[7f9fb8]: / mne / coreg.py

Download this file

2260 lines (2002 with data), 77.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
"""Coregistration between different coordinate frames."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import configparser
import fnmatch
import os
import os.path as op
import re
import shutil
import stat
import sys
from functools import reduce
from glob import glob, iglob
import numpy as np
from scipy.optimize import leastsq
from scipy.spatial.distance import cdist
from ._fiff._digitization import _get_data_as_dict_from_dig
from ._fiff.constants import FIFF
from ._fiff.meas_info import Info, read_fiducials, read_info, write_fiducials
# keep get_mni_fiducials for backward compat (no burden to keep in this
# namespace, too)
from ._freesurfer import (
_read_mri_info,
estimate_head_mri_t, # noqa: F401
get_mni_fiducials,
)
from .bem import read_bem_surfaces, write_bem_surfaces
from .channels import make_dig_montage
from .label import Label, read_label
from .source_space import (
add_source_space_distances,
read_source_spaces, # noqa: F401
write_source_spaces,
)
from .surface import (
_DistanceQuery,
_normalize_vectors,
complete_surface_info,
decimate_surface,
read_surface,
write_surface,
)
from .transforms import (
Transform,
_angle_between_quats,
_fit_matched_points,
_quat_to_euler,
_read_fs_xfm,
_write_fs_xfm,
apply_trans,
combine_transforms,
invert_transform,
rot_to_quat,
rotation,
rotation3d,
scaling,
translation,
)
from .utils import (
_check_option,
_check_subject,
_import_nibabel,
_validate_type,
fill_doc,
get_config,
get_subjects_dir,
logger,
pformat,
verbose,
warn,
)
from .viz._3d import _fiducial_coords
# some path templates
trans_fname = os.path.join("{raw_dir}", "{subject}-trans.fif")
subject_dirname = os.path.join("{subjects_dir}", "{subject}")
bem_dirname = os.path.join(subject_dirname, "bem")
mri_dirname = os.path.join(subject_dirname, "mri")
mri_transforms_dirname = os.path.join(subject_dirname, "mri", "transforms")
surf_dirname = os.path.join(subject_dirname, "surf")
bem_fname = os.path.join(bem_dirname, "{subject}-{name}.fif")
head_bem_fname = pformat(bem_fname, name="head")
head_sparse_fname = pformat(bem_fname, name="head-sparse")
fid_fname = pformat(bem_fname, name="fiducials")
fid_fname_general = os.path.join(bem_dirname, "{head}-fiducials.fif")
src_fname = os.path.join(bem_dirname, "{subject}-{spacing}-src.fif")
_head_fnames = (
os.path.join(bem_dirname, "outer_skin.surf"),
head_sparse_fname,
head_bem_fname,
)
_high_res_head_fnames = (
os.path.join(bem_dirname, "{subject}-head-dense.fif"),
os.path.join(surf_dirname, "lh.seghead"),
os.path.join(surf_dirname, "lh.smseghead"),
)
def _map_fid_name_to_idx(name: str) -> int:
"""Map a fiducial name to its index in the DigMontage."""
name = name.lower()
if name == "lpa":
return 0
elif name == "nasion":
return 1
else:
assert name == "rpa"
return 2
def _make_writable(fname):
"""Make a file writable."""
os.chmod(fname, stat.S_IMODE(os.lstat(fname)[stat.ST_MODE]) | 128) # write
def _make_writable_recursive(path):
"""Recursively set writable."""
if sys.platform.startswith("win"):
return # can't safely set perms
for root, dirs, files in os.walk(path, topdown=False):
for f in dirs + files:
_make_writable(os.path.join(root, f))
def _find_head_bem(subject, subjects_dir, high_res=False):
"""Find a high resolution head."""
# XXX this should be refactored with mne.surface.get_head_surf ...
fnames = _high_res_head_fnames if high_res else _head_fnames
for fname in fnames:
path = fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
return path
@fill_doc
def coregister_fiducials(info, fiducials, tol=0.01):
"""Create a head-MRI transform by aligning 3 fiducial points.
Parameters
----------
%(info_not_none)s
fiducials : path-like | list of dict
Fiducials in MRI coordinate space (either path to a ``*-fiducials.fif``
file or list of fiducials as returned by :func:`read_fiducials`.
Returns
-------
trans : Transform
The device-MRI transform.
.. note:: The :class:`mne.Info` object fiducials must be in the
head coordinate space.
"""
if isinstance(info, str):
info = read_info(info)
if isinstance(fiducials, str):
fiducials, coord_frame_to = read_fiducials(fiducials)
else:
coord_frame_to = FIFF.FIFFV_COORD_MRI
frames_from = {d["coord_frame"] for d in info["dig"]}
if len(frames_from) > 1:
raise ValueError("info contains fiducials from different coordinate frames")
else:
coord_frame_from = frames_from.pop()
coords_from = _fiducial_coords(info["dig"])
coords_to = _fiducial_coords(fiducials, coord_frame_to)
trans = fit_matched_points(coords_from, coords_to, tol=tol)
return Transform(coord_frame_from, coord_frame_to, trans)
@verbose
def create_default_subject(fs_home=None, update=False, subjects_dir=None, verbose=None):
"""Create an average brain subject for subjects without structural MRI.
Create a copy of fsaverage from the FreeSurfer directory in subjects_dir
and add auxiliary files from the mne package.
Parameters
----------
fs_home : None | str
The FreeSurfer home directory (only needed if ``FREESURFER_HOME`` is
not specified as environment variable).
update : bool
In cases where a copy of the fsaverage brain already exists in the
subjects_dir, this option allows to only copy files that don't already
exist in the fsaverage directory.
subjects_dir : None | path-like
Override the ``SUBJECTS_DIR`` environment variable
(``os.environ['SUBJECTS_DIR']``) as destination for the new subject.
%(verbose)s
Notes
-----
When no structural MRI is available for a subject, an average brain can be
substituted. FreeSurfer comes with such an average brain model, and MNE
comes with some auxiliary files which make coregistration easier.
:py:func:`create_default_subject` copies the relevant
files from FreeSurfer into the current subjects_dir, and also adds the
auxiliary files provided by MNE.
"""
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
if fs_home is None:
fs_home = get_config("FREESURFER_HOME", fs_home)
if fs_home is None:
raise ValueError(
"FREESURFER_HOME environment variable not found. Please "
"specify the fs_home parameter in your call to "
"create_default_subject()."
)
# make sure FreeSurfer files exist
fs_src = os.path.join(fs_home, "subjects", "fsaverage")
if not os.path.exists(fs_src):
raise OSError(
f"fsaverage not found at {fs_src!r}. Is fs_home specified correctly?"
)
for name in ("label", "mri", "surf"):
dirname = os.path.join(fs_src, name)
if not os.path.isdir(dirname):
raise OSError(
"FreeSurfer fsaverage seems to be incomplete: No directory named "
f"{name} found in {fs_src}"
)
# make sure destination does not already exist
dest = os.path.join(subjects_dir, "fsaverage")
if dest == fs_src:
raise OSError(
"Your subjects_dir points to the FreeSurfer subjects_dir "
f"({repr(subjects_dir)}). The default subject can not be created in the "
"FreeSurfer installation directory; please specify a different "
"subjects_dir."
)
elif (not update) and os.path.exists(dest):
raise OSError(
'Can not create fsaverage because "fsaverage" already exists in '
f"subjects_dir {repr(subjects_dir)}. Delete or rename the existing "
"fsaverage subject folder."
)
# copy fsaverage from FreeSurfer
logger.info("Copying fsaverage subject from FreeSurfer directory...")
if (not update) or not os.path.exists(dest):
shutil.copytree(fs_src, dest)
_make_writable_recursive(dest)
# copy files from mne
source_fname = os.path.join(
os.path.dirname(__file__), "data", "fsaverage", "fsaverage-%s.fif"
)
dest_bem = os.path.join(dest, "bem")
if not os.path.exists(dest_bem):
os.mkdir(dest_bem)
logger.info("Copying auxiliary fsaverage files from mne...")
dest_fname = os.path.join(dest_bem, "fsaverage-%s.fif")
_make_writable_recursive(dest_bem)
for name in ("fiducials", "head", "inner_skull-bem", "trans"):
if not os.path.exists(dest_fname % name):
shutil.copy(source_fname % name, dest_bem)
def _decimate_points(pts, res=10):
"""Decimate the number of points using a voxel grid.
