"],
vertno=np.arange(src["nuse"]),
type="discrete",
)
return SourceSpaces([src])
def _fit_eval(rd, B, B2, *, sensors, fwd_data, whitener, lwork, fwd_svd):
"""Calculate the residual sum of squares."""
if fwd_svd is None:
assert sensors is not None
fwd = _dipole_forwards(
sensors=sensors, fwd_data=fwd_data, whitener=whitener, rr=rd[np.newaxis, :]
)[0]
uu, sing, vv = _repeated_svd(fwd, lwork, overwrite_a=True)
else:
uu, sing, vv = fwd_svd
gof = _dipole_gof(uu, sing, vv, B, B2)[0]
# mne-c uses fitness=B2-Bm2, but ours (1-gof) is just a normalized version
return 1.0 - gof
@functools.lru_cache(None)
def _get_ddot_dgemv_dgemm():
return _get_blas_funcs(np.float64, ("dot", "gemv", "gemm"))
def _dipole_gof(uu, sing, vv, B, B2):
"""Calculate the goodness of fit from the forward SVD."""
ddot, dgemv, _ = _get_ddot_dgemv_dgemm()
ncomp = 3 if sing[2] / (sing[0] if sing[0] > 0 else 1.0) > 0.2 else 2
one = dgemv(1.0, vv[:ncomp], B) # np.dot(vv[:ncomp], B)
Bm2 = ddot(one, one) # np.sum(one * one)
gof = Bm2 / B2
return gof, one
def _fit_Q(*, sensors, fwd_data, whitener, B, B2, B_orig, rd, ori=None):
"""Fit the dipole moment once the location is known."""
if "fwd" in fwd_data:
# should be a single precomputed "guess" (i.e., fixed position)
assert rd is None
fwd = fwd_data["fwd"]
assert fwd.shape[0] == 3
fwd_orig = fwd_data["fwd_orig"]
assert fwd_orig.shape[0] == 3
scales = fwd_data["scales"]
assert scales.shape == (3,)
fwd_svd = fwd_data["fwd_svd"][0]
else:
fwd, fwd_orig, scales = _dipole_forwards(
sensors=sensors, fwd_data=fwd_data, whitener=whitener, rr=rd[np.newaxis, :]
)
fwd_svd = None
if ori is None:
if fwd_svd is None:
fwd_svd = _safe_svd(fwd, full_matrices=False)
uu, sing, vv = fwd_svd
gof, one = _dipole_gof(uu, sing, vv, B, B2)
ncomp = len(one)
one /= sing[:ncomp]
Q = np.dot(one, uu.T[:ncomp])
else:
fwd = np.dot(ori[np.newaxis], fwd)
sing = np.linalg.norm(fwd)
one = np.dot(fwd / sing, B)
gof = (one * one)[0] / B2
Q = ori * np.sum(one / sing)
ncomp = 3
# Counteract the effect of column normalization
Q *= scales[0]
B_residual_noproj = B_orig - np.dot(fwd_orig.T, Q)
return Q, gof, B_residual_noproj, ncomp
def _fit_dipoles(
fun,
min_dist_to_inner_skull,
data,
times,
guess_rrs,
guess_data,
*,
sensors,
fwd_data,
whitener,
ori,
n_jobs,
rank,
rhoend,
):
"""Fit a single dipole to the given whitened, projected data."""
