# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import logging
from collections import defaultdict
from copy import deepcopy
from itertools import combinations
from pathlib import Path
import numpy as np
from scipy.spatial.distance import pdist, squareform
from .._fiff.constants import FIFF
from .._fiff.meas_info import Info
from .._fiff.pick import _FNIRS_CH_TYPES_SPLIT, _picks_to_idx, pick_types
from ..transforms import _cart_to_sph, _pol_to_cart
from ..utils import (
_check_ch_locs,
_check_fname,
_check_option,
_check_sphere,
_clean_names,
_ensure_int,
fill_doc,
logger,
verbose,
warn,
)
from ..viz.topomap import plot_layout
from .channels import _get_ch_info
class Layout:
"""Sensor layouts.
Layouts are typically loaded from a file using
:func:`~mne.channels.read_layout`. Only use this class directly if you're
constructing a new layout.
Parameters
----------
box : tuple of length 4
The box dimension (x_min, x_max, y_min, y_max).
pos : array, shape=(n_channels, 4)
The unit-normalized positions of the channels in 2d
(x, y, width, height).
names : list of str
The channel names.
ids : array-like of int
The channel ids.
kind : str
The type of Layout (e.g. 'Vectorview-all').
"""
def __init__(self, box, pos, names, ids, kind):
self.box = box
self.pos = pos
self.names = names
self.ids = np.array(ids)
if self.ids.ndim != 1:
raise ValueError("The channel indices should be a 1D array-like.")
self.kind = kind
def copy(self):
"""Return a copy of the layout.
Returns
-------
layout : instance of Layout
A deepcopy of the layout.
Notes
-----
.. versionadded:: 1.7
"""
return deepcopy(self)
def save(self, fname, overwrite=False):
"""Save Layout to disk.
Parameters
----------
fname : path-like
The file name (e.g. ``'my_layout.lout'``).
overwrite : bool
If True, overwrites the destination file if it exists.
See Also
--------
read_layout
"""
x = self.pos[:, 0]
y = self.pos[:, 1]
width = self.pos[:, 2]
height = self.pos[:, 3]
fname = _check_fname(fname, overwrite=overwrite, name=fname)
if fname.suffix == ".lout":
out_str = "{:8.2f} {:8.2f} {:8.2f} {:8.2f}\n".format(*self.box)
elif fname.suffix == ".lay":
out_str = ""
else:
raise ValueError("Unknown layout type. Should be of type .lout or .lay.")
for ii in range(x.shape[0]):
out_str += (
f"{self.ids[ii]:03d} {x[ii]:8.2f} {y[ii]:8.2f} "
f"{width[ii]:8.2f} {height[ii]:8.2f} {self.names[ii]}\n"
)
f = open(fname, "w")
f.write(out_str)
f.close()
def __repr__(self):
"""Return the string representation."""
return "<Layout | {} - Channels: {} ...>".format(
self.kind,
", ".join(self.names[:3]),
)
@fill_doc
def plot(self, picks=None, show_axes=False, show=True):
"""Plot the sensor positions.
Parameters
----------
%(picks_nostr)s
show_axes : bool
Show layout axes if True. Defaults to False.
show : bool
Show figure if True. Defaults to True.
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure containing the sensor topography.
Notes
-----
.. versionadded:: 0.12.0
"""
return plot_layout(self, picks=picks, show_axes=show_axes, show=show)
@verbose
def pick(self, picks=None, exclude=(), *, verbose=None):
"""Pick a subset of channels.
Parameters
----------
%(picks_layout)s
exclude : str | int | array-like of str or int
Set of channels to exclude, only used when ``picks`` is set to ``'all'`` or
``None``. Exclude will not drop channels explicitly provided in ``picks``.
%(verbose)s
Returns
-------
layout : instance of Layout
The modified layout.
Notes
-----
.. versionadded:: 1.7
"""
# TODO: all the picking functions operates on an 'info' object which is missing
# for a layout, thus we have to do the extra work here. The logic below can be
# replaced when https://github.com/mne-tools/mne-python/issues/11913 is solved.
if (isinstance(picks, str) and picks == "all") or (picks is None):
picks = deepcopy(self.names)
apply_exclude = True
elif isinstance(picks, str):
picks = [picks]
apply_exclude = False
elif isinstance(picks, slice):
try:
picks = np.arange(len(self.names))[picks]
except TypeError:
raise TypeError(
"If a slice is provided, it must be a slice of integers."
