# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import json
import re
import warnings
from collections import Counter, OrderedDict
from collections.abc import Iterable
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from itertools import takewhile
from textwrap import shorten
import numpy as np
from scipy.io import loadmat
from ._fiff.constants import FIFF
from ._fiff.open import fiff_open
from ._fiff.tag import read_tag
from ._fiff.tree import dir_tree_find
from ._fiff.write import (
_safe_name_list,
end_block,
start_and_end_file,
start_block,
write_double,
write_float,
write_name_list_sanitized,
write_string,
)
from .utils import (
_check_dict_keys,
_check_dt,
_check_fname,
_check_option,
_check_pandas_installed,
_check_time_format,
_convert_times,
_DefaultEventParser,
_dt_to_stamp,
_is_numeric,
_mask_to_onsets_offsets,
_on_missing,
_pl,
_stamp_to_dt,
_validate_type,
check_fname,
fill_doc,
int_like,
logger,
verbose,
warn,
)
# For testing windows_like_datetime, we monkeypatch "datetime" in this module.
# Keep the true datetime object around for _validate_type use.
_datetime = datetime
def _check_o_d_s_c(onset, duration, description, ch_names):
onset = np.atleast_1d(np.array(onset, dtype=float))
if onset.ndim != 1:
raise ValueError(
f"Onset must be a one dimensional array, got {onset.ndim} (shape "
f"{onset.shape})."
)
duration = np.array(duration, dtype=float)
if duration.ndim == 0 or duration.shape == (1,):
duration = np.repeat(duration, len(onset))
if duration.ndim != 1:
raise ValueError(
f"Duration must be a one dimensional array, got {duration.ndim}."
)
description = np.array(description, dtype=str)
if description.ndim == 0 or description.shape == (1,):
description = np.repeat(description, len(onset))
if description.ndim != 1:
raise ValueError(
f"Description must be a one dimensional array, got {description.ndim}."
)
_safe_name_list(description, "write", "description")
# ch_names: convert to ndarray of tuples
_validate_type(ch_names, (None, tuple, list, np.ndarray), "ch_names")
if ch_names is None:
ch_names = [()] * len(onset)
ch_names = list(ch_names)
for ai, ch in enumerate(ch_names):
_validate_type(ch, (list, tuple, np.ndarray), f"ch_names[{ai}]")
ch_names[ai] = tuple(ch)
for ci, name in enumerate(ch_names[ai]):
_validate_type(name, str, f"ch_names[{ai}][{ci}]")
ch_names = _ndarray_ch_names(ch_names)
if not (len(onset) == len(duration) == len(description) == len(ch_names)):
raise ValueError(
"Onset, duration, description, and ch_names must be "
f"equal in sizes, got {len(onset)}, {len(duration)}, "
f"{len(description)}, and {len(ch_names)}."
)
return onset, duration, description, ch_names
def _ndarray_ch_names(ch_names):
# np.array(..., dtype=object) if all entries are empty will give
# an empty array of shape (n_entries, 0) which is not helpful. So let's
# force it to give us an array of shape (n_entries,) full of empty
# tuples
out = np.empty(len(ch_names), dtype=object)
out[:] = ch_names
return out
@fill_doc
class Annotations:
"""Annotation object for annotating segments of raw data.
.. note::
To convert events to `~mne.Annotations`, use
`~mne.annotations_from_events`. To convert existing `~mne.Annotations`
to events, use `~mne.events_from_annotations`.
Parameters
----------
onset : array of float, shape (n_annotations,)
The starting time of annotations in seconds after ``orig_time``.
duration : array of float, shape (n_annotations,) | float
Durations of the annotations in seconds. If a float, all the
annotations are given the same duration.
description : array of str, shape (n_annotations,) | str
Array of strings containing description for each annotation. If a
string, all the annotations are given the same description. To reject
epochs, use description starting with keyword 'bad'. See example above.
orig_time : float | str | datetime | tuple of int | None
A POSIX Timestamp, datetime or a tuple containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisition is started at the
same time. If it is a string, it should conform to the ISO8601 format.