Create a voxel grid with a specified resolution and retain at most one
point per voxel. For each voxel, the point closest to its center is
retained.
Parameters
----------
pts : array, shape (n_points, 3)
The points making up the head shape.
res : scalar
The resolution of the voxel space (side length of each voxel).
Returns
-------
pts : array, shape = (n_points, 3)
The decimated points.
"""
pts = np.asarray(pts)
# find the bin edges for the voxel space
xmin, ymin, zmin = pts.min(0) - res / 2.0
xmax, ymax, zmax = pts.max(0) + res
xax = np.arange(xmin, xmax, res)
yax = np.arange(ymin, ymax, res)
zax = np.arange(zmin, zmax, res)
# find voxels containing one or more point
H, _ = np.histogramdd(pts, bins=(xax, yax, zax), density=False)
xbins, ybins, zbins = np.nonzero(H)
x = xax[xbins]
y = yax[ybins]
z = zax[zbins]
mids = np.c_[x, y, z] + res / 2.0
# each point belongs to at most one voxel center, so figure those out
# (KDTree faster than BallTree for these small problems)
tree = _DistanceQuery(mids, method="KDTree")
_, mid_idx = tree.query(pts)
# then figure out which to actually use based on proximity
# (take advantage of sorting the mid_idx to get our mapping of
# pts to nearest voxel midpoint)
sort_idx = np.argsort(mid_idx)
bounds = np.cumsum(np.concatenate([[0], np.bincount(mid_idx, minlength=len(mids))]))
assert len(bounds) == len(mids) + 1
out = list()
for mi, mid in enumerate(mids):
# Now we do this:
#
# use_pts = pts[mid_idx == mi]
#
# But it's faster for many points than making a big boolean indexer
# over and over (esp. since each point can only belong to a single
# voxel).
use_pts = pts[sort_idx[bounds[mi] : bounds[mi + 1]]]
if not len(use_pts):
out.append([np.inf] * 3)
else:
out.append(use_pts[np.argmin(cdist(use_pts, mid[np.newaxis])[:, 0])])
out = np.array(out, float).reshape(-1, 3)
out = out[np.abs(out - mids).max(axis=1) < res / 2.0]
# """
return out
def _trans_from_params(param_info, params):
"""Convert transformation parameters into a transformation matrix."""
do_rotate, do_translate, do_scale = param_info
i = 0
trans = []
if do_rotate:
x, y, z = params[:3]
trans.append(rotation(x, y, z))
i += 3
if do_translate:
x, y, z = params[i : i + 3]
trans.insert(0, translation(x, y, z))
i += 3
if do_scale == 1:
s = params[i]
trans.append(scaling(s, s, s))
elif do_scale == 3:
x, y, z = params[i : i + 3]
trans.append(scaling(x, y, z))
trans = reduce(np.dot, trans)
return trans
_ALLOW_ANALITICAL = True
# XXX this function should be moved out of coreg as used elsewhere
def fit_matched_points(
src_pts,
tgt_pts,
rotate=True,
translate=True,
scale=False,
tol=None,
x0=None,
out="trans",
weights=None,
):
"""Find a transform between matched sets of points.
This minimizes the squared distance between two matching sets of points.
Uses :func:`scipy.optimize.leastsq` to find a transformation involving
a combination of rotation, translation, and scaling (in that order).
Parameters
----------
src_pts : array, shape = (n, 3)
Points to which the transform should be applied.
tgt_pts : array, shape = (n, 3)
Points to which src_pts should be fitted. Each point in tgt_pts should
correspond to the point in src_pts with the same index.
rotate : bool
Allow rotation of the ``src_pts``.
translate : bool
Allow translation of the ``src_pts``.
scale : bool
Number of scaling parameters. With False, points are not scaled. With
True, points are scaled by the same factor along all axes.
tol : scalar | None
The error tolerance. If the distance between any of the matched points
exceeds this value in the solution, a RuntimeError is raised. With
None, no error check is performed.
x0 : None | tuple
Initial values for the fit parameters.
out : 'params' | 'trans'
In what format to return the estimate: 'params' returns a tuple with
the fit parameters; 'trans' returns a transformation matrix of shape
(4, 4).
Returns
-------
trans : array, shape (4, 4)
Transformation that, if applied to src_pts, minimizes the squared
distance to tgt_pts. Only returned if out=='trans'.
params : array, shape (n_params, )
A single tuple containing the rotation, translation, and scaling
parameters in that order (as applicable).
"""
src_pts = np.atleast_2d(src_pts)
tgt_pts = np.atleast_2d(tgt_pts)
if src_pts.shape != tgt_pts.shape:
raise ValueError(
"src_pts and tgt_pts must have same shape "
f"(got {src_pts.shape}, {tgt_pts.shape})"
)
if weights is not None:
weights = np.asarray(weights, src_pts.dtype)
if weights.ndim != 1 or weights.size not in (src_pts.shape[0], 1):
raise ValueError(
f"weights (shape={weights.shape}) must be None or have shape "
f"({src_pts.shape[0]},)"
)
weights = weights[:, np.newaxis]
param_info = (bool(rotate), bool(translate), int(scale))
del rotate, translate, scale
# very common use case, rigid transformation (maybe with one scale factor,
# with or without weighted errors)
if param_info in ((True, True, 0), (True, True, 1)) and _ALLOW_ANALITICAL:
src_pts = np.asarray(src_pts, float)
tgt_pts = np.asarray(tgt_pts, float)
if weights is not None:
weights = np.asarray(weights, float)
x, s = _fit_matched_points(src_pts, tgt_pts, weights, bool(param_info[2]))
x[:3] = _quat_to_euler(x[:3])
x = np.concatenate((x, [s])) if param_info[2] else x
else:
x = _generic_fit(src_pts, tgt_pts, param_info, weights, x0)
# re-create the final transformation matrix
if (tol is not None) or (out == "trans"):
trans = _trans_from_params(param_info, x)
# assess the error of the solution
if tol is not None:
src_pts = np.hstack((src_pts, np.ones((len(src_pts), 1))))
est_pts = np.dot(src_pts, trans.T)[:, :3]
err = np.sqrt(np.sum((est_pts - tgt_pts) ** 2, axis=1))
if np.any(err > tol):
raise RuntimeError(f"Error exceeds tolerance. Error = {err!r}")
if out == "params":
return x
elif out == "trans":
return trans
else:
raise ValueError(
f"Invalid out parameter: {out!r}. Needs to be 'params' or 'trans'."
)
def _generic_fit(src_pts, tgt_pts, param_info, weights, x0):
if param_info[1]: # translate
src_pts = np.hstack((src_pts, np.ones((len(src_pts), 1))))
if param_info == (True, False, 0):
def error(x):
rx, ry, rz = x
trans = rotation3d(rx, ry, rz)
est = np.dot(src_pts, trans.T)
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0)
elif param_info == (True, True, 0):
def error(x):
rx, ry, rz, tx, ty, tz = x
trans = np.dot(translation(tx, ty, tz), rotation(rx, ry, rz))
est = np.dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0)
elif param_info == (True, True, 1):
def error(x):
rx, ry, rz, tx, ty, tz, s = x
trans = reduce(
np.dot,
(translation(tx, ty, tz), rotation(rx, ry, rz), scaling(s, s, s)),
)
est = np.dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0, 1)
elif param_info == (True, True, 3):
def error(x):
rx, ry, rz, tx, ty, tz, sx, sy, sz = x
trans = reduce(
np.dot,
(translation(tx, ty, tz), rotation(rx, ry, rz), scaling(sx, sy, sz)),
)
est = np.dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0, 1, 1, 1)
else:
raise NotImplementedError(
"The specified parameter combination is not implemented: "
"rotate={!r}, translate={!r}, scale={!r}".format(*param_info)
)
x, _, _, _, _ = leastsq(error, x0, full_output=True)
return x
def _find_label_paths(subject="fsaverage", pattern=None, subjects_dir=None):
"""Find paths to label files in a subject's label directory.