)
apply_exclude = False
else:
try:
picks = [_ensure_int(picks)]
except TypeError:
picks = (
list(picks) if isinstance(picks, tuple | set) else deepcopy(picks)
)
apply_exclude = False
if apply_exclude:
if isinstance(exclude, str):
exclude = [exclude]
else:
try:
exclude = [_ensure_int(exclude)]
except TypeError:
exclude = (
list(exclude)
if isinstance(exclude, tuple | set)
else deepcopy(exclude)
)
for var, var_name in ((picks, "picks"), (exclude, "exclude")):
if var_name == "exclude" and not apply_exclude:
continue
if not isinstance(var, list | tuple | set | np.ndarray):
raise TypeError(
f"'{var_name}' must be a list, tuple, set or ndarray. "
f"Got {type(var)} instead."
)
if isinstance(var, np.ndarray) and var.ndim != 1:
raise ValueError(
f"'{var_name}' must be a 1D array-like. Got {var.ndim}D instead."
)
for k, elt in enumerate(var):
if isinstance(elt, str) and elt in self.names:
var[k] = self.names.index(elt)
continue
elif isinstance(elt, str):
raise ValueError(
f"The channel name {elt} provided in {var_name} does not match "
"any channels from the layout."
)
try:
var[k] = _ensure_int(elt)
except TypeError:
raise TypeError(
f"All elements in '{var_name}' must be integers or strings."
)
if not (0 <= var[k] < len(self.names)):
raise ValueError(
f"The value {elt} provided in {var_name} does not match any "
f"channels from the layout. The layout has {len(self.names)} "
"channels."
)
if len(var) != len(set(var)):
warn(
f"The provided '{var_name}' has duplicates which will be ignored.",
RuntimeWarning,
)
picks = picks.astype(int) if isinstance(picks, np.ndarray) else picks
exclude = exclude.astype(int) if isinstance(exclude, np.ndarray) else exclude
if apply_exclude:
picks = np.array(list(set(picks) - set(exclude)), dtype=int)
if len(picks) == 0:
raise RuntimeError(
"The channel selection yielded no remaining channels. Please edit "
"the arguments 'picks' and 'exclude' to include at least one "
"channel."
)
else:
picks = np.array(list(set(picks)), dtype=int)
self.pos = self.pos[picks]
self.ids = self.ids[picks]
self.names = [self.names[k] for k in picks]
return self
def _read_lout(fname):
"""Aux function."""
with open(fname) as f:
box_line = f.readline() # first line contains box dimension
box = tuple(map(float, box_line.split()))
names, pos, ids = [], [], []
for line in f:
splits = line.split()
if len(splits) == 7:
cid, x, y, dx, dy, chkind, nb = splits
name = chkind + " " + nb
else:
cid, x, y, dx, dy, name = splits
pos.append(np.array([x, y, dx, dy], dtype=np.float64))
names.append(name)
ids.append(int(cid))
pos = np.array(pos)
return box, pos, names, ids
def _read_lay(fname):
"""Aux function."""
with open(fname) as f:
box = None
names, pos, ids = [], [], []
for line in f:
splits = line.split()
if len(splits) == 7:
cid, x, y, dx, dy, chkind, nb = splits
name = chkind + " " + nb
else:
cid, x, y, dx, dy, name = splits
pos.append(np.array([x, y, dx, dy], dtype=np.float64))
names.append(name)
ids.append(int(cid))
pos = np.array(pos)
return box, pos, names, ids
def read_layout(fname=None, *, scale=True):
"""Read layout from a file.
Parameters
----------
fname : path-like | str
Either the path to a ``.lout`` or ``.lay`` file or the name of a
built-in layout. c.f. Notes for a list of the available built-in
layouts.
scale : bool
Apply useful scaling for out the box plotting using ``layout.pos``.
Defaults to True.
Returns
-------
layout : instance of Layout
The layout.
See Also
--------
Layout.save
Notes
-----
Valid ``fname`` arguments are:
.. table::
:widths: auto
+----------------------+
| Kind |
+======================+
| biosemi |
+----------------------+
| CTF151 |
+----------------------+
| CTF275 |
+----------------------+
| CTF-275 |
+----------------------+
| EEG1005 |
+----------------------+
| EGI256 |
+----------------------+
| GeodesicHeadWeb-130 |
+----------------------+
| GeodesicHeadWeb-280 |
+----------------------+
| KIT-125 |
+----------------------+
| KIT-157 |
+----------------------+
| KIT-160 |
+----------------------+
| KIT-AD |
+----------------------+
| KIT-AS-2008 |
+----------------------+
| KIT-UMD-3 |
+----------------------+
| magnesWH3600 |
+----------------------+
| Neuromag_122 |
+----------------------+
| Vectorview-all |
+----------------------+
| Vectorview-grad |
+----------------------+
| Vectorview-grad_norm |
+----------------------+
| Vectorview-mag |
+----------------------+
"""
readers = {".lout": _read_lout, ".lay": _read_lay}
if isinstance(fname, str):