More precisely to this '%%Y-%%m-%%d %%H:%%M:%%S.%%f' particular case of
the ISO8601 format where the delimiter between date and time is ' '.
%(ch_names_annot)s
.. versionadded:: 0.23
See Also
--------
mne.annotations_from_events
mne.events_from_annotations
Notes
-----
Annotations are added to instance of :class:`mne.io.Raw` as the attribute
:attr:`raw.annotations <mne.io.Raw.annotations>`.
To reject bad epochs using annotations, use
annotation description starting with 'bad' keyword. The epochs with
overlapping bad segments are then rejected automatically by default.
To remove epochs with blinks you can do:
>>> eog_events = mne.preprocessing.find_eog_events(raw) # doctest: +SKIP
>>> n_blinks = len(eog_events) # doctest: +SKIP
>>> onset = eog_events[:, 0] / raw.info['sfreq'] - 0.25 # doctest: +SKIP
>>> duration = np.repeat(0.5, n_blinks) # doctest: +SKIP
>>> description = ['bad blink'] * n_blinks # doctest: +SKIP
>>> annotations = mne.Annotations(onset, duration, description) # doctest: +SKIP
>>> raw.set_annotations(annotations) # doctest: +SKIP
>>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax) # doctest: +SKIP
**ch_names**
Specifying channel names allows the creation of channel-specific
annotations. Once the annotations are assigned to a raw instance with
:meth:`mne.io.Raw.set_annotations`, if channels are renamed by the raw
instance, the annotation channels also get renamed. If channels are dropped
from the raw instance, any channel-specific annotation that has no channels
left in the raw instance will also be removed.
**orig_time**
If ``orig_time`` is None, the annotations are synced to the start of the
data (0 seconds). Otherwise the annotations are synced to sample 0 and
``raw.first_samp`` is taken into account the same way as with events.
When setting annotations, the following alignments
between ``raw.info['meas_date']`` and ``annotation.orig_time`` take place:
::
----------- meas_date=XX, orig_time=YY -----------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
meas_date first_samp
.
. | +------+
. |_________| ANOT |
. | | |
. | +------+
. orig_time onset[0]
.
| +------+
|___________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=XX, orig_time=None ---------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
| +------+
|________________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=None, orig_time=YY ---------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
| +------+
|_________| ANOT |
| | |
| +------+
[[[ CRASH ]]]
----------- meas_date=None, orig_time=None -------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
N +------+
o________________________| |
n | |
e +------+
orig_time onset[0]'
.. warning::
This means that when ``raw.info['meas_date'] is None``, doing
``raw.set_annotations(raw.annotations)`` will not alter ``raw`` if and
only if ``raw.first_samp == 0``. When it's non-zero,
``raw.set_annotations`` will assume that the "new" annotations refer to
the original data (with ``first_samp==0``), and will be re-referenced to
the new time offset!
**Specific annotation**
``BAD_ACQ_SKIP`` annotation leads to specific reading/writing file
behaviours. See :meth:`mne.io.read_raw_fif` and
:meth:`Raw.save() <mne.io.Raw.save>` notes for details.
""" # noqa: E501
def __init__(self, onset, duration, description, orig_time=None, ch_names=None):
self._orig_time = _handle_meas_date(orig_time)
self.onset, self.duration, self.description, self.ch_names = _check_o_d_s_c(
onset, duration, description, ch_names
)
self._sort() # ensure we're sorted
@property
def orig_time(self):
"""The time base of the Annotations."""
return self._orig_time
def __eq__(self, other):
"""Compare to another Annotations instance."""
if not isinstance(other, Annotations):
return False
return (
np.array_equal(self.onset, other.onset)
and np.array_equal(self.duration, other.duration)
and np.array_equal(self.description, other.description)
and np.array_equal(self.ch_names, other.ch_names)
and self.orig_time == other.orig_time
)
def __repr__(self):
"""Show the representation."""
counter = Counter(self.description)
kinds = ", ".join(["{} ({})".format(*k) for k in sorted(counter.items())])
kinds = (": " if len(kinds) > 0 else "") + kinds
ch_specific = ", channel-specific" if self._any_ch_names() else ""
s = (
f"Annotations | {len(self.onset)} segment"
f"{_pl(len(self.onset))}{ch_specific}{kinds}"
)
return "<" + shorten(s, width=77, placeholder=" ...") + ">"
def __len__(self):
"""Return the number of annotations.