Parameters
----------
subject : str
Name of the mri subject.
pattern : str | None
Pattern for finding the labels relative to the label directory in the
MRI subject directory (e.g., "aparc/*.label" will find all labels
in the "subject/label/aparc" directory). With None, find all labels.
subjects_dir : None | path-like
Override the SUBJECTS_DIR environment variable
(sys.environ['SUBJECTS_DIR'])
Returns
-------
paths : list
List of paths relative to the subject's label directory
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
subject_dir = subjects_dir / subject
lbl_dir = subject_dir / "label"
if pattern is None:
paths = []
for dirpath, _, filenames in os.walk(lbl_dir):
rel_dir = os.path.relpath(dirpath, lbl_dir)
for filename in fnmatch.filter(filenames, "*.label"):
path = os.path.join(rel_dir, filename)
paths.append(path)
else:
paths = [os.path.relpath(path, lbl_dir) for path in iglob(pattern)]
return paths
def _find_mri_paths(subject, skip_fiducials, subjects_dir):
"""Find all files of an mri relevant for source transformation.
Parameters
----------
subject : str
Name of the mri subject.
skip_fiducials : bool
Do not scale the MRI fiducials. If False, an OSError will be raised
if no fiducials file can be found.
subjects_dir : None | path-like
Override the SUBJECTS_DIR environment variable
(sys.environ['SUBJECTS_DIR'])
Returns
-------
paths : dict
Dictionary whose keys are relevant file type names (str), and whose
values are lists of paths.
"""
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
paths = {}
# directories to create
paths["dirs"] = [bem_dirname, surf_dirname]
# surf/ files
paths["surf"] = []
surf_fname = os.path.join(surf_dirname, "{name}")
surf_names = (
"inflated",
"white",
"orig",
"orig_avg",
"inflated_avg",
"inflated_pre",
"pial",
"pial_avg",
"smoothwm",
"white_avg",
"seghead",
"smseghead",
)
if os.getenv("_MNE_FEW_SURFACES", "") == "true": # for testing
surf_names = surf_names[:4]
for surf_name in surf_names:
for hemi in ("lh.", "rh."):
name = hemi + surf_name
path = surf_fname.format(
subjects_dir=subjects_dir, subject=subject, name=name
)
if os.path.exists(path):
paths["surf"].append(pformat(surf_fname, name=name))
surf_fname = os.path.join(bem_dirname, "{name}")
surf_names = ("inner_skull.surf", "outer_skull.surf", "outer_skin.surf")
for surf_name in surf_names:
path = surf_fname.format(
subjects_dir=subjects_dir, subject=subject, name=surf_name
)
if os.path.exists(path):
paths["surf"].append(pformat(surf_fname, name=surf_name))
del surf_names, surf_name, path, hemi
# BEM files
paths["bem"] = bem = []
path = head_bem_fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
bem.append("head")
bem_pattern = pformat(
bem_fname, subjects_dir=subjects_dir, subject=subject, name="*-bem"
)
re_pattern = pformat(
bem_fname, subjects_dir=subjects_dir, subject=subject, name="(.+)"
).replace("\\", "\\\\")
for path in iglob(bem_pattern):
match = re.match(re_pattern, path)
name = match.group(1)
bem.append(name)
del bem, path, bem_pattern, re_pattern
# fiducials
if skip_fiducials:
paths["fid"] = []
else:
paths["fid"] = _find_fiducials_files(subject, subjects_dir)
# check that we found at least one
if len(paths["fid"]) == 0:
raise OSError(
f"No fiducials file found for {subject}. The fiducials "
"file should be named "
"{subject}/bem/{subject}-fiducials.fif. In "
"order to scale an MRI without fiducials set "
"skip_fiducials=True."
)
# duplicate files (curvature and some surfaces)
paths["duplicate"] = []
path = os.path.join(surf_dirname, "{name}")
surf_fname = os.path.join(surf_dirname, "{name}")
surf_dup_names = ("curv", "sphere", "sphere.reg", "sphere.reg.avg")
for surf_dup_name in surf_dup_names:
for hemi in ("lh.", "rh."):
name = hemi + surf_dup_name
path = surf_fname.format(
subjects_dir=subjects_dir, subject=subject, name=name
)
if os.path.exists(path):
paths["duplicate"].append(pformat(surf_fname, name=name))
del surf_dup_name, name, path, hemi
# transform files (talairach)
paths["transforms"] = []
transform_fname = os.path.join(mri_transforms_dirname, "talairach.xfm")
path = transform_fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
paths["transforms"].append(transform_fname)
del transform_fname, path
# find source space files
paths["src"] = src = []
bem_dir = bem_dirname.format(subjects_dir=subjects_dir, subject=subject)
fnames = fnmatch.filter(os.listdir(bem_dir), "*-src.fif")
prefix = subject + "-"
for fname in fnames:
if fname.startswith(prefix):
fname = f"{{subject}}-{fname[len(prefix) :]}"
path = os.path.join(bem_dirname, fname)
src.append(path)
# find MRIs
mri_dir = mri_dirname.format(subjects_dir=subjects_dir, subject=subject)
fnames = fnmatch.filter(os.listdir(mri_dir), "*.mgz")
paths["mri"] = [os.path.join(mri_dir, f) for f in fnames]
return paths
def _find_fiducials_files(subject, subjects_dir):
"""Find fiducial files."""
fid = []
# standard fiducials
if os.path.exists(fid_fname.format(subjects_dir=subjects_dir, subject=subject)):
fid.append(fid_fname)
# fiducials with subject name
pattern = pformat(
fid_fname_general, subjects_dir=subjects_dir, subject=subject, head="*"
)
regex = pformat(
fid_fname_general, subjects_dir=subjects_dir, subject=subject, head="(.+)"
).replace("\\", "\\\\")
for path in iglob(pattern):
match = re.match(regex, path)
head = match.group(1).replace(subject, "{subject}")
fid.append(pformat(fid_fname_general, head=head))
return fid
def _is_mri_subject(subject, subjects_dir=None):
"""Check whether a directory in subjects_dir is an mri subject directory.
Parameters
----------
subject : str
Name of the potential subject/directory.
subjects_dir : None | path-like
Override the SUBJECTS_DIR environment variable.
Returns
-------
is_mri_subject : bool
Whether ``subject`` is an mri subject.
"""
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
return bool(
_find_head_bem(subject, subjects_dir)
or _find_head_bem(subject, subjects_dir, high_res=True)
)
def _mri_subject_has_bem(subject, subjects_dir=None):
"""Check whether an mri subject has a file matching the bem pattern.
Parameters
----------
subject : str
Name of the subject.
subjects_dir : None | path-like
Override the SUBJECTS_DIR environment variable.
Returns
-------
has_bem_file : bool
Whether ``subject`` has a bem file.
"""
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
pattern = bem_fname.format(subjects_dir=subjects_dir, subject=subject, name="*-bem")
fnames = glob(pattern)
return bool(len(fnames))
def read_mri_cfg(subject, subjects_dir=None):
"""Read information from the cfg file of a scaled MRI brain.
Parameters
----------
subject : str
Name of the scaled MRI subject.
subjects_dir : None | path-like
Override the ``SUBJECTS_DIR`` environment variable.
Returns
-------
cfg : dict
Dictionary with entries from the MRI's cfg file.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
fname = subjects_dir / subject / "MRI scaling parameters.cfg"
if not fname.exists():
raise OSError(
f"{subject!r} does not seem to be a scaled mri subject: {fname!r} does not"
"exist."
)
logger.info(f"Reading MRI cfg file {fname}")
config = configparser.RawConfigParser()
config.read(fname)
n_params = config.getint("MRI Scaling", "n_params")
if n_params == 1:
scale = config.getfloat("MRI Scaling", "scale")
elif n_params == 3:
scale_str = config.get("MRI Scaling", "scale")
scale = np.array([float(s) for s in scale_str.split()])
else:
raise ValueError(f"Invalid n_params value in MRI cfg: {n_params}")
out = {
"subject_from": config.get("MRI Scaling", "subject_from"),
"n_params": n_params,
"scale": scale,
}
return out
def _write_mri_config(fname, subject_from, subject_to, scale):
"""Write the cfg file describing a scaled MRI subject.