# is it a built-in layout?
directory = Path(__file__).parent / "data" / "layouts"
for suffix in ("", ".lout", ".lay"):
_fname = (directory / fname).with_suffix(suffix)
if _fname.exists():
fname = _fname
break
# if not, it must be a valid path provided as str or Path
fname = _check_fname(fname, "read", must_exist=True, name="layout")
# and it must have a valid extension
_check_option("fname extension", fname.suffix, readers)
kind = fname.stem
box, pos, names, ids = readers[fname.suffix](fname)
if scale:
pos[:, 0] -= np.min(pos[:, 0])
pos[:, 1] -= np.min(pos[:, 1])
scaling = max(np.max(pos[:, 0]), np.max(pos[:, 1])) + pos[0, 2]
pos /= scaling
pos[:, :2] += 0.03
pos[:, :2] *= 0.97 / 1.03
pos[:, 2:] *= 0.94
return Layout(box=box, pos=pos, names=names, kind=kind, ids=ids)
@fill_doc
def make_eeg_layout(
info, radius=0.5, width=None, height=None, exclude="bads", csd=False
):
"""Create .lout file from EEG electrode digitization.
Parameters
----------
%(info_not_none)s
radius : float
Viewport radius as a fraction of main figure height. Defaults to 0.5.
width : float | None
Width of sensor axes as a fraction of main figure height. By default,
this will be the maximum width possible without axes overlapping.
height : float | None
Height of sensor axes as a fraction of main figure height. By default,
this will be the maximum height possible without axes overlapping.
exclude : list of str | str
List of channels to exclude. If empty do not exclude any.
If 'bads', exclude channels in info['bads'] (default).
csd : bool
Whether the channels contain current-source-density-transformed data.
Returns
-------
layout : Layout
The generated Layout.
See Also
--------
make_grid_layout, generate_2d_layout
"""
if not (0 <= radius <= 0.5):
raise ValueError("The radius parameter should be between 0 and 0.5.")
if width is not None and not (0 <= width <= 1.0):
raise ValueError("The width parameter should be between 0 and 1.")
if height is not None and not (0 <= height <= 1.0):
raise ValueError("The height parameter should be between 0 and 1.")
pick_kwargs = dict(meg=False, eeg=True, ref_meg=False, exclude=exclude)
if csd:
pick_kwargs.update(csd=True, eeg=False)
picks = pick_types(info, **pick_kwargs)
loc2d = _find_topomap_coords(info, picks)
names = [info["chs"][i]["ch_name"] for i in picks]
# Scale [x, y] to be in the range [-0.5, 0.5]
# Don't mess with the origin or aspect ratio
scale = np.maximum(-np.min(loc2d, axis=0), np.max(loc2d, axis=0)).max() * 2
loc2d /= scale
# If no width or height specified, calculate the maximum value possible
# without axes overlapping.
if width is None or height is None:
width, height = _box_size(loc2d, width, height, padding=0.1)
# Scale to viewport radius
loc2d *= 2 * radius
# Some subplot centers will be at the figure edge. Shrink everything so it
# fits in the figure.
scaling = min(1 / (1.0 + width), 1 / (1.0 + height))
loc2d *= scaling
width *= scaling
height *= scaling
# Shift to center
loc2d += 0.5
n_channels = loc2d.shape[0]
pos = np.c_[
loc2d[:, 0] - 0.5 * width,
loc2d[:, 1] - 0.5 * height,
width * np.ones(n_channels),
height * np.ones(n_channels),
]
box = (0, 1, 0, 1)
ids = 1 + np.arange(n_channels)
layout = Layout(box=box, pos=pos, names=names, kind="EEG", ids=ids)
return layout
@fill_doc
def make_grid_layout(info, picks=None, n_col=None):
"""Generate .lout file for custom data, i.e., ICA sources.
Parameters
----------
%(info_not_none)s
%(picks_base)s all good misc channels.
n_col : int | None
Number of columns to generate. If None, a square grid will be produced.
Returns
-------
layout : Layout
The generated layout.