parallel, p_fun, n_jobs = parallel_func(fun, n_jobs)
# parallel over time points
res = parallel(
p_fun(
min_dist_to_inner_skull,
B,
t,
guess_rrs,
guess_data,
sensors=sensors,
fwd_data=fwd_data,
whitener=whitener,
fmin_cobyla=fmin_cobyla,
ori=ori,
rank=rank,
rhoend=rhoend,
)
for B, t in zip(data.T, times)
)
pos = np.array([r[0] for r in res])
amp = np.array([r[1] for r in res])
ori = np.array([r[2] for r in res])
gof = np.array([r[3] for r in res]) * 100 # convert to percentage
conf = None
if res[0][4] is not None:
conf = np.array([r[4] for r in res])
keys = ["vol", "depth", "long", "trans", "qlong", "qtrans"]
conf = {key: conf[:, ki] for ki, key in enumerate(keys)}
khi2 = np.array([r[5] for r in res])
nfree = np.array([r[6] for r in res])
residual_noproj = np.array([r[7] for r in res]).T
return pos, amp, ori, gof, conf, khi2, nfree, residual_noproj
'''Simplex code in case we ever want/need it for testing
def _make_tetra_simplex():
"""Make the initial tetrahedron"""
#
# For this definition of a regular tetrahedron, see
#
# http://mathworld.wolfram.com/Tetrahedron.html
#
x = np.sqrt(3.0) / 3.0
r = np.sqrt(6.0) / 12.0
R = 3 * r
d = x / 2.0
simplex = 1e-2 * np.array([[x, 0.0, -r],
[-d, 0.5, -r],
[-d, -0.5, -r],
[0., 0., R]])
return simplex
def try_(p, y, psum, ndim, fun, ihi, neval, fac):
"""Helper to try a value"""
ptry = np.empty(ndim)
fac1 = (1.0 - fac) / ndim
fac2 = fac1 - fac
ptry = psum * fac1 - p[ihi] * fac2
ytry = fun(ptry)
neval += 1
if ytry < y[ihi]:
y[ihi] = ytry
psum[:] += ptry - p[ihi]
p[ihi] = ptry
return ytry, neval
def _simplex_minimize(p, ftol, stol, fun, max_eval=1000):
"""Minimization with the simplex algorithm
Modified from Numerical recipes"""
y = np.array([fun(s) for s in p])
ndim = p.shape[1]
assert p.shape[0] == ndim + 1
mpts = ndim + 1
neval = 0
psum = p.sum(axis=0)
loop = 1
while(True):
ilo = 1
if y[1] > y[2]:
ihi = 1
inhi = 2
else:
ihi = 2
inhi = 1
for i in range(mpts):
if y[i] < y[ilo]:
ilo = i
if y[i] > y[ihi]:
inhi = ihi
ihi = i
elif y[i] > y[inhi]:
if i != ihi:
inhi = i
rtol = 2 * np.abs(y[ihi] - y[ilo]) / (np.abs(y[ihi]) + np.abs(y[ilo]))
if rtol < ftol:
break
if neval >= max_eval:
raise RuntimeError('Maximum number of evaluations exceeded.')
if stol > 0: # Has the simplex collapsed?
dsum = np.sqrt(np.sum((p[ilo] - p[ihi]) ** 2))
if loop > 5 and dsum < stol:
break
ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, -1.)
if ytry <= y[ilo]:
ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, 2.)
elif ytry >= y[inhi]:
ysave = y[ihi]
ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, 0.5)
if ytry >= ysave:
for i in range(mpts):
if i != ilo:
psum[:] = 0.5 * (p[i] + p[ilo])
p[i] = psum
y[i] = fun(psum)
neval += ndim
psum = p.sum(axis=0)
loop += 1
'''
def _fit_confidence(*, rd, Q, ori, whitener, fwd_data, sensors):
# As describedd in the Xfit manual, confidence intervals can be calculated
# by examining a linearization of model at the best-fitting location,
# i.e. taking the Jacobian and using the whitener:
#
# J = [∂b/∂x ∂b/∂y ∂b/∂z ∂b/∂Qx ∂b/∂Qy ∂b/∂Qz]
# C = (J.T C^-1 J)^-1
#
# And then the confidence interval is the diagonal of C, scaled by 1.96
# (for 95% confidence).
direction = np.empty((3, 3))
# The coordinate system has the x axis aligned with the dipole orientation,
direction[0] = ori
# the z axis through the origin of the sphere model
rvec = rd - fwd_data["inner_skull"]["r0"]
direction[2] = rvec - ori * np.dot(ori, rvec) # orthogonalize
direction[2] /= np.linalg.norm(direction[2])
# and the y axis perpendical with these forming a right-handed system.
direction[1] = np.cross(direction[2], direction[0])
assert np.allclose(np.dot(direction, direction.T), np.eye(3))
# Get spatial deltas in dipole coordinate directions
deltas = (-1e-4, 1e-4)
J = np.empty((whitener.shape[0], 6))
for ii in range(3):
fwds = []
for delta in deltas:
this_r = rd[np.newaxis] + delta * direction[ii]
fwds.append(
np.dot(
Q,
_dipole_forwards(
sensors=sensors, fwd_data=fwd_data, whitener=whitener, rr=this_r
)[0],
)
)
J[:, ii] = np.diff(fwds, axis=0)[0] / np.diff(deltas)[0]
# Get current (Q) deltas in the dipole directions
deltas = np.array([-0.01, 0.01]) * np.linalg.norm(Q)
this_fwd = _dipole_forwards(
sensors=sensors, fwd_data=fwd_data, whitener=whitener, rr=rd[np.newaxis]
)[0]
for ii in range(3):
fwds = []
for delta in deltas:
fwds.append(np.dot(Q + delta * direction[ii], this_fwd))
J[:, ii + 3] = np.diff(fwds, axis=0)[0] / np.diff(deltas)[0]