Returns
-------
n_annot : int
The number of annotations.
"""
return len(self.duration)
def __add__(self, other):
"""Add (concatencate) two Annotation objects."""
out = self.copy()
out += other
return out
def __iadd__(self, other):
"""Add (concatencate) two Annotation objects in-place.
Both annotations must have the same orig_time
"""
if len(self) == 0:
self._orig_time = other.orig_time
if self.orig_time != other.orig_time:
raise ValueError(
"orig_time should be the same to add/concatenate 2 annotations (got "
f"{self.orig_time} != {other.orig_time})"
)
return self.append(
other.onset, other.duration, other.description, other.ch_names
)
def __iter__(self):
"""Iterate over the annotations."""
# Figure this out once ahead of time for consistency and speed (for
# thousands of annotations)
with_ch_names = self._any_ch_names()
for idx in range(len(self.onset)):
yield self.__getitem__(idx, with_ch_names=with_ch_names)
def __getitem__(self, key, *, with_ch_names=None):
"""Propagate indexing and slicing to the underlying numpy structure."""
if isinstance(key, int_like):
out_keys = ("onset", "duration", "description", "orig_time")
out_vals = (
self.onset[key],
self.duration[key],
self.description[key],
self.orig_time,
)
if with_ch_names or (with_ch_names is None and self._any_ch_names()):
out_keys += ("ch_names",)
out_vals += (self.ch_names[key],)
return OrderedDict(zip(out_keys, out_vals))
else:
key = list(key) if isinstance(key, tuple) else key
return Annotations(
onset=self.onset[key],
duration=self.duration[key],
description=self.description[key],
orig_time=self.orig_time,
ch_names=self.ch_names[key],
)
@fill_doc
def append(self, onset, duration, description, ch_names=None):
"""Add an annotated segment. Operates inplace.
Parameters
----------
onset : float | array-like
Annotation time onset from the beginning of the recording in
seconds.
duration : float | array-like
Duration of the annotation in seconds.
description : str | array-like
Description for the annotation. To reject epochs, use description
starting with keyword 'bad'.
%(ch_names_annot)s
.. versionadded:: 0.23
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
The array-like support for arguments allows this to be used similarly
to not only ``list.append``, but also
`list.extend <https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types>`__.
""" # noqa: E501
onset, duration, description, ch_names = _check_o_d_s_c(
onset, duration, description, ch_names
)
self.onset = np.append(self.onset, onset)
self.duration = np.append(self.duration, duration)
self.description = np.append(self.description, description)
self.ch_names = np.append(self.ch_names, ch_names)
self._sort()
return self
def copy(self):
"""Return a copy of the Annotations.
Returns
-------
inst : instance of Annotations
A copy of the object.
"""
return deepcopy(self)
def delete(self, idx):
"""Remove an annotation. Operates inplace.
Parameters
----------
idx : int | array-like of int
Index of the annotation to remove. Can be array-like to
remove multiple indices.
"""
self.onset = np.delete(self.onset, idx)
self.duration = np.delete(self.duration, idx)
self.description = np.delete(self.description, idx)
self.ch_names = np.delete(self.ch_names, idx)
@fill_doc
def to_data_frame(self, time_format="datetime"):
"""Export annotations in tabular structure as a pandas DataFrame.
Parameters
----------
%(time_format_df_raw)s
.. versionadded:: 1.7
Returns
-------
result : pandas.DataFrame
Returns a pandas DataFrame with onset, duration, and
description columns. A column named ch_names is added if any
annotations are channel-specific.