See Also
--------
make_eeg_layout, generate_2d_layout
"""
picks = _picks_to_idx(info, picks, "misc")
names = [info["chs"][k]["ch_name"] for k in picks]
if not names:
raise ValueError("No misc data channels found.")
ids = list(range(len(picks)))
size = len(picks)
if n_col is None:
# prepare square-like layout
n_row = n_col = np.sqrt(size) # try square
if n_col % 1:
# try n * (n-1) rectangle
n_col, n_row = int(n_col + 1), int(n_row)
if n_col * n_row < size: # jump to the next full square
n_row += 1
else:
n_row = int(np.ceil(size / float(n_col)))
# setup position grid
x, y = np.meshgrid(np.linspace(-0.5, 0.5, n_col), np.linspace(-0.5, 0.5, n_row))
x, y = x.ravel()[:size], y.ravel()[:size]
width, height = _box_size(np.c_[x, y], padding=0.1)
# Some axes will be at the figure edge. Shrink everything so it fits in the
# figure. Add 0.01 border around everything
border_x, border_y = (0.01, 0.01)
x_scaling = 1 / (1.0 + width + border_x)
y_scaling = 1 / (1.0 + height + border_y)
x = x * x_scaling
y = y * y_scaling
width *= x_scaling
height *= y_scaling
# Shift to center
x += 0.5
y += 0.5
# calculate pos
pos = np.c_[
x - 0.5 * width, y - 0.5 * height, width * np.ones(size), height * np.ones(size)
]
box = (0, 1, 0, 1)
layout = Layout(box=box, pos=pos, names=names, kind="grid-misc", ids=ids)
return layout
@fill_doc
def find_layout(info, ch_type=None, exclude="bads"):
"""Choose a layout based on the channels in the info 'chs' field.
Parameters
----------
%(info_not_none)s
ch_type : {'mag', 'grad', 'meg', 'eeg'} | None
The channel type for selecting single channel layouts.
Defaults to None. Note, this argument will only be considered for
VectorView type layout. Use ``'meg'`` to force using the full layout
in situations where the info does only contain one sensor type.
exclude : list of str | str
List of channels to exclude. If empty do not exclude any.
If 'bads', exclude channels in info['bads'] (default).
Returns
-------
layout : Layout instance | None
None if layout not found.
"""
_check_option("ch_type", ch_type, [None, "mag", "grad", "meg", "eeg", "csd"])
(
has_vv_mag,
has_vv_grad,
is_old_vv,
has_4D_mag,
ctf_other_types,
has_CTF_grad,
n_kit_grads,
has_any_meg,
has_eeg_coils,
has_eeg_coils_and_meg,
has_eeg_coils_only,
has_neuromag_122_grad,
has_csd_coils,
) = _get_ch_info(info)
has_vv_meg = has_vv_mag and has_vv_grad
has_vv_only_mag = has_vv_mag and not has_vv_grad
has_vv_only_grad = has_vv_grad and not has_vv_mag
if ch_type == "meg" and not has_any_meg:
raise RuntimeError("No MEG channels present. Cannot find MEG layout.")
if ch_type == "eeg" and not has_eeg_coils:
raise RuntimeError("No EEG channels present. Cannot find EEG layout.")
layout_name = None
if (has_vv_meg and ch_type is None) or (
any([has_vv_mag, has_vv_grad]) and ch_type == "meg"
):
layout_name = "Vectorview-all"
elif has_vv_only_mag or (has_vv_meg and ch_type == "mag"):
layout_name = "Vectorview-mag"
elif has_vv_only_grad or (has_vv_meg and ch_type == "grad"):
if info["ch_names"][0].endswith("X"):
layout_name = "Vectorview-grad_norm"
else:
layout_name = "Vectorview-grad"
elif has_neuromag_122_grad:
layout_name = "Neuromag_122"
elif (has_eeg_coils_only and ch_type in [None, "eeg"]) or (
has_eeg_coils_and_meg and ch_type == "eeg"
):
if not isinstance(info, dict | Info):
raise RuntimeError(
"Cannot make EEG layout, no measurement info "
"was passed to `find_layout`"
)
return make_eeg_layout(info, exclude=exclude)
elif has_csd_coils and ch_type in [None, "csd"]:
return make_eeg_layout(info, exclude=exclude, csd=True)
elif has_4D_mag:
layout_name = "magnesWH3600"
elif has_CTF_grad:
layout_name = "CTF-275"
elif n_kit_grads > 0:
layout_name = _find_kit_layout(info, n_kit_grads)
# If no known layout is found, fall back on automatic layout
if layout_name is None:
picks = _picks_to_idx(info, "data", exclude=(), with_ref_meg=False)
ch_names = [info["ch_names"][pick] for pick in picks]
xy = _find_topomap_coords(info, picks=picks, ignore_overlap=True)
return generate_2d_layout(xy, ch_names=ch_names, name="custom", normalize=True)
layout = read_layout(fname=layout_name)
if not is_old_vv:
layout.names = _clean_names(layout.names, remove_whitespace=True)
if has_CTF_grad:
layout.names = _clean_names(layout.names, before_dash=True)