# J is already whitened, so we don't need to do np.dot(whitener, J).
# However, the units in the Jacobian are potentially quite different,
# so we need to do some normalization during inversion, then revert.
direction_norm = np.linalg.norm(J[:, :3])
Q_norm = np.linalg.norm(J[:, 3:5]) # omit possible zero Z
norm = np.array([direction_norm] * 3 + [Q_norm] * 3)
J /= norm
J = np.dot(J.T, J)
C = pinvh(J, rtol=1e-14)
C /= norm
C /= norm[:, np.newaxis]
conf = 1.96 * np.sqrt(np.diag(C))
# The confidence volume of the dipole location is obtained from by
# taking the eigenvalues of the upper left submatrix and computing
# v = 4π/3 √(c^3 λ1 λ2 λ3) with c = 7.81, or:
vol_conf = (
4
* np.pi
/ 3.0
* np.sqrt(476.379541 * np.prod(eigh(C[:3, :3], eigvals_only=True)))
)
conf = np.concatenate([conf, [vol_conf]])
# Now we reorder and subselect the proper columns:
# vol, depth, long, trans, Qlong, Qtrans (discard Qdepth, assumed zero)
conf = conf[[6, 2, 0, 1, 3, 4]]
return conf
def _surface_constraint(rd, surf, min_dist_to_inner_skull):
"""Surface fitting constraint."""
dist = _compute_nearest(surf["rr"], rd[np.newaxis, :], return_dists=True)[1][0]
if _points_outside_surface(rd[np.newaxis, :], surf, 1)[0]:
dist *= -1.0
# Once we know the dipole is below the inner skull,
# let's check if its distance to the inner skull is at least
# min_dist_to_inner_skull. This can be enforced by adding a
# constrain proportional to its distance.
dist -= min_dist_to_inner_skull
return dist
def _sphere_constraint(rd, r0, R_adj):
"""Sphere fitting constraint."""
return R_adj - np.sqrt(np.sum((rd - r0) ** 2))
def _fit_dipole(
min_dist_to_inner_skull,
B_orig,
t,
guess_rrs,
guess_data,
*,
sensors,
fwd_data,
whitener,
fmin_cobyla,
ori,
rank,
rhoend,
):
"""Fit a single bit of data."""
B = np.dot(whitener, B_orig)
# make constraint function to keep the solver within the inner skull
if "rr" in fwd_data["inner_skull"]: # bem
surf = fwd_data["inner_skull"]
constraint = partial(
_surface_constraint,
surf=surf,
min_dist_to_inner_skull=min_dist_to_inner_skull,
)
else: # sphere
surf = None
constraint = partial(
_sphere_constraint,
r0=fwd_data["inner_skull"]["r0"],
R_adj=fwd_data["inner_skull"]["R"] - min_dist_to_inner_skull,
)
# Find a good starting point (find_best_guess in C)
B2 = np.dot(B, B)
if B2 == 0:
warn(f"Zero field found for time {t}")
return np.zeros(3), 0, np.zeros(3), 0, B
idx = np.argmin(
[
_fit_eval(
guess_rrs[[fi], :],
B,
B2,
fwd_svd=fwd_svd,
fwd_data=None,
sensors=None,
whitener=None,
lwork=None,
)
for fi, fwd_svd in enumerate(guess_data["fwd_svd"])
]
)
x0 = guess_rrs[idx]
lwork = _svd_lwork((3, B.shape[0]))
fun = partial(
_fit_eval,
B=B,
B2=B2,
fwd_data=fwd_data,
whitener=whitener,
lwork=lwork,
sensors=sensors,
fwd_svd=None,
)
# Tested minimizers:
# Simplex, BFGS, CG, COBYLA, L-BFGS-B, Powell, SLSQP, TNC
# Several were similar, but COBYLA won for having a handy constraint
# function we can use to ensure we stay inside the inner skull /
# smallest sphere
rd_final = fmin_cobyla(
fun, x0, (constraint,), consargs=(), rhobeg=5e-2, rhoend=rhoend, disp=False
)
# simplex = _make_tetra_simplex() + x0
# _simplex_minimize(simplex, 1e-4, 2e-4, fun)
# rd_final = simplex[0]
# Compute the dipole moment at the final point
Q, gof, residual_noproj, n_comp = _fit_Q(
sensors=sensors,