Parameters
----------
fname : path-like
Target file.
subject_from : str
Name of the source MRI subject.
subject_to : str
Name of the scaled MRI subject.
scale : float | array_like, shape = (3,)
The scaling parameter.
"""
scale = np.asarray(scale)
if np.isscalar(scale) or scale.shape == ():
n_params = 1
else:
n_params = 3
config = configparser.RawConfigParser()
config.add_section("MRI Scaling")
config.set("MRI Scaling", "subject_from", subject_from)
config.set("MRI Scaling", "subject_to", subject_to)
config.set("MRI Scaling", "n_params", str(n_params))
if n_params == 1:
config.set("MRI Scaling", "scale", str(scale))
else:
config.set("MRI Scaling", "scale", " ".join([str(s) for s in scale]))
config.set("MRI Scaling", "version", "1")
with open(fname, "w") as fid:
config.write(fid)
def _scale_params(subject_to, subject_from, scale, subjects_dir):
"""Assemble parameters for scaling.
Returns
-------
subjects_dir : path-like
Subjects directory.
subject_from : str
Name of the source subject.
scale : array
Scaling factor, either shape=() for uniform scaling or shape=(3,) for
non-uniform scaling.
uniform : bool
Whether scaling is uniform.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if (subject_from is None) != (scale is None):
raise TypeError(
"Need to provide either both subject_from and scale parameters, or neither."
)
if subject_from is None:
cfg = read_mri_cfg(subject_to, subjects_dir)
subject_from = cfg["subject_from"]
n_params = cfg["n_params"]
assert n_params in (1, 3)
scale = cfg["scale"]
scale = np.atleast_1d(scale)
if scale.ndim != 1 or scale.shape[0] not in (1, 3):
raise ValueError(
"Invalid shape for scale parameter. Need scalar or array of length 3. Got "
f"shape {scale.shape}."
)
n_params = len(scale)
return str(subjects_dir), subject_from, scale, n_params == 1
@verbose
def scale_bem(
subject_to,
bem_name,
subject_from=None,
scale=None,
subjects_dir=None,
*,
on_defects="raise",
verbose=None,
):
"""Scale a bem file.
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination mri subject).
bem_name : str
Name of the bem file. For example, to scale
``fsaverage-inner_skull-bem.fif``, the bem_name would be
"inner_skull-bem".
subject_from : None | str
The subject from which to read the source space. If None, subject_from
is read from subject_to's config file.
scale : None | float | array, shape = (3,)
Scaling factor. Has to be specified if subjects_from is specified,
otherwise it is read from subject_to's config file.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
%(on_defects)s
.. versionadded:: 1.0
%(verbose)s
"""
subjects_dir, subject_from, scale, uniform = _scale_params(
subject_to, subject_from, scale, subjects_dir
)
src = bem_fname.format(
subjects_dir=subjects_dir, subject=subject_from, name=bem_name
)
dst = bem_fname.format(subjects_dir=subjects_dir, subject=subject_to, name=bem_name)
if os.path.exists(dst):
raise OSError(f"File already exists: {dst}")
surfs = read_bem_surfaces(src, on_defects=on_defects)
for surf in surfs:
surf["rr"] *= scale
if not uniform:
assert len(surf["nn"]) > 0
surf["nn"] /= scale
_normalize_vectors(surf["nn"])
write_bem_surfaces(dst, surfs)
def scale_labels(
subject_to,
pattern=None,
overwrite=False,
subject_from=None,
scale=None,
subjects_dir=None,
):
r"""Scale labels to match a brain that was previously created by scaling.
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination brain).
pattern : str | None
Pattern for finding the labels relative to the label directory in the
MRI subject directory (e.g., "lh.BA3a.label" will scale
"fsaverage/label/lh.BA3a.label"; "aparc/\*.label" will find all labels
in the "fsaverage/label/aparc" directory). With None, scale all labels.
overwrite : bool
Overwrite any label file that already exists for subject_to (otherwise
existing labels are skipped).
subject_from : None | str
Name of the original MRI subject (the brain that was scaled to create
subject_to). If None, the value is read from subject_to's cfg file.
scale : None | float | array_like, shape = (3,)
Scaling parameter. If None, the value is read from subject_to's cfg
file.
subjects_dir : None | path-like
Override the ``SUBJECTS_DIR`` environment variable.
"""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir
)
# find labels
paths = _find_label_paths(subject_from, pattern, subjects_dir)
if not paths:
return
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
src_root = subjects_dir / subject_from / "label"
dst_root = subjects_dir / subject_to / "label"
# scale labels
for fname in paths:
dst = dst_root / fname
if not overwrite and dst.exists():
continue
if not dst.parent.exists():
os.makedirs(dst.parent)
src = src_root / fname
l_old = read_label(src)
pos = l_old.pos * scale
l_new = Label(
l_old.vertices,
pos,
l_old.values,
l_old.hemi,
l_old.comment,
subject=subject_to,
)
l_new.save(dst)
@verbose
def scale_mri(
subject_from,
subject_to,
scale,
overwrite=False,
subjects_dir=None,
skip_fiducials=False,
labels=True,
annot=False,
*,
on_defects="raise",
verbose=None,
):
"""Create a scaled copy of an MRI subject.
Parameters
----------
subject_from : str
Name of the subject providing the MRI.
subject_to : str
New subject name for which to save the scaled MRI.
scale : float | array_like, shape = (3,)
The scaling factor (one or 3 parameters).
overwrite : bool
If an MRI already exists for subject_to, overwrite it.
subjects_dir : None | path-like
Override the ``SUBJECTS_DIR`` environment variable.
skip_fiducials : bool
Do not scale the MRI fiducials. If False (default), an OSError will be
raised if no fiducials file can be found.
labels : bool
Also scale all labels (default True).
annot : bool
Copy ``*.annot`` files to the new location (default False).
%(on_defects)s
.. versionadded:: 1.0
%(verbose)s
See Also
--------
scale_bem : Add a scaled BEM to a scaled MRI.
scale_labels : Add labels to a scaled MRI.
scale_source_space : Add a source space to a scaled MRI.
Notes
-----
This function will automatically call :func:`scale_bem`,
:func:`scale_labels`, and :func:`scale_source_space` based on expected
filename patterns in the subject directory.
"""
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
paths = _find_mri_paths(subject_from, skip_fiducials, subjects_dir)
scale = np.atleast_1d(scale)
if scale.shape == (3,):
if np.isclose(scale[1], scale[0]) and np.isclose(scale[2], scale[0]):
scale = scale[0] # speed up scaling conditionals using a singleton
elif scale.shape != (1,):
raise ValueError(f"scale must have shape (3,) or (1,), got {scale.shape}")
# make sure we have an empty target directory
dest = subject_dirname.format(subject=subject_to, subjects_dir=subjects_dir)
if os.path.exists(dest):
if not overwrite:
raise OSError(
f"Subject directory for {subject_to} already exists: {dest!r}"
)
shutil.rmtree(dest)
logger.debug("create empty directory structure")
for dirname in paths["dirs"]:
dir_ = dirname.format(subject=subject_to, subjects_dir=subjects_dir)
os.makedirs(dir_)
logger.debug("save MRI scaling parameters")
fname = os.path.join(dest, "MRI scaling parameters.cfg")
_write_mri_config(fname, subject_from, subject_to, scale)
logger.debug("surf files [in mm]")
for fname in paths["surf"]:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
src = os.path.realpath(src)
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
pts, tri = read_surface(src)
write_surface(dest, pts * scale, tri)
logger.debug("BEM files [in m]")
for bem_name in paths["bem"]:
scale_bem(
subject_to,
bem_name,
subject_from,
scale,
subjects_dir,
on_defects=on_defects,
verbose=False,
)
logger.debug("fiducials [in m]")
for fname in paths["fid"]:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
src = os.path.realpath(src)
pts, cframe = read_fiducials(src, verbose=False)
for pt in pts:
pt["r"] = pt["r"] * scale
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
write_fiducials(dest, pts, cframe, overwrite=True, verbose=False)
logger.debug("MRIs [nibabel]")
os.mkdir(mri_dirname.format(subjects_dir=subjects_dir, subject=subject_to))
for fname in paths["mri"]:
mri_name = os.path.basename(fname)
_scale_mri(subject_to, mri_name, subject_from, scale, subjects_dir)
logger.debug("Transforms")
for mri_name in paths["mri"]:
if mri_name.endswith("T1.mgz"):
os.mkdir(
mri_transforms_dirname.format(
subjects_dir=subjects_dir, subject=subject_to
)
)
for fname in paths["transforms"]:
xfm_name = os.path.basename(fname)
_scale_xfm(
subject_to, xfm_name, mri_name, subject_from, scale, subjects_dir
)
break
logger.debug("duplicate files")
for fname in paths["duplicate"]:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
shutil.copyfile(src, dest)
logger.debug("source spaces")
for fname in paths["src"]:
src_name = os.path.basename(fname)
scale_source_space(
subject_to, src_name, subject_from, scale, subjects_dir, verbose=False
)
logger.debug("labels [in m]")
os.mkdir(os.path.join(subjects_dir, subject_to, "label"))
if labels:
scale_labels(
subject_to,
subject_from=subject_from,
scale=scale,
subjects_dir=subjects_dir,
)
logger.debug("copy *.annot files")
# they don't contain scale-dependent information
if annot:
src_pattern = os.path.join(subjects_dir, subject_from, "label", "*.annot")
dst_dir = os.path.join(subjects_dir, subject_to, "label")
for src_file in iglob(src_pattern):
shutil.copy(src_file, dst_dir)
@verbose
def scale_source_space(
subject_to,
src_name,
subject_from=None,
scale=None,
subjects_dir=None,
n_jobs=None,
verbose=None,
):
"""Scale a source space for an mri created with scale_mri().