# Apply mask for excluded channels.
if exclude == "bads":
exclude = info["bads"]
idx = [ii for ii, name in enumerate(layout.names) if name not in exclude]
layout.names = [layout.names[ii] for ii in idx]
layout.pos = layout.pos[idx]
layout.ids = layout.ids[idx]
return layout
@fill_doc
def _find_kit_layout(info, n_grads):
"""Determine the KIT layout.
Parameters
----------
%(info_not_none)s
n_grads : int
Number of KIT-gradiometers in the info.
Returns
-------
kit_layout : str | None
String naming the detected KIT layout or ``None`` if layout is missing.
"""
from ..io.kit.constants import KIT_LAYOUT
if info["kit_system_id"] is not None:
# avoid circular import
return KIT_LAYOUT.get(info["kit_system_id"])
elif n_grads == 160:
return "KIT-160"
elif n_grads == 125:
return "KIT-125"
elif n_grads > 157:
return "KIT-AD"
# channels which are on the left hemisphere for NY and right for UMD
test_chs = (
"MEG 13",
"MEG 14",
"MEG 15",
"MEG 16",
"MEG 25",
"MEG 26",
"MEG 27",
"MEG 28",
"MEG 29",
"MEG 30",
"MEG 31",
"MEG 32",
"MEG 57",
"MEG 60",
"MEG 61",
"MEG 62",
"MEG 63",
"MEG 64",
"MEG 73",
"MEG 90",
"MEG 93",
"MEG 95",
"MEG 96",
"MEG 105",
"MEG 112",
"MEG 120",
"MEG 121",
"MEG 122",
"MEG 123",
"MEG 124",
"MEG 125",
"MEG 126",
"MEG 142",
"MEG 144",
"MEG 153",
"MEG 154",
"MEG 155",
"MEG 156",
)
x = [ch["loc"][0] < 0 for ch in info["chs"] if ch["ch_name"] in test_chs]
if np.all(x):
return "KIT-157" # KIT-NY
elif np.all(np.invert(x)):
raise NotImplementedError(
"Guessing sensor layout for legacy UMD "
"files is not implemented. Please convert "
"your files using MNE-Python 0.13 or "
"higher."
)
else:
raise RuntimeError("KIT system could not be determined for data")
def _box_size(points, width=None, height=None, padding=0.0):
"""Given a series of points, calculate an appropriate box size.
Parameters
----------
points : array, shape (n_points, 2)
The centers of the axes as a list of (x, y) coordinate pairs. Normally
these are points in the range [0, 1] centered at 0.5.
width : float | None
An optional box width to enforce. When set, only the box height will be
calculated by the function.
height : float | None
An optional box height to enforce. When set, only the box width will be
calculated by the function.
padding : float
Portion of the box to reserve for padding. The value can range between
0.0 (boxes will touch, default) to 1.0 (boxes consist of only padding).
Returns
-------
width : float
Width of the box
height : float
Height of the box
"""
def xdiff(a, b):
return np.abs(a[0] - b[0])
def ydiff(a, b):
return np.abs(a[1] - b[1])
points = np.asarray(points)
all_combinations = list(combinations(points, 2))
if width is None and height is None:
if len(points) <= 1:
# Trivial case first
width = 1.0
height = 1.0
else:
# Find the closest two points A and B.
a, b = all_combinations[np.argmin(pdist(points))]
# The closest points define either the max width or max height.
w, h = xdiff(a, b), ydiff(a, b)
if w > h:
width = w
else:
height = h
# At this point, either width or height is known, or both are known.
if height is None:
# Find all axes that could potentially overlap horizontally.
hdist = pdist(points, xdiff)
candidates = [all_combinations[i] for i, d in enumerate(hdist) if d < width]
if len(candidates) == 0:
# No axes overlap, take all the height you want.
height = 1.0
else:
# Find an appropriate height so all none of the found axes will
# overlap.
height = np.min([ydiff(*c) for c in candidates])
elif width is None:
# Find all axes that could potentially overlap vertically.
vdist = pdist(points, ydiff)
candidates = [all_combinations[i] for i, d in enumerate(vdist) if d < height]
if len(candidates) == 0:
# No axes overlap, take all the width you want.
width = 1.0
else:
# Find an appropriate width so all none of the found axes will
# overlap.
width = np.min([xdiff(*c) for c in candidates])
# Add a bit of padding between boxes
width *= 1 - padding
height *= 1 - padding
return width, height
@fill_doc
def _find_topomap_coords(
info, picks, layout=None, ignore_overlap=False, to_sphere=True, sphere=None
):
"""Guess the E/MEG layout and return appropriate topomap coordinates.