fwd_data=fwd_data,
whitener=whitener,
B=B,
B2=B2,
B_orig=B_orig,
rd=rd_final,
ori=ori,
)
khi2 = (1 - gof) * B2
nfree = rank - n_comp
amp = np.sqrt(np.dot(Q, Q))
norm = 1.0 if amp == 0.0 else amp
ori = Q / norm
conf = _fit_confidence(
sensors=sensors, rd=rd_final, Q=Q, ori=ori, whitener=whitener, fwd_data=fwd_data
)
msg = "---- Fitted : %7.1f ms" % (1000.0 * t)
if surf is not None:
dist_to_inner_skull = _compute_nearest(
surf["rr"], rd_final[np.newaxis, :], return_dists=True
)[1][0]
msg += ", distance to inner skull : %2.4f mm" % (dist_to_inner_skull * 1000.0)
logger.info(msg)
return rd_final, amp, ori, gof, conf, khi2, nfree, residual_noproj
def _fit_dipole_fixed(
min_dist_to_inner_skull,
B_orig,
t,
guess_rrs,
guess_data,
*,
sensors,
fwd_data,
whitener,
fmin_cobyla,
ori,
rank,
rhoend,
):
"""Fit a data using a fixed position."""
B = np.dot(whitener, B_orig)
B2 = np.dot(B, B)
if B2 == 0:
warn(f"Zero field found for time {t}")
return np.zeros(3), 0, np.zeros(3), 0, np.zeros(6)
# Compute the dipole moment
Q, gof, residual_noproj = _fit_Q(
fwd_data=guess_data,
whitener=whitener,
B=B,
B2=B2,
B_orig=B_orig,
sensors=sensors,
rd=None,
ori=ori,
)[:3]
if ori is None:
amp = np.sqrt(np.dot(Q, Q))
norm = 1.0 if amp == 0.0 else amp
ori = Q / norm
else:
amp = np.dot(Q, ori)
rd_final = guess_rrs[0]
# This will be slow, and we don't use it anyway, so omit it for now:
# conf = _fit_confidence(rd_final, Q, ori, whitener, fwd_data)
conf = khi2 = nfree = None
# No corresponding 'logger' message here because it should go *very* fast
return rd_final, amp, ori, gof, conf, khi2, nfree, residual_noproj
@verbose
def fit_dipole(
evoked,
cov,
bem,
trans=None,
min_dist=5.0,
n_jobs=None,
pos=None,
ori=None,
rank=None,
accuracy="normal",
tol=5e-5,
verbose=None,
):
"""Fit a dipole.
Parameters
----------
evoked : instance of Evoked
The dataset to fit.
cov : str | instance of Covariance
The noise covariance.
bem : path-like | instance of ConductorModel
The BEM filename (str) or conductor model.
trans : path-like | None
The head<->MRI transform filename. Must be provided unless BEM
is a sphere model.
min_dist : float
Minimum distance (in millimeters) from the dipole to the inner skull.
Must be positive. Note that because this is a constraint passed to
a solver it is not strict but close, i.e. for a ``min_dist=5.`` the
fits could be 4.9 mm from the inner skull.
%(n_jobs)s
It is used in field computation and fitting.
pos : ndarray, shape (3,) | None
Position of the dipole to use. If None (default), sequential
fitting (different position and orientation for each time instance)
is performed. If a position (in head coords) is given as an array,
the position is fixed during fitting.
.. versionadded:: 0.12
ori : ndarray, shape (3,) | None
Orientation of the dipole to use. If None (default), the
orientation is free to change as a function of time. If an
orientation (in head coordinates) is given as an array, ``pos``
must also be provided, and the routine computes the amplitude and
goodness of fit of the dipole at the given position and orientation
for each time instant.
.. versionadded:: 0.12
%(rank_none)s
.. versionadded:: 0.20
accuracy : str
Can be ``"normal"`` (default) or ``"accurate"``, which gives the most
accurate coil definition but is typically not necessary for real-world
data.