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination mri subject).
src_name : str
Source space name. Can be a spacing parameter (e.g., ``'7'``,
``'ico4'``, ``'oct6'``) or a file name of a source space file relative
to the bem directory; if the file name contains the subject name, it
should be indicated as "{subject}" in ``src_name`` (e.g.,
``"{subject}-my_source_space-src.fif"``).
subject_from : None | str
The subject from which to read the source space. If None, subject_from
is read from subject_to's config file.
scale : None | float | array, shape = (3,)
Scaling factor. Has to be specified if subjects_from is specified,
otherwise it is read from subject_to's config file.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
n_jobs : int
Number of jobs to run in parallel if recomputing distances (only
applies if scale is an array of length 3, and will not use more cores
than there are source spaces).
%(verbose)s
Notes
-----
When scaling volume source spaces, the source (vertex) locations are
scaled, but the reference to the MRI volume is left unchanged. Transforms
are updated so that source estimates can be plotted on the original MRI
volume.
"""
subjects_dir, subject_from, scale, uniform = _scale_params(
subject_to, subject_from, scale, subjects_dir
)
# if n_params==1 scale is a scalar; if n_params==3 scale is a (3,) array
# find the source space file names
if src_name.isdigit():
spacing = src_name # spacing in mm
src_pattern = src_fname
else:
match = re.match(r"(oct|ico|vol)-?(\d+)$", src_name)
if match:
spacing = "-".join(match.groups())
src_pattern = src_fname
else:
spacing = None
src_pattern = os.path.join(bem_dirname, src_name)
src = src_pattern.format(
subjects_dir=subjects_dir, subject=subject_from, spacing=spacing
)
dst = src_pattern.format(
subjects_dir=subjects_dir, subject=subject_to, spacing=spacing
)
# read and scale the source space [in m]
sss = read_source_spaces(src)
logger.info("scaling source space %s: %s -> %s", spacing, subject_from, subject_to)
logger.info("Scale factor: %s", scale)
add_dist = False
for ss in sss:
ss["subject_his_id"] = subject_to
ss["rr"] *= scale
# additional tags for volume source spaces
for key in ("vox_mri_t", "src_mri_t"):
# maintain transform to original MRI volume ss['mri_volume_name']
if key in ss:
ss[key]["trans"][:3] *= scale[:, np.newaxis]
# distances and patch info
if uniform:
if ss["dist"] is not None:
ss["dist"] *= scale[0]
# Sometimes this is read-only due to how it's read
ss["nearest_dist"] = ss["nearest_dist"] * scale
ss["dist_limit"] = ss["dist_limit"] * scale
else: # non-uniform scaling
ss["nn"] /= scale
_normalize_vectors(ss["nn"])
if ss["dist"] is not None:
add_dist = True
dist_limit = float(np.abs(sss[0]["dist_limit"]))
elif ss["nearest"] is not None:
add_dist = True
dist_limit = 0
if add_dist:
logger.info("Recomputing distances, this might take a while")
add_source_space_distances(sss, dist_limit, n_jobs)
write_source_spaces(dst, sss)
def _scale_mri(subject_to, mri_fname, subject_from, scale, subjects_dir):
"""Scale an MRI by setting its affine."""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir
)
nibabel = _import_nibabel("scale an MRI")
fname_from = op.join(
mri_dirname.format(subjects_dir=subjects_dir, subject=subject_from), mri_fname
)
fname_to = op.join(
mri_dirname.format(subjects_dir=subjects_dir, subject=subject_to), mri_fname
)
img = nibabel.load(fname_from)
zooms = np.array(img.header.get_zooms())
zooms[[0, 2, 1]] *= scale
img.header.set_zooms(zooms)
# Hack to fix nibabel problems, see
# https://github.com/nipy/nibabel/issues/619
img._affine = img.header.get_affine() # or could use None
nibabel.save(img, fname_to)
def _scale_xfm(subject_to, xfm_fname, mri_name, subject_from, scale, subjects_dir):
"""Scale a transform."""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir
)
# The nibabel warning should already be there in MRI step, if applicable,
# as we only get here if T1.mgz is present (and thus a scaling was
# attempted) so we can silently return here.
fname_from = os.path.join(
mri_transforms_dirname.format(subjects_dir=subjects_dir, subject=subject_from),
xfm_fname,
)
fname_to = op.join(
mri_transforms_dirname.format(subjects_dir=subjects_dir, subject=subject_to),
xfm_fname,
)
assert op.isfile(fname_from), fname_from
assert op.isdir(op.dirname(fname_to)), op.dirname(fname_to)
# The "talairach.xfm" file stores the ras_mni transform.
#
# For "from" subj F, "to" subj T, F->T scaling S, some equivalent vertex
# positions F_x and T_x in MRI (FreeSurfer RAS) coords, knowing that
# we have T_x = S @ F_x, we want to have the same MNI coords computed
# for these vertices:
#
# T_mri_mni @ T_x = F_mri_mni @ F_x
#
# We need to find the correct T_ras_mni (talaraich.xfm file) that yields
# this. So we derive (where † indicates inversion):
#
# T_mri_mni @ S @ F_x = F_mri_mni @ F_x
# T_mri_mni @ S = F_mri_mni
# T_ras_mni @ T_mri_ras @ S = F_ras_mni @ F_mri_ras
# T_ras_mni @ T_mri_ras = F_ras_mni @ F_mri_ras @ S⁻¹
# T_ras_mni = F_ras_mni @ F_mri_ras @ S⁻¹ @ T_ras_mri
#
# prepare the scale (S) transform
scale = np.atleast_1d(scale)
scale = np.tile(scale, 3) if len(scale) == 1 else scale
S = Transform("mri", "mri", scaling(*scale)) # F_mri->T_mri
#
# Get the necessary transforms of the "from" subject
#
xfm, kind = _read_fs_xfm(fname_from)
assert kind == "MNI Transform File", kind
_, _, F_mri_ras, _, _ = _read_mri_info(mri_name, units="mm")
F_ras_mni = Transform("ras", "mni_tal", xfm)
del xfm
#
# Get the necessary transforms of the "to" subject
#
mri_name = op.join(
mri_dirname.format(subjects_dir=subjects_dir, subject=subject_to),
op.basename(mri_name),
)
_, _, T_mri_ras, _, _ = _read_mri_info(mri_name, units="mm")
T_ras_mri = invert_transform(T_mri_ras)
del mri_name, T_mri_ras
# Finally we construct as above:
#
# T_ras_mni = F_ras_mni @ F_mri_ras @ S⁻¹ @ T_ras_mri
#
# By moving right to left through the equation.
T_ras_mni = combine_transforms(
combine_transforms(
combine_transforms(T_ras_mri, invert_transform(S), "ras", "mri"),
F_mri_ras,
"ras",
"ras",
),
F_ras_mni,
"ras",
"mni_tal",
)
_write_fs_xfm(fname_to, T_ras_mni["trans"], kind)
def _read_surface(filename, *, on_defects):
bem = dict()
if filename is not None and op.exists(filename):
if filename.endswith(".fif"):
bem = read_bem_surfaces(filename, on_defects=on_defects, verbose=False)[0]
else:
try:
bem = read_surface(filename, return_dict=True)[2]
bem["rr"] *= 1e-3
complete_surface_info(bem, copy=False)
except Exception:
raise ValueError(
f"Error loading surface from {filename} (see Terminal for details)."