"""
pd = _check_pandas_installed(strict=True)
valid_time_formats = ["ms", "timedelta", "datetime"]
dt = _handle_meas_date(self.orig_time)
if dt is None:
dt = _handle_meas_date(0)
time_format = _check_time_format(time_format, valid_time_formats, dt)
dt = dt.replace(tzinfo=None)
times = _convert_times(self.onset, time_format, dt)
df = dict(onset=times, duration=self.duration, description=self.description)
if self._any_ch_names():
df.update(ch_names=self.ch_names)
df = pd.DataFrame(df)
return df
def count(self):
"""Count annotations.
Returns
-------
counts : dict
A dictionary containing unique annotation descriptions as keys with their
counts as values.
"""
return count_annotations(self)
def _any_ch_names(self):
return any(len(ch) for ch in self.ch_names)
def _prune_ch_names(self, info, on_missing):
# this prunes channel names and if a given channel-specific annotation
# no longer has any channels left, it gets dropped
keep = set(info["ch_names"])
ch_names = self.ch_names
warned = False
drop_idx = list()
for ci, ch in enumerate(ch_names):
if len(ch):
names = list()
for name in ch:
if name not in keep:
if not warned:
_on_missing(
on_missing,
"At least one channel name in "
f"annotations missing from info: {name}",
)
warned = True
else:
names.append(name)
ch_names[ci] = tuple(names)
if not len(ch_names[ci]):
drop_idx.append(ci)
if len(drop_idx):
self.delete(drop_idx)
return self
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save annotations to FIF, CSV or TXT.
Typically annotations get saved in the FIF file for raw data
(e.g., as ``raw.annotations``), but this offers the possibility
to also save them to disk separately in different file formats
which are easier to share between packages.
Parameters
----------
fname : path-like
The filename to use.
%(overwrite)s
.. versionadded:: 0.23
%(verbose)s
Notes
-----
The format of the information stored in the saved annotation objects
depends on the chosen file format. :file:`.csv` files store the onset
as timestamps (e.g., ``2002-12-03 19:01:56.676071``),
whereas :file:`.txt` files store onset as seconds since start of the
recording (e.g., ``45.95597082905339``).
"""
check_fname(
fname,
"annotations",
(
"-annot.fif",
"-annot.fif.gz",
"_annot.fif",
"_annot.fif.gz",
".txt",
".csv",
),
)
fname = _check_fname(fname, overwrite=overwrite)
if fname.suffix == ".txt":
_write_annotations_txt(fname, self)
elif fname.suffix == ".csv":
_write_annotations_csv(fname, self)
else:
with start_and_end_file(fname) as fid:
_write_annotations(fid, self)
def _sort(self):
"""Sort in place."""
# instead of argsort here we use sorted so that it gives us
# the onset-then-duration hierarchy
vals = sorted(zip(self.onset, self.duration, range(len(self))))
order = list(list(zip(*vals))[-1]) if len(vals) else []
self.onset = self.onset[order]
self.duration = self.duration[order]
self.description = self.description[order]
self.ch_names = self.ch_names[order]
@verbose
def crop(
self, tmin=None, tmax=None, emit_warning=False, use_orig_time=True, verbose=None
):
"""Remove all annotation that are outside of [tmin, tmax].
The method operates inplace.
Parameters
----------
tmin : float | datetime | None
Start time of selection in seconds.
tmax : float | datetime | None
End time of selection in seconds.
emit_warning : bool
Whether to emit warnings when limiting or omitting annotations.
Defaults to False.
use_orig_time : bool
Whether to use orig_time as an offset.
Defaults to True.
%(verbose)s
Returns
-------
self : instance of Annotations
The cropped Annotations object.
"""
if len(self) == 0:
return self # no annotations, nothing to do
if not use_orig_time or self.orig_time is None:
offset = _handle_meas_date(0)
else:
offset = self.orig_time
if tmin is None:
tmin = timedelta(seconds=self.onset.min()) + offset
if tmax is None:
tmax = timedelta(seconds=(self.onset + self.duration).max()) + offset
for key, val in [("tmin", tmin), ("tmax", tmax)]:
_validate_type(
val, ("numeric", _datetime), key, "numeric, datetime, or None"
)
absolute_tmin = _handle_meas_date(tmin)
absolute_tmax = _handle_meas_date(tmax)
del tmin, tmax
if absolute_tmin > absolute_tmax:
raise ValueError(
f"tmax should be greater than or equal to tmin ({absolute_tmin} < "
f"{absolute_tmax})."