.. versionadded:: 0.24
tol : float
Final accuracy of the optimization (see ``rhoend`` argument of
:func:`scipy.optimize.fmin_cobyla`).
.. versionadded:: 0.24
%(verbose)s
Returns
-------
dip : instance of Dipole or DipoleFixed
The dipole fits. A :class:`mne.DipoleFixed` is returned if
``pos`` and ``ori`` are both not None, otherwise a
:class:`mne.Dipole` is returned.
residual : instance of Evoked
The M-EEG data channels with the fitted dipolar activity removed.
See Also
--------
mne.beamformer.rap_music
Dipole
DipoleFixed
read_dipole
Notes
-----
.. versionadded:: 0.9.0
"""
# This could eventually be adapted to work with other inputs, these
# are what is needed:
evoked = evoked.copy()
_validate_type(accuracy, str, "accuracy")
_check_option("accuracy", accuracy, ("accurate", "normal"))
# Determine if a list of projectors has an average EEG ref
if _needs_eeg_average_ref_proj(evoked.info):
raise ValueError("EEG average reference is mandatory for dipole fitting.")
if min_dist < 0:
raise ValueError(f"min_dist should be positive. Got {min_dist}")
if ori is not None and pos is None:
raise ValueError("pos must be provided if ori is not None")
data = evoked.data
if not np.isfinite(data).all():
raise ValueError("Evoked data must be finite")
info = evoked.info
times = evoked.times.copy()
comment = evoked.comment
# Convert the min_dist to meters
min_dist_to_inner_skull = min_dist / 1000.0
del min_dist
# Figure out our inputs
neeg = len(pick_types(info, meg=False, eeg=True, ref_meg=False, exclude=[]))
if isinstance(bem, str):
bem_extra = bem
else:
bem_extra = repr(bem)
logger.info(f"BEM : {bem_extra}")
mri_head_t, trans = _get_trans(trans)
logger.info(f"MRI transform : {trans}")
safe_false = _verbose_safe_false()
bem = _setup_bem(bem, bem_extra, neeg, mri_head_t, verbose=safe_false)
if not bem["is_sphere"]:
# Find the best-fitting sphere
inner_skull = _bem_find_surface(bem, "inner_skull")
inner_skull = inner_skull.copy()
R, r0 = _fit_sphere(inner_skull["rr"])
# r0 back to head frame for logging
r0 = apply_trans(mri_head_t["trans"], r0[np.newaxis, :])[0]
inner_skull["r0"] = r0
logger.info(
f"Head origin : {1000 * r0[0]:6.1f} {1000 * r0[1]:6.1f} "
f"{1000 * r0[2]:6.1f} mm rad = {1000 * R:6.1f} mm."
)
del R, r0
else:
r0 = bem["r0"]
if len(bem.get("layers", [])) > 0:
R = bem["layers"][0]["rad"]
kind = "rad"
else: # MEG-only
# Use the minimum distance to the MEG sensors as the radius then
R = np.dot(
np.linalg.inv(info["dev_head_t"]["trans"]), np.hstack([r0, [1.0]])
)[:3] # r0 -> device
R = R - [
info["chs"][pick]["loc"][:3]
for pick in pick_types(info, meg=True, exclude=[])
]
if len(R) == 0:
raise RuntimeError(
"No MEG channels found, but MEG-only sphere model used"
)
R = np.min(np.sqrt(np.sum(R * R, axis=1))) # use dist to sensors
kind = "max_rad"
logger.info(
f"Sphere model : origin at ({1000 * r0[0]: 7.2f} {1000 * r0[1]: 7.2f} "
f"{1000 * r0[2]: 7.2f}) mm, {kind} = {R:6.1f} mm"
)
inner_skull = dict(R=R, r0=r0) # NB sphere model defined in head frame
del R, r0
# Deal with DipoleFixed cases here
if pos is not None:
fixed_position = True
pos = np.array(pos, float)
if pos.shape != (3,):
raise ValueError(f"pos must be None or a 3-element array-like, got {pos}")
logger.info(
"Fixed position : {:6.1f} {:6.1f} {:6.1f} mm".format(*tuple(1000 * pos))
)
if ori is not None:
ori = np.array(ori, float)
if ori.shape != (3,):
raise ValueError(
f"oris must be None or a 3-element array-like, got {ori}"
)
norm = np.sqrt(np.sum(ori * ori))
if not np.isclose(norm, 1):
raise ValueError(f"ori must be a unit vector, got length {norm}")
logger.info(
"Fixed orientation : {:6.4f} {:6.4f} {:6.4f} mm".format(*tuple(ori))
)
else:
logger.info("Free orientation : <time-varying>")
fit_n_jobs = 1 # only use 1 job to do the guess fitting
else:
fixed_position = False
# Eventually these could be parameters, but they are just used for
# the initial grid anyway
guess_grid = 0.02 # MNE-C uses 0.01, but this is faster w/similar perf
guess_mindist = max(0.005, min_dist_to_inner_skull)
guess_exclude = 0.02
logger.info(f"Guess grid : {1000 * guess_grid:6.1f} mm")
if guess_mindist > 0.0:
logger.info(f"Guess mindist : {1000 * guess_mindist:6.1f} mm")
if guess_exclude > 0:
logger.info(f"Guess exclude : {1000 * guess_exclude:6.1f} mm")
logger.info(f"Using {accuracy} MEG coil definitions.")