Parameters
----------
%(info_not_none)s
picks : str | list | slice | None
None will choose all channels.
layout : None | instance of Layout
Enforce using a specific layout. With None, a new map is generated
and a layout is chosen based on the channels in the picks
parameter.
sphere : array-like | str
Definition of the head sphere.
Returns
-------
coords : array, shape = (n_chs, 2)
2 dimensional coordinates for each sensor for a topomap plot.
"""
picks = _picks_to_idx(info, picks, "all", exclude=(), allow_empty=False)
if layout is not None:
chs = [info["chs"][i] for i in picks]
pos = [layout.pos[layout.names.index(ch["ch_name"])] for ch in chs]
pos = np.asarray(pos)
else:
pos = _auto_topomap_coords(
info,
picks,
ignore_overlap=ignore_overlap,
to_sphere=to_sphere,
sphere=sphere,
)
return pos
@fill_doc
def _auto_topomap_coords(info, picks, ignore_overlap, to_sphere, sphere):
"""Make a 2 dimensional sensor map from sensor positions in an info dict.
The default is to use the electrode locations. The fallback option is to
attempt using digitization points of kind FIFFV_POINT_EEG. This only works
with EEG and requires an equal number of digitization points and sensors.
Parameters
----------
%(info_not_none)s
picks : list | str | slice | None
None will pick all channels.
ignore_overlap : bool
Whether to ignore overlapping positions in the layout. If False and
positions overlap, an error is thrown.
to_sphere : bool
If True, the radial distance of spherical coordinates is ignored, in
effect fitting the xyz-coordinates to a sphere.
sphere : array-like | str
The head sphere definition.
Returns
-------
locs : array, shape = (n_sensors, 2)
An array of positions of the 2 dimensional map.
"""
sphere = _check_sphere(sphere, info)
logger.debug(f"Generating coords using: {sphere}")
picks = _picks_to_idx(info, picks, "all", exclude=(), allow_empty=False)
chs = [info["chs"][i] for i in picks]
# Use channel locations if available
locs3d = np.array([ch["loc"][:3] for ch in chs])
# If electrode locations are not available, use digization points
if not _check_ch_locs(info=info, picks=picks):
logging.warning(
"Did not find any electrode locations (in the info "
"object), will attempt to use digitization points "
"instead. However, if digitization points do not "
"correspond to the EEG electrodes, this will lead to "
"bad results. Please verify that the sensor locations "
"in the plot are accurate."
)
# MEG/EOG/ECG sensors don't have digitization points; all requested
# channels must be EEG
for ch in chs:
if ch["kind"] != FIFF.FIFFV_EEG_CH:
raise ValueError(
"Cannot determine location of MEG/EOG/ECG "
"channels using digitization points."
)
eeg_ch_names = [
ch["ch_name"] for ch in info["chs"] if ch["kind"] == FIFF.FIFFV_EEG_CH
]
# Get EEG digitization points
if info["dig"] is None or len(info["dig"]) == 0:
raise RuntimeError("No digitization points found.")
locs3d = np.array(
[
point["r"]
for point in info["dig"]
if point["kind"] == FIFF.FIFFV_POINT_EEG
]
)
if len(locs3d) == 0:
raise RuntimeError(
"Did not find any digitization points of "
f"kind {FIFF.FIFFV_POINT_EEG} in the info."
)
if len(locs3d) != len(eeg_ch_names):
raise ValueError(
f"Number of EEG digitization points ({len(locs3d)}) doesn't match the "
f"number of EEG channels ({len(eeg_ch_names)})"
)