)
return bem
@fill_doc
class Coregistration:
"""Class for MRI<->head coregistration.
Parameters
----------
info : instance of Info | None
The measurement info.
%(subject)s
%(subjects_dir)s
%(fiducials)s
%(on_defects)s
.. versionadded:: 1.0
Attributes
----------
fiducials : instance of DigMontage
A montage containing the MRI fiducials.
trans : instance of Transform
MRI<->Head coordinate transformation.
See Also
--------
mne.scale_mri
Notes
-----
Internal computation quantities parameters are in the following units:
- rotation are in radians
- translation are in m
- scale are in scale proportion
If using a scale mode, the :func:`~mne.scale_mri` should be used
to create a surrogate MRI subject with the proper scale factors.
"""
def __init__(
self, info, subject, subjects_dir=None, fiducials="auto", *, on_defects="raise"
):
_validate_type(info, (Info, None), "info")
self._info = info
self._subject = _check_subject(subject, subject)
self._subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
self._scale_mode = None
self._on_defects = on_defects
self._default_parameters = np.array(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0]
)
self._rotation = self._default_parameters[:3]
self._translation = self._default_parameters[3:6]
self._scale = self._default_parameters[6:9]
self._icp_angle = 0.2
self._icp_distance = 0.2
self._icp_scale = 0.2
self._icp_fid_matches = ("nearest", "matched")
self._icp_fid_match = self._icp_fid_matches[0]
self._lpa_weight = 1.0
self._nasion_weight = 10.0
self._rpa_weight = 1.0
self._hsp_weight = 1.0
self._eeg_weight = 1.0
self._hpi_weight = 1.0
self._extra_points_filter = None
self._setup_digs()
self._setup_bem()
self._fid_filename = None
self._setup_fiducials(fiducials)
self.reset()
def _setup_digs(self):
if self._info is None:
self._dig_dict = dict(
hpi=np.zeros((1, 3)),
dig_ch_pos_location=np.zeros((1, 3)),
hsp=np.zeros((1, 3)),
rpa=np.zeros((1, 3)),
nasion=np.zeros((1, 3)),
lpa=np.zeros((1, 3)),
)
else:
self._dig_dict = _get_data_as_dict_from_dig(
dig=self._info["dig"], exclude_ref_channel=False
)
# adjustments:
# set weights to 0 for None input
# convert fids to float arrays
for k, w_atr in zip(
["nasion", "lpa", "rpa", "hsp", "hpi"],
[
"_nasion_weight",
"_lpa_weight",
"_rpa_weight",
"_hsp_weight",
"_hpi_weight",
],
):
if self._dig_dict[k] is None:
self._dig_dict[k] = np.zeros((0, 3))
setattr(self, w_atr, 0)
elif k in ["rpa", "nasion", "lpa"]:
self._dig_dict[k] = np.array([self._dig_dict[k]], float)
def _setup_bem(self):
# find high-res head model (if possible)
high_res_path = _find_head_bem(self._subject, self._subjects_dir, high_res=True)
low_res_path = _find_head_bem(self._subject, self._subjects_dir, high_res=False)
if high_res_path is None and low_res_path is None:
raise RuntimeError(
"No standard head model was "
f"found for subject {self._subject} in "
f"{self._subjects_dir}"
)
if high_res_path is not None:
self._bem_high_res = _read_surface(
high_res_path, on_defects=self._on_defects
)
logger.info(f"Using high resolution head model in {high_res_path}")
else:
self._bem_high_res = _read_surface(
low_res_path, on_defects=self._on_defects
)
logger.info(f"Using low resolution head model in {low_res_path}")
if low_res_path is None:
# This should be very rare!
warn(
"No low-resolution head found, decimating high resolution "
f"mesh ({len(self._bem_high_res['rr'])} vertices): {high_res_path}"
)
# Create one from the high res one, which we know we have
rr, tris = decimate_surface(
self._bem_high_res["rr"], self._bem_high_res["tris"], n_triangles=5120
)
# directly set the attributes of bem_low_res
self._bem_low_res = complete_surface_info(
dict(rr=rr, tris=tris), copy=False, verbose=False
)
else:
self._bem_low_res = _read_surface(low_res_path, on_defects=self._on_defects)
def _setup_fiducials(self, fids):
_validate_type(fids, (str, dict, list))
# find fiducials file
fid_accurate = None
if fids == "auto":
fid_files = _find_fiducials_files(self._subject, self._subjects_dir)
if len(fid_files) > 0:
# Read fiducials from disk
fid_filename = fid_files[0].format(
subjects_dir=self._subjects_dir, subject=self._subject
)
logger.info(f"Using fiducials from: {fid_filename}.")
fids, _ = read_fiducials(fid_filename)
fid_accurate = True
self._fid_filename = fid_filename
else:
fids = "estimated"
if fids == "estimated":
logger.info("Estimating fiducials from fsaverage.")
fid_accurate = False
fids = get_mni_fiducials(self._subject, self._subjects_dir)
fid_accurate = True if fid_accurate is None else fid_accurate
if isinstance(fids, list):
fid_coords = _fiducial_coords(fids)
else:
assert isinstance(fids, dict)
fid_coords = np.array(
[fids["lpa"], fids["nasion"], fids["rpa"]], dtype=float
)
self._fid_points = fid_coords
self._fid_accurate = fid_accurate
# does not seem to happen by itself ... so hard code it:
self._reset_fiducials()
def _reset_fiducials(self):
dig_montage = make_dig_montage(
lpa=self._fid_points[0],
nasion=self._fid_points[1],
rpa=self._fid_points[2],
coord_frame="mri",
)
self.fiducials = dig_montage
def _update_params(self, rot=None, tra=None, sca=None, force_update=False):
if force_update and tra is None:
tra = self._translation
rot_changed = False
if rot is not None:
rot_changed = True
self._last_rotation = self._rotation.copy()
self._rotation = rot
tra_changed = False
if rot_changed or tra is not None:
if tra is None:
tra = self._translation
tra_changed = True
self._last_translation = self._translation.copy()
self._translation = tra
self._head_mri_t = rotation(*self._rotation).T
self._head_mri_t[:3, 3] = -np.dot(self._head_mri_t[:3, :3], tra)
self._transformed_dig_hpi = apply_trans(
self._head_mri_t, self._dig_dict["hpi"]
)
self._transformed_dig_eeg = apply_trans(
self._head_mri_t, self._dig_dict["dig_ch_pos_location"]
)
self._transformed_dig_extra = apply_trans(
self._head_mri_t, self._filtered_extra_points
)
self._transformed_orig_dig_extra = apply_trans(
self._head_mri_t, self._dig_dict["hsp"]
)
self._mri_head_t = rotation(*self._rotation)
self._mri_head_t[:3, 3] = np.array(tra)
if tra_changed or sca is not None:
if sca is None:
sca = self._scale
self._last_scale = self._scale.copy()
self._scale = sca
self._mri_trans = np.eye(4)
self._mri_trans[:, :3] *= sca
self._transformed_high_res_mri_points = apply_trans(
self._mri_trans, self._processed_high_res_mri_points
)
self._update_nearest_calc()
if tra_changed:
self._nearest_transformed_high_res_mri_idx_orig_hsp = (
self._nearest_calc.query(self._transformed_orig_dig_extra)[1]
)
self._nearest_transformed_high_res_mri_idx_hpi = self._nearest_calc.query(
self._transformed_dig_hpi
)[1]
self._nearest_transformed_high_res_mri_idx_eeg = self._nearest_calc.query(
self._transformed_dig_eeg
)[1]
self._nearest_transformed_high_res_mri_idx_rpa = self._nearest_calc.query(
apply_trans(self._head_mri_t, self._dig_dict["rpa"])
)[1]
self._nearest_transformed_high_res_mri_idx_nasion = (
self._nearest_calc.query(
apply_trans(self._head_mri_t, self._dig_dict["nasion"])
)[1]
)
self._nearest_transformed_high_res_mri_idx_lpa = self._nearest_calc.query(
apply_trans(self._head_mri_t, self._dig_dict["lpa"])
)[1]
def set_scale_mode(self, scale_mode):
"""Select how to fit the scale parameters.