fit_n_jobs = n_jobs
cov = _ensure_cov(cov)
logger.info("")
_print_coord_trans(mri_head_t)
_print_coord_trans(info["dev_head_t"])
logger.info(f"{len(info['bads'])} bad channels total")
# Forward model setup (setup_forward_model from setup.c)
ch_types = evoked.get_channel_types()
sensors = dict()
if "grad" in ch_types or "mag" in ch_types:
sensors["meg"] = _prep_meg_channels(
info, exclude="bads", accuracy=accuracy, verbose=verbose
)
if "eeg" in ch_types:
sensors["eeg"] = _prep_eeg_channels(info, exclude="bads", verbose=verbose)
# Ensure that MEG and/or EEG channels are present
if len(sensors) == 0:
raise RuntimeError("No MEG or EEG channels found.")
# Whitener for the data
logger.info("Decomposing the sensor noise covariance matrix...")
picks = pick_types(info, meg=True, eeg=True, ref_meg=False)
# In case we want to more closely match MNE-C for debugging:
# from ._fiff.pick import pick_info
# from .cov import prepare_noise_cov
# info_nb = pick_info(info, picks)
# cov = prepare_noise_cov(cov, info_nb, info_nb['ch_names'], verbose=False)
# nzero = (cov['eig'] > 0)
# n_chan = len(info_nb['ch_names'])
# whitener = np.zeros((n_chan, n_chan), dtype=np.float64)
# whitener[nzero, nzero] = 1.0 / np.sqrt(cov['eig'][nzero])
# whitener = np.dot(whitener, cov['eigvec'])
whitener, _, rank = compute_whitener(
cov, info, picks=picks, rank=rank, return_rank=True
)
# Proceed to computing the fits (make_guess_data)
if fixed_position:
guess_src = dict(nuse=1, rr=pos[np.newaxis], inuse=np.array([True]))
logger.info("Compute forward for dipole location...")
else:
logger.info("\n---- Computing the forward solution for the guesses...")
guess_src = _make_guesses(
inner_skull, guess_grid, guess_exclude, guess_mindist, n_jobs=n_jobs
)[0]
# grid coordinates go from mri to head frame
transform_surface_to(guess_src, "head", mri_head_t)
logger.info("Go through all guess source locations...")