# We no longer center digitization points on head origin, as we work
# in head coordinates always
# Match the digitization points with the requested
# channels.
eeg_ch_locs = dict(zip(eeg_ch_names, locs3d))
locs3d = np.array([eeg_ch_locs[ch["ch_name"]] for ch in chs])
# Sometimes we can get nans
locs3d[~np.isfinite(locs3d)] = 0.0
# Duplicate points cause all kinds of trouble during visualization
dist = pdist(locs3d)
if len(locs3d) > 1 and np.min(dist) < 1e-10 and not ignore_overlap:
problematic_electrodes = [
chs[elec_i]["ch_name"]
for elec_i in squareform(dist < 1e-10).any(axis=0).nonzero()[0]
]
raise ValueError(
"The following electrodes have overlapping positions,"
" which causes problems during visualization:\n"
+ ", ".join(problematic_electrodes)
)
if to_sphere:
# translate to sphere origin, transform/flatten Z, translate back
locs3d -= sphere[:3]
# use spherical (theta, pol) as (r, theta) for polar->cartesian
cart_coords = _cart_to_sph(locs3d)
out = _pol_to_cart(cart_coords[:, 1:][:, ::-1])
# scale from radians to mm
out *= cart_coords[:, [0]] / (np.pi / 2.0)
out += sphere[:2]
else:
out = _pol_to_cart(_cart_to_sph(locs3d))
return out
def _topo_to_sphere(pos, eegs):
"""Transform xy-coordinates to sphere.
Parameters
----------
pos : array-like, shape (n_channels, 2)
xy-oordinates to transform.
eegs : list of int
Indices of EEG channels that are included when calculating the sphere.
Returns
-------
coords : array, shape (n_channels, 3)
xyz-coordinates.
"""
xs, ys = np.array(pos).T
sqs = np.max(np.sqrt((xs[eegs] ** 2) + (ys[eegs] ** 2)))
xs /= sqs # Shape to a sphere and normalize
ys /= sqs
xs += 0.5 - np.mean(xs[eegs]) # Center the points
ys += 0.5 - np.mean(ys[eegs])
xs = xs * 2.0 - 1.0 # Values ranging from -1 to 1
ys = ys * 2.0 - 1.0
rs = np.clip(np.sqrt(xs**2 + ys**2), 0.0, 1.0)
alphas = np.arccos(rs)
zs = np.sin(alphas)
return np.column_stack([xs, ys, zs])
@fill_doc
def _pair_grad_sensors(
info, layout=None, topomap_coords=True, exclude="bads", raise_error=True
):
"""Find the picks for pairing grad channels.
Parameters
----------
%(info_not_none)s
layout : Layout | None
The layout if available. Defaults to None.
topomap_coords : bool
Return the coordinates for a topomap plot along with the picks. If
False, only picks are returned. Defaults to True.
exclude : list of str | str
List of channels to exclude. If empty, do not exclude any.
If 'bads', exclude channels in info['bads']. Defaults to 'bads'.
raise_error : bool
Whether to raise an error when no pairs are found. If False, raises a
warning.
Returns
-------
picks : array of int
Picks for the grad channels, ordered in pairs.
coords : array, shape = (n_grad_channels, 3)
Coordinates for a topomap plot (optional, only returned if
topomap_coords == True).
"""
# find all complete pairs of grad channels
pairs = defaultdict(list)
grad_picks = pick_types(info, meg="grad", ref_meg=False, exclude=exclude)
_, has_vv_grad, *_, has_neuromag_122_grad, _ = _get_ch_info(info)
for i in grad_picks:
ch = info["chs"][i]
name = ch["ch_name"]
if has_vv_grad and name.startswith("MEG"):
if name.endswith(("2", "3")):
key = name[-4:-1]
pairs[key].append(ch)
if has_neuromag_122_grad and name.startswith("MEG"):
key = (int(name[-3:]) - 1) // 2
pairs[key].append(ch)
pairs = [p for p in pairs.values() if len(p) == 2]
if len(pairs) == 0:
if raise_error:
raise ValueError("No 'grad' channel pairs found.")
else:
warn("No 'grad' channel pairs found.")
return list()
# find the picks corresponding to the grad channels
grad_chs = sum(pairs, [])
ch_names = info["ch_names"]
picks = [ch_names.index(c["ch_name"]) for c in grad_chs]
if topomap_coords:
shape = (len(pairs), 2, -1)
coords = _find_topomap_coords(info, picks, layout).reshape(shape).mean(axis=1)
return picks, coords
else:
return picks
def _merge_ch_data(data, ch_type, names, method="rms"):
"""Merge data from channel pairs.
Parameters
----------
data : array, shape = (n_channels, ..., n_times)
Data for channels, ordered in pairs.
ch_type : str
Channel type.
names : list
List of channel names.
method : str
Can be 'rms' or 'mean'.
Returns
-------
data : array, shape = (n_channels / 2, ..., n_times)
The root mean square or mean for each pair.
names : list
List of channel names.
"""
if ch_type == "grad":
data = _merge_grad_data(data, method)
else:
assert ch_type in _FNIRS_CH_TYPES_SPLIT
data, names = _merge_nirs_data(data, names)
return data, names
def _merge_grad_data(data, method="rms"):
"""Merge data from channel pairs using the RMS or mean.