Parameters
----------
scale_mode : None | str
The scale mode can be 'uniform', '3-axis' or disabled.
Defaults to None.
* 'uniform': 1 scale factor is recovered.
* '3-axis': 3 scale factors are recovered.
* None: do not scale the MRI.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._scale_mode = scale_mode
return self
def set_grow_hair(self, value):
"""Compensate for hair on the digitizer head shape.
Parameters
----------
value : float
Move the back of the MRI head outwards by ``value`` (mm).
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._grow_hair = value
self._update_params(force_update=True)
return self
def set_rotation(self, rot):
"""Set the rotation parameter.
Parameters
----------
rot : array, shape (3,)
The rotation parameter (in radians).
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._update_params(rot=np.array(rot))
return self
def set_translation(self, tra):
"""Set the translation parameter.
Parameters
----------
tra : array, shape (3,)
The translation parameter (in m.).
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._update_params(tra=np.array(tra))
return self
def set_scale(self, sca):
"""Set the scale parameter.
Parameters
----------
sca : array, shape (3,)
The scale parameter.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._update_params(sca=np.array(sca))
return self
def _update_nearest_calc(self):
self._nearest_calc = _DistanceQuery(
self._processed_high_res_mri_points * self._scale
)
@property
def _filtered_extra_points(self):
if self._extra_points_filter is None:
return self._dig_dict["hsp"]
else:
return self._dig_dict["hsp"][self._extra_points_filter]
@property
def _parameters(self):
return np.concatenate((self._rotation, self._translation, self._scale))
@property
def _last_parameters(self):
return np.concatenate(
(self._last_rotation, self._last_translation, self._last_scale)
)
@property
def _changes(self):
move = np.linalg.norm(self._last_translation - self._translation) * 1e3
angle = np.rad2deg(
_angle_between_quats(
rot_to_quat(rotation(*self._rotation)[:3, :3]),
rot_to_quat(rotation(*self._last_rotation)[:3, :3]),
)
)
percs = 100 * (self._scale - self._last_scale) / self._last_scale
return move, angle, percs
@property
def _nearest_transformed_high_res_mri_idx_hsp(self):
return self._nearest_calc.query(
apply_trans(self._head_mri_t, self._filtered_extra_points)
)[1]
@property
def _has_hsp_data(self):
return (
self._has_mri_data
and len(self._nearest_transformed_high_res_mri_idx_hsp) > 0
)
@property
def _has_hpi_data(self):
return (
self._has_mri_data
and len(self._nearest_transformed_high_res_mri_idx_hpi) > 0
)
@property
def _has_eeg_data(self):
return (
self._has_mri_data
and len(self._nearest_transformed_high_res_mri_idx_eeg) > 0
)
@property
def _has_lpa_data(self):
mri_point = self.fiducials.dig[_map_fid_name_to_idx("lpa")]
assert mri_point["ident"] == FIFF.FIFFV_POINT_LPA
has_mri_data = np.any(mri_point["r"])
has_head_data = np.any(self._dig_dict["lpa"])
return has_mri_data and has_head_data
@property
def _has_nasion_data(self):
mri_point = self.fiducials.dig[_map_fid_name_to_idx("nasion")]
assert mri_point["ident"] == FIFF.FIFFV_POINT_NASION
has_mri_data = np.any(mri_point["r"])
has_head_data = np.any(self._dig_dict["nasion"])
return has_mri_data and has_head_data
@property
def _has_rpa_data(self):
mri_point = self.fiducials.dig[_map_fid_name_to_idx("rpa")]
assert mri_point["ident"] == FIFF.FIFFV_POINT_RPA
has_mri_data = np.any(mri_point["r"])
has_head_data = np.any(self._dig_dict["rpa"])
return has_mri_data and has_head_data
@property
def _processed_high_res_mri_points(self):
return self._get_processed_mri_points("high")
def _get_processed_mri_points(self, res):
bem = self._bem_low_res if res == "low" else self._bem_high_res
points = bem["rr"].copy()
if self._grow_hair:
assert len(bem["nn"]) # should be guaranteed by _read_surface
scaled_hair_dist = 1e-3 * self._grow_hair / np.array(self._scale)
hair = points[:, 2] > points[:, 1]
points[hair] += bem["nn"][hair] * scaled_hair_dist
return points
@property
def _has_mri_data(self):
return len(self._transformed_high_res_mri_points) > 0
@property
def _has_dig_data(self):
return (
self._has_mri_data
and len(self._nearest_transformed_high_res_mri_idx_hsp) > 0
)
@property
def _orig_hsp_point_distance(self):
mri_points = self._transformed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_orig_hsp
]
hsp_points = self._transformed_orig_dig_extra
return np.linalg.norm(mri_points - hsp_points, axis=-1)
def _log_dig_mri_distance(self, prefix):
errs_nearest = self.compute_dig_mri_distances()
logger.info(
f"{prefix} median distance: {np.median(errs_nearest * 1000):6.2f} mm"
)
@property
def scale(self):
"""Get the current scale factor.
Returns
-------
scale : ndarray, shape (3,)
The scale factors.
"""
return self._scale.copy()
@verbose
def fit_fiducials(
self, lpa_weight=1.0, nasion_weight=10.0, rpa_weight=1.0, verbose=None
):
"""Find rotation and translation to fit all 3 fiducials.
Parameters
----------
lpa_weight : float
Relative weight for LPA. The default value is 1.
nasion_weight : float
Relative weight for nasion. The default value is 10.
rpa_weight : float
Relative weight for RPA. The default value is 1.
%(verbose)s
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
logger.info("Aligning using fiducials")
self._log_dig_mri_distance("Start")
n_scale_params = self._n_scale_params
if n_scale_params == 3:
# enforce 1 even for 3-axis here (3 points is not enough)
logger.info("Enforcing 1 scaling parameter for fit with fiducials.")
n_scale_params = 1
self._lpa_weight = lpa_weight
self._nasion_weight = nasion_weight
self._rpa_weight = rpa_weight
head_pts = np.vstack(
(self._dig_dict["lpa"], self._dig_dict["nasion"], self._dig_dict["rpa"])
)
mri_pts = np.vstack(
(
self.fiducials.dig[0]["r"], # LPA
self.fiducials.dig[1]["r"], # Nasion
self.fiducials.dig[2]["r"],
) # RPA
)
weights = [lpa_weight, nasion_weight, rpa_weight]
if n_scale_params == 0:
mri_pts *= self._scale # not done in fit_matched_points
x0 = self._parameters
x0 = x0[: 6 + n_scale_params]
est = fit_matched_points(
mri_pts,
head_pts,
x0=x0,
out="params",
scale=n_scale_params,
weights=weights,
)
if n_scale_params == 0:
self._update_params(rot=est[:3], tra=est[3:6])
else:
assert est.size == 7
est = np.concatenate([est, [est[-1]] * 2])
assert est.size == 9
self._update_params(rot=est[:3], tra=est[3:6], sca=est[6:9])
self._log_dig_mri_distance("End ")
return self
def _setup_icp(self, n_scale_params):
head_pts = [np.zeros((0, 3))]
mri_pts = [np.zeros((0, 3))]
weights = [np.zeros(0)]
if self._has_dig_data and self._hsp_weight > 0: # should be true
head_pts.append(self._filtered_extra_points)
mri_pts.append(
self._processed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_hsp
]
)
weights.append(np.full(len(head_pts[-1]), self._hsp_weight))
for key in ("lpa", "nasion", "rpa"):
if getattr(self, f"_has_{key}_data"):
head_pts.append(self._dig_dict[key])
if self._icp_fid_match == "matched":
idx = _map_fid_name_to_idx(name=key)
p = self.fiducials.dig[idx]["r"].reshape(1, -1)
mri_pts.append(p)
else:
assert self._icp_fid_match == "nearest"
mri_pts.append(
self._processed_high_res_mri_points[
getattr(
self,
f"_nearest_transformed_high_res_mri_idx_{key}",
)
]
)
weights.append(
np.full(len(mri_pts[-1]), getattr(self, f"_{key}_weight"))
)
if self._has_eeg_data and self._eeg_weight > 0:
head_pts.append(self._dig_dict["dig_ch_pos_location"])
mri_pts.append(
self._processed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_eeg
]
)
weights.append(np.full(len(mri_pts[-1]), self._eeg_weight))
if self._has_hpi_data and self._hpi_weight > 0:
head_pts.append(self._dig_dict["hpi"])
mri_pts.append(
self._processed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_hpi
]
)
weights.append(np.full(len(mri_pts[-1]), self._hpi_weight))
head_pts = np.concatenate(head_pts)
mri_pts = np.concatenate(mri_pts)
weights = np.concatenate(weights)
if n_scale_params == 0:
mri_pts *= self._scale # not done in fit_matched_points
return head_pts, mri_pts, weights
def set_fid_match(self, match):
"""Set the strategy for fitting anatomical landmark (fiducial) points.
