"""Utility functions to baseline-correct data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from .utils import _check_option, _validate_type, logger, verbose
def _log_rescale(baseline, mode="mean"):
"""Log the rescaling method."""
if baseline is not None:
_check_option(
"mode",
mode,
["logratio", "ratio", "zscore", "mean", "percent", "zlogratio"],
)
msg = f"Applying baseline correction (mode: {mode})"
else:
msg = "No baseline correction applied"
return msg
@verbose
def rescale(data, times, baseline, mode="mean", copy=True, picks=None, verbose=None):
"""Rescale (baseline correct) data.
Parameters
----------
data : array
It can be of any shape. The only constraint is that the last
dimension should be time.
times : 1D array
Time instants is seconds.
%(baseline_rescale)s
mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio'
Perform baseline correction by
- subtracting the mean of baseline values ('mean')
- dividing by the mean of baseline values ('ratio')
- dividing by the mean of baseline values and taking the log
('logratio')
- subtracting the mean of baseline values followed by dividing by
the mean of baseline values ('percent')
- subtracting the mean of baseline values and dividing by the
standard deviation of baseline values ('zscore')
- dividing by the mean of baseline values, taking the log, and
dividing by the standard deviation of log baseline values
('zlogratio')
copy : bool
Whether to return a new instance or modify in place.
picks : list of int | None
Data to process along the axis=-2 (None, default, processes all).
%(verbose)s
Returns
-------
data_scaled: array
Array of same shape as data after rescaling.
"""
if copy:
data = data.copy()
if verbose is not False:
msg = _log_rescale(baseline, mode)
logger.info(msg)
if baseline is None or data.shape[-1] == 0:
return data
bmin, bmax = baseline
if bmin is None:
imin = 0
else:
imin = np.where(times >= bmin)[0]
if len(imin) == 0:
raise ValueError(
f"bmin is too large ({bmin}), it exceeds the largest time value"
)
imin = int(imin[0])
if bmax is None:
imax = len(times)
else:
imax = np.where(times <= bmax)[0]
if len(imax) == 0:
raise ValueError(
f"bmax is too small ({bmax}), it is smaller than the smallest time "
"value"
)
imax = int(imax[-1]) + 1
if imin >= imax:
raise ValueError(
f"Bad rescaling slice ({imin}:{imax}) from time values {bmin}, {bmax}"
)
# technically this is inefficient when `picks` is given, but assuming
# that we generally pick most channels for rescaling, it's not so bad
mean = np.mean(data[..., imin:imax], axis=-1, keepdims=True)
if mode == "mean":
def fun(d, m):
d -= m
elif mode == "ratio":
def fun(d, m):
d /= m
elif mode == "logratio":
def fun(d, m):
d /= m
np.log10(d, out=d)
elif mode == "percent":
def fun(d, m):
d -= m
d /= m
elif mode == "zscore":
def fun(d, m):
d -= m
d /= np.std(d[..., imin:imax], axis=-1, keepdims=True)
elif mode == "zlogratio":
def fun(d, m):
d /= m
np.log10(d, out=d)
d /= np.std(d[..., imin:imax], axis=-1, keepdims=True)
if picks is None:
fun(data, mean)
else:
for pi in picks:
fun(data[..., pi, :], mean[..., pi, :])
return data
def _check_baseline(baseline, times, sfreq, on_baseline_outside_data="raise"):
"""Check if the baseline is valid and adjust it if requested.
``None`` values inside ``baseline`` will be replaced with ``times[0]`` and
``times[-1]``.
Parameters
----------
baseline : array-like, shape (2,) | None
Beginning and end of the baseline period, in seconds. If ``None``,
assume no baseline and return immediately.
times : array
The time points.
sfreq : float
The sampling rate.
on_baseline_outside_data : 'raise' | 'info' | 'adjust'
What to do if the baseline period exceeds the data.
If ``'raise'``, raise an exception (default).
If ``'info'``, log an info message.
If ``'adjust'``, adjust the baseline such that it is within the data range.
Returns
-------
(baseline_tmin, baseline_tmax) | None
The baseline with ``None`` values replaced with times, and with adjusted times
if ``on_baseline_outside_data='adjust'``; or ``None``, if ``baseline`` is
``None``.
"""
if baseline is None:
return None
_validate_type(baseline, "array-like")
baseline = tuple(baseline)
if len(baseline) != 2:
raise ValueError(
f"baseline must have exactly two elements (got {len(baseline)})."
)
tmin, tmax = times[0], times[-1]
tstep = 1.0 / float(sfreq)
# check default value of baseline and `tmin=0`
if baseline == (None, 0) and tmin == 0:
raise ValueError(
"Baseline interval is only one sample. Use `baseline=(0, 0)` if this is "
"desired."
)
baseline_tmin, baseline_tmax = baseline
if baseline_tmin is None:
baseline_tmin = tmin
baseline_tmin = float(baseline_tmin)
if baseline_tmax is None:
baseline_tmax = tmax
baseline_tmax = float(baseline_tmax)
if baseline_tmin > baseline_tmax:
raise ValueError(
f"Baseline min ({baseline_tmin}) must be less than baseline max ("
f"{baseline_tmax})"
)
if (baseline_tmin < tmin - tstep) or (baseline_tmax > tmax + tstep):
msg = (
f"Baseline interval [{baseline_tmin}, {baseline_tmax}] s is outside of "
f"epochs data [{tmin}, {tmax}] s. Epochs were probably cropped."
)
if on_baseline_outside_data == "raise":
raise ValueError(msg)
elif on_baseline_outside_data == "info":
logger.info(msg)
elif on_baseline_outside_data == "adjust":
if baseline_tmin < tmin - tstep:
baseline_tmin = tmin
if baseline_tmax > tmax + tstep:
baseline_tmax = tmax
return baseline_tmin, baseline_tmax