Parameters
----------
data : array, shape = (n_channels, ..., n_times)
Data for channels, ordered in pairs.
method : str
Can be 'rms' or 'mean'.
Returns
-------
data : array, shape = (n_channels / 2, ..., n_times)
The root mean square or mean for each pair.
"""
data, orig_shape = data.reshape((len(data) // 2, 2, -1)), data.shape
if method == "mean":
data = np.mean(data, axis=1)
elif method == "rms":
data = np.sqrt(np.sum(data**2, axis=1) / 2)
else:
raise ValueError(f'method must be "rms" or "mean", got {method}.')
return data.reshape(data.shape[:1] + orig_shape[1:])
def _merge_nirs_data(data, merged_names):
"""Merge data from multiple nirs channel using the mean.
Channel names that have an x in them will be merged. The first channel in
the name is replaced with the mean of all listed channels. The other
channels are removed.
Parameters
----------
data : array, shape = (n_channels, ..., n_times)
Data for channels.
merged_names : list
List of strings containing the channel names. Channels that are to be
merged contain an x between them.
Returns
-------
data : array
Data for channels with requested channels merged. Channels used in the
merge are removed from the array.
"""
to_remove = np.empty(0, dtype=np.int32)
for idx, ch in enumerate(merged_names):
if "x" in ch:
indices = np.empty(0, dtype=np.int32)
channels = ch.split("x")
for sub_ch in channels[1:]:
indices = np.append(indices, merged_names.index(sub_ch))
data[idx] = np.mean(data[np.append(idx, indices)], axis=0)
to_remove = np.append(to_remove, indices)
to_remove = np.unique(to_remove)
for rem in sorted(to_remove, reverse=True):
del merged_names[rem]
data = np.delete(data, rem, 0)
return data, merged_names
def generate_2d_layout(
xy,
w=0.07,
h=0.05,
pad=0.02,
ch_names=None,
ch_indices=None,
name="ecog",
bg_image=None,
normalize=True,
):
"""Generate a custom 2D layout from xy points.
Generates a 2-D layout for plotting with plot_topo methods and
functions. XY points will be normalized between 0 and 1, where
normalization extremes will be either the min/max of xy, or
the width/height of bg_image.
Parameters
----------
xy : ndarray, shape (N, 2)
The xy coordinates of sensor locations.
w : float
The width of each sensor's axis (between 0 and 1).
h : float
The height of each sensor's axis (between 0 and 1).
pad : float
Portion of the box to reserve for padding. The value can range between
0.0 (boxes will touch, default) to 1.0 (boxes consist of only padding).
ch_names : list
The names of each channel. Must be a list of strings, with one
string per channel.
ch_indices : list
Index of each channel - must be a collection of unique integers,
one index per channel.
name : str
The name of this layout type.
bg_image : path-like | ndarray
The image over which sensor axes will be plotted. Either a path to an
image file, or an array that can be plotted with plt.imshow. If
provided, xy points will be normalized by the width/height of this
image. If not, xy points will be normalized by their own min/max.
normalize : bool
Whether to normalize the coordinates to run from 0 to 1. Defaults to
True.
Returns
-------
layout : Layout
A Layout object that can be plotted with plot_topo
functions and methods.
See Also
--------
make_eeg_layout, make_grid_layout
Notes
-----
.. versionadded:: 0.9.0
"""
import matplotlib.pyplot as plt
if ch_indices is None:
ch_indices = np.arange(xy.shape[0])
if ch_names is None:
ch_names = list(map(str, ch_indices))
if len(ch_names) != len(ch_indices):
raise ValueError("# channel names and indices must be equal")
if len(ch_names) != len(xy):
raise ValueError("# channel names and xy vals must be equal")
x, y = xy.copy().astype(float).T
# Normalize xy to 0-1
if bg_image is not None:
# Normalize by image dimensions
img = plt.imread(bg_image) if isinstance(bg_image, str) else bg_image
x /= img.shape[1]
y /= img.shape[0]
elif normalize:
# Normalize x and y by their maxes
for i_dim in [x, y]:
i_dim -= i_dim.min(0)
i_dim /= i_dim.max(0) - i_dim.min(0)
# Create box and pos variable
box = _box_size(np.vstack([x, y]).T, padding=pad)
box = (0, 0, box[0], box[1])
w, h = (np.array([i] * x.shape[0]) for i in [w, h])
loc_params = np.vstack([x, y, w, h]).T
layout = Layout(box, loc_params, ch_names, ch_indices, name)
return layout