Parameters
----------
match : 'nearest' | 'matched'
Alignment strategy; ``'nearest'`` aligns anatomical landmarks to
any point on the head surface; ``'matched'`` aligns to the fiducial
points in the MRI.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
_check_option("match", match, self._icp_fid_matches)
self._icp_fid_match = match
return self
@verbose
def fit_icp(
self,
n_iterations=20,
lpa_weight=1.0,
nasion_weight=10.0,
rpa_weight=1.0,
hsp_weight=1.0,
eeg_weight=1.0,
hpi_weight=1.0,
callback=None,
verbose=None,
):
"""Find MRI scaling, translation, and rotation to match HSP.
Parameters
----------
n_iterations : int
Maximum number of iterations.
lpa_weight : float
Relative weight for LPA. The default value is 1.
nasion_weight : float
Relative weight for nasion. The default value is 10.
rpa_weight : float
Relative weight for RPA. The default value is 1.
hsp_weight : float
Relative weight for HSP. The default value is 1.
eeg_weight : float
Relative weight for EEG. The default value is 1.
hpi_weight : float
Relative weight for HPI. The default value is 1.
callback : callable | None
A function to call on each iteration. Useful for status message
updates. It will be passed the keyword arguments ``iteration``
and ``n_iterations``.
%(verbose)s
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
logger.info("Aligning using ICP")
self._log_dig_mri_distance("Start ")
n_scale_params = self._n_scale_params
self._lpa_weight = lpa_weight
self._nasion_weight = nasion_weight
self._rpa_weight = rpa_weight
self._hsp_weight = hsp_weight
self._eeg_weight = eeg_weight
self._hsp_weight = hpi_weight
# Initial guess (current state)
est = self._parameters
est = est[: [6, 7, None, 9][n_scale_params]]
# Do the fits, assigning and evaluating at each step
for iteration in range(n_iterations):
head_pts, mri_pts, weights = self._setup_icp(n_scale_params)
est = fit_matched_points(
mri_pts,
head_pts,
scale=n_scale_params,
x0=est,
out="params",
weights=weights,
)
if n_scale_params == 0:
self._update_params(rot=est[:3], tra=est[3:6])
elif n_scale_params == 1:
est = np.array(list(est) + [est[-1]] * 2)
self._update_params(rot=est[:3], tra=est[3:6], sca=est[6:9])
else:
self._update_params(rot=est[:3], tra=est[3:6], sca=est[6:9])
angle, move, scale = self._changes
self._log_dig_mri_distance(f" ICP {iteration + 1:2d} ")
if callback is not None:
callback(iteration, n_iterations)
if (
angle <= self._icp_angle
and move <= self._icp_distance
and all(scale <= self._icp_scale)
):
break
self._log_dig_mri_distance("End ")
return self
@property
def _n_scale_params(self):
if self._scale_mode is None:
n_scale_params = 0
elif self._scale_mode == "uniform":
n_scale_params = 1
else:
n_scale_params = 3
return n_scale_params
def omit_head_shape_points(self, distance):
"""Exclude head shape points that are far away from the MRI head.
Parameters
----------
distance : float
Exclude all points that are further away from the MRI head than
this distance (in m.). A value of distance <= 0 excludes nothing.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
distance = float(distance)
if distance <= 0:
return
# find the new filter
mask = self._orig_hsp_point_distance <= distance
n_excluded = np.sum(~mask)
logger.info(
"Coregistration: Excluding %i head shape points with distance >= %.3f m.",
n_excluded,
distance,
)
# set the filter
self._extra_points_filter = mask
self._update_params(force_update=True)
return self
def compute_dig_mri_distances(self):
"""Compute distance between head shape points and MRI skin surface.
Returns
-------
dist : array, shape (n_points,)
The distance of the head shape points to the MRI skin surface.
See Also
--------
mne.dig_mri_distances
"""
# we don't use `dig_mri_distances` here because it should be much
# faster to use our already-determined nearest points
hsp_points, mri_points, _ = self._setup_icp(0)
hsp_points = apply_trans(self._head_mri_t, hsp_points)
return np.linalg.norm(mri_points - hsp_points, axis=-1)
@property
def trans(self):
"""The head->mri :class:`~mne.transforms.Transform`."""
return Transform("head", "mri", self._head_mri_t)
def reset(self):
"""Reset all the parameters affecting the coregistration.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._grow_hair = 0.0
self.set_rotation(self._default_parameters[:3])
self.set_translation(self._default_parameters[3:6])
self.set_scale(self._default_parameters[6:9])
self._extra_points_filter = None
self._update_nearest_calc()
return self
def _get_fiducials_distance(self):
distance = dict()
for key in ("lpa", "nasion", "rpa"):
idx = _map_fid_name_to_idx(name=key)
fid = self.fiducials.dig[idx]["r"].reshape(1, -1)
transformed_mri = apply_trans(self._mri_trans, fid)
transformed_hsp = apply_trans(self._head_mri_t, self._dig_dict[key])
distance[key] = np.linalg.norm(np.ravel(transformed_mri - transformed_hsp))
return np.array(list(distance.values())) * 1e3
def _get_fiducials_distance_str(self):
dists = self._get_fiducials_distance()
return f"Fiducials: {dists[0]:.1f}, {dists[1]:.1f}, {dists[2]:.1f} mm"
def _get_point_distance(self):
mri_points = list()
hsp_points = list()
if self._hsp_weight > 0 and self._has_hsp_data:
mri_points.append(
self._transformed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_hsp
]
)
hsp_points.append(self._transformed_dig_extra)
assert len(mri_points[-1]) == len(hsp_points[-1])
if self._eeg_weight > 0 and self._has_eeg_data:
mri_points.append(
self._transformed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_eeg
]
)
hsp_points.append(self._transformed_dig_eeg)
assert len(mri_points[-1]) == len(hsp_points[-1])
if self._hpi_weight > 0 and self._has_hpi_data:
mri_points.append(
self._transformed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_hpi
]
)
hsp_points.append(self._transformed_dig_hpi)
assert len(mri_points[-1]) == len(hsp_points[-1])
if all(len(h) == 0 for h in hsp_points):
return None
mri_points = np.concatenate(mri_points)
hsp_points = np.concatenate(hsp_points)
return np.linalg.norm(mri_points - hsp_points, axis=-1)
def _get_point_distance_str(self):
point_distance = self._get_point_distance()
if point_distance is None:
return ""
dists = 1e3 * point_distance
av_dist = np.mean(dists)
std_dist = np.std(dists)
kinds = [
kind
for kind, check in (
("HSP", self._hsp_weight > 0 and self._has_hsp_data),
("EEG", self._eeg_weight > 0 and self._has_eeg_data),
("HPI", self._hpi_weight > 0 and self._has_hpi_data),
)
if check
]
kinds = "+".join(kinds)
return f"{len(dists)} {kinds}: {av_dist:.1f} ± {std_dist:.1f} mm"