# inner_skull goes from mri to head frame
if "rr" in inner_skull:
transform_surface_to(inner_skull, "head", mri_head_t)
if fixed_position:
if "rr" in inner_skull:
check = _surface_constraint(pos, inner_skull, min_dist_to_inner_skull)
else:
check = _sphere_constraint(
pos, inner_skull["r0"], R_adj=inner_skull["R"] - min_dist_to_inner_skull
)
if check <= 0:
raise ValueError(
f"fixed position is {-1000 * check:0.1f}mm outside the inner skull "
"boundary"
)
# C code computes guesses w/sphere model for speed, don't bother here
fwd_data = _prep_field_computation(
guess_src["rr"], sensors=sensors, bem=bem, n_jobs=n_jobs, verbose=safe_false
)
fwd_data["inner_skull"] = inner_skull
guess_fwd, guess_fwd_orig, guess_fwd_scales = _dipole_forwards(
sensors=sensors,
fwd_data=fwd_data,
whitener=whitener,
rr=guess_src["rr"],
n_jobs=fit_n_jobs,
)
# decompose ahead of time
guess_fwd_svd = [
_safe_svd(fwd, full_matrices=False)
for fwd in np.array_split(guess_fwd, len(guess_src["rr"]))
]
guess_data = dict(
fwd=guess_fwd,
fwd_svd=guess_fwd_svd,
fwd_orig=guess_fwd_orig,
scales=guess_fwd_scales,
)
del guess_fwd, guess_fwd_svd, guess_fwd_orig, guess_fwd_scales # destroyed
logger.info("[done %d source%s]", guess_src["nuse"], _pl(guess_src["nuse"]))
# Do actual fits
data = data[picks]
ch_names = [info["ch_names"][p] for p in picks]
proj_op = make_projector(info["projs"], ch_names, info["bads"])[0]
fun = _fit_dipole_fixed if fixed_position else _fit_dipole
out = _fit_dipoles(
fun,
min_dist_to_inner_skull,
data,
times,
guess_src["rr"],
guess_data,
sensors=sensors,
fwd_data=fwd_data,
whitener=whitener,
ori=ori,
n_jobs=n_jobs,
rank=rank,
rhoend=tol,
)
assert len(out) == 8
if fixed_position and ori is not None:
# DipoleFixed
data = np.array([out[1], out[3]])
out_info = deepcopy(info)
loc = np.concatenate([pos, ori, np.zeros(6)])
out_info._unlocked = True
out_info["chs"] = [
dict(
ch_name="dip 01",
loc=loc,
kind=FIFF.FIFFV_DIPOLE_WAVE,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
unit=FIFF.FIFF_UNIT_AM,
coil_type=FIFF.FIFFV_COIL_DIPOLE,
unit_mul=0,
range=1,
cal=1.0,
scanno=1,
logno=1,
),
dict(
ch_name="goodness",
loc=np.full(12, np.nan),
kind=FIFF.FIFFV_GOODNESS_FIT,
unit=FIFF.FIFF_UNIT_AM,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
coil_type=FIFF.FIFFV_COIL_NONE,
unit_mul=0,
range=1.0,
cal=1.0,
scanno=2,
logno=100,
),
]
for key in ["hpi_meas", "hpi_results", "projs"]:
out_info[key] = list()
for key in [
"acq_pars",
"acq_stim",
"description",
"dig",
"experimenter",
"hpi_subsystem",
"proj_id",
"proj_name",
"subject_info",
]:
out_info[key] = None
out_info._unlocked = False
out_info["bads"] = []
out_info._update_redundant()
out_info._check_consistency()
dipoles = DipoleFixed(
out_info, data, times, evoked.nave, evoked._aspect_kind, comment=comment
)
else:
dipoles = Dipole(
times, out[0], out[1], out[2], out[3], comment, out[4], out[5], out[6]
)
residual = evoked.copy().apply_proj() # set the projs active
residual.data[picks] = np.dot(proj_op, out[-1])
logger.info("%d time points fitted", len(dipoles.times))
return dipoles, residual
# Every other row of Table 3 from OyamaEtAl2015
_OYAMA = """
0.00 56.29 -27.50
32.50 56.29 5.00
0.00 65.00 5.00
-32.50 56.29 5.00
0.00 56.29 37.50
0.00 32.50 61.29
-56.29 0.00 -27.50
-56.29 32.50 5.00
-65.00 0.00 5.00
-56.29 -32.50 5.00
-56.29 0.00 37.50
-32.50 0.00 61.29
0.00 -56.29 -27.50
-32.50 -56.29 5.00
0.00 -65.00 5.00
32.50 -56.29 5.00
0.00 -56.29 37.50
0.00 -32.50 61.29
56.29 0.00 -27.50
56.29 -32.50 5.00
65.00 0.00 5.00
56.29 32.50 5.00
56.29 0.00 37.50
32.50 0.00 61.29
0.00 0.00 70.00
"""
def get_phantom_dipoles(kind="vectorview"):
"""Get standard phantom dipole locations and orientations.
Parameters
----------
kind : str
Get the information for the given system:
``vectorview`` (default)
The Neuromag VectorView phantom.
``otaniemi``
The older Neuromag phantom used at Otaniemi.
``oyama``
The phantom from :footcite:`OyamaEtAl2015`.
.. versionchanged:: 1.6
Support added for ``'oyama'``.
Returns
-------
pos : ndarray, shape (n_dipoles, 3)
The dipole positions.
ori : ndarray, shape (n_dipoles, 3)
The dipole orientations.