)
logger.debug(f"Cropping annotations {absolute_tmin} - {absolute_tmax}")
onsets, durations, descriptions, ch_names = [], [], [], []
out_of_bounds, clip_left_elem, clip_right_elem = [], [], []
for idx, (onset, duration, description, ch) in enumerate(
zip(self.onset, self.duration, self.description, self.ch_names)
):
# if duration is NaN behave like a zero
if np.isnan(duration):
duration = 0.0
# convert to absolute times
absolute_onset = timedelta(seconds=onset) + offset
absolute_offset = absolute_onset + timedelta(seconds=duration)
out_of_bounds.append(
absolute_onset > absolute_tmax or absolute_offset < absolute_tmin
)
if out_of_bounds[-1]:
clip_left_elem.append(False)
clip_right_elem.append(False)
logger.debug(
f" [{idx}] Dropping "
f"({absolute_onset} - {absolute_offset}: {description})"
)
else:
# clip the left side
clip_left_elem.append(absolute_onset < absolute_tmin)
if clip_left_elem[-1]:
absolute_onset = absolute_tmin
clip_right_elem.append(absolute_offset > absolute_tmax)
if clip_right_elem[-1]:
absolute_offset = absolute_tmax
if clip_left_elem[-1] or clip_right_elem[-1]:
durations.append((absolute_offset - absolute_onset).total_seconds())
else:
durations.append(duration)
onsets.append((absolute_onset - offset).total_seconds())
logger.debug(
f" [{idx}] Keeping "
f"({absolute_onset} - {absolute_offset} -> "
f"{onset} - {onset + duration})"
)
descriptions.append(description)
ch_names.append(ch)
logger.debug(f"Cropping complete (kept {len(onsets)})")
self.onset = np.array(onsets, float)
self.duration = np.array(durations, float)
assert (self.duration >= 0).all()
self.description = np.array(descriptions, dtype=str)
self.ch_names = _ndarray_ch_names(ch_names)
if emit_warning:
omitted = np.array(out_of_bounds).sum()
if omitted > 0:
warn(f"Omitted {omitted} annotation(s) that were outside data range.")
limited = (np.array(clip_left_elem) | np.array(clip_right_elem)).sum()
if limited > 0:
warn(
f"Limited {limited} annotation(s) that were expanding outside the"
" data range."
)
return self
@verbose
def set_durations(self, mapping, verbose=None):
"""Set annotation duration(s). Operates inplace.
Parameters
----------
mapping : dict | float
A dictionary mapping the annotation description to a duration in
seconds e.g. ``{'ShortStimulus' : 3, 'LongStimulus' : 12}``.
Alternatively, if a number is provided, then all annotations
durations are set to the single provided value.
%(verbose)s
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
.. versionadded:: 0.24.0
"""
_validate_type(mapping, (int, float, dict))
if isinstance(mapping, dict):
_check_dict_keys(
mapping,
self.description,
valid_key_source="data",
key_description="Annotation description(s)",
)
for stim in mapping:
map_idx = [desc == stim for desc in self.description]
self.duration[map_idx] = mapping[stim]
elif _is_numeric(mapping):
self.duration = np.ones(self.description.shape) * mapping
else:
raise ValueError(
"Setting durations requires the mapping of "
"descriptions to times to be provided as a dict. "
f"Instead {type(mapping)} was provided."
)
return self
@verbose
def rename(self, mapping, verbose=None):
"""Rename annotation description(s). Operates inplace.
Parameters
----------
mapping : dict
A dictionary mapping the old description to a new description,
e.g. {'1.0' : 'Control', '2.0' : 'Stimulus'}.
%(verbose)s
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
.. versionadded:: 0.24.0
"""
_validate_type(mapping, dict)
_check_dict_keys(
mapping,
self.description,
valid_key_source="data",
key_description="Annotation description(s)",
)
self.description = np.array([str(mapping.get(d, d)) for d in self.description])
return self
class EpochAnnotationsMixin:