See Also
--------
mne.datasets.fetch_phantom
Notes
-----
The Elekta phantoms have a radius of 79.5mm, and HPI coil locations
in the XY-plane at the axis extrema (e.g., (79.5, 0), (0, -79.5), ...).
References
----------
.. footbibliography::
"""
_validate_type(kind, str, "kind")
_check_option("kind", kind, ["vectorview", "otaniemi", "oyama"])
if kind == "vectorview":
# these values were pulled from a scanned image provided by
# Elekta folks
a = np.array([59.7, 48.6, 35.8, 24.8, 37.2, 27.5, 15.8, 7.9])
b = np.array([46.1, 41.9, 38.3, 31.5, 13.9, 16.2, 20.0, 19.3])
x = np.concatenate((a, [0] * 8, -b, [0] * 8))
y = np.concatenate(([0] * 8, -a, [0] * 8, b))
c = [22.9, 23.5, 25.5, 23.1, 52.0, 46.4, 41.0, 33.0]
d = [44.4, 34.0, 21.6, 12.7, 62.4, 51.5, 39.1, 27.9]
z = np.concatenate((c, c, d, d))
signs = ([1, -1] * 4 + [-1, 1] * 4) * 2
elif kind == "otaniemi":
# these values were pulled from an Neuromag manual
# (NM20456A, 13.7.1999, p.65)
a = np.array([56.3, 47.6, 39.0, 30.3])
b = np.array([32.5, 27.5, 22.5, 17.5])
c = np.zeros(4)
x = np.concatenate((a, b, c, c, -a, -b, c, c))
y = np.concatenate((c, c, -a, -b, c, c, b, a))
z = np.concatenate((b, a, b, a, b, a, a, b))
signs = [-1] * 8 + [1] * 16 + [-1] * 8
else:
assert kind == "oyama"
xyz = np.fromstring(_OYAMA.strip().replace("\n", " "), sep=" ").reshape(25, 3)
xyz = np.repeat(xyz, 2, axis=0)
x, y, z = xyz.T
signs = [1] * 50
pos = np.vstack((x, y, z)).T / 1000.0
# For Neuromag-style phantoms,
# Locs are always in XZ or YZ, and so are the oris. The oris are
# also in the same plane and tangential, so it's easy to determine
# the orientation.
# For Oyama, vectors are orthogonal to the position vector and oriented with one
# pointed toward the north pole (except for the topmost points, which are just xy).
ori = list()
for pi, this_pos in enumerate(pos):
this_ori = np.zeros(3)
idx = np.where(this_pos == 0)[0]
# assert len(idx) == 1
if len(idx) == 0: # oyama
idx = [np.argmin(this_pos)]
idx = np.setdiff1d(np.arange(3), idx[0])
this_ori[idx] = (this_pos[idx][::-1] / np.linalg.norm(this_pos[idx])) * [1, -1]
if kind == "oyama":
# Ensure it's orthogonal to the position vector
pos_unit = this_pos / np.linalg.norm(this_pos)
this_ori -= pos_unit * np.dot(this_ori, pos_unit)
this_ori /= np.linalg.norm(this_ori)
# This was empirically determined by looking at the dipole fits
if np.abs(this_ori[2]) >= 1e-6: # if it's not in the XY plane
this_ori *= -1 * np.sign(this_ori[2]) # point downward
elif np.abs(this_ori[0]) < 1e-6: # in the XY plane (at the north pole)
this_ori *= -1 * np.sign(this_ori[1]) # point backward
# Odd ones create a RH coordinate system with their ori
if pi % 2:
this_ori = np.cross(pos_unit, this_ori)
else:
this_ori *= signs[pi]
# Now we have this quality, which we could uncomment to
# double-check:
# np.testing.assert_allclose(np.dot(this_ori, this_pos) /
# np.linalg.norm(this_pos), 0,
# atol=1e-15)
ori.append(this_ori)
ori = np.array(ori)
return pos, ori
def _concatenate_dipoles(dipoles):
"""Concatenate a list of dipoles."""
times, pos, amplitude, ori, gof = [], [], [], [], []
for dipole in dipoles:
times.append(dipole.times)
pos.append(dipole.pos)
amplitude.append(dipole.amplitude)
ori.append(dipole.ori)
gof.append(dipole.gof)
return Dipole(
np.concatenate(times),
np.concatenate(pos),
np.concatenate(amplitude),
np.concatenate(ori),
np.concatenate(gof),
name=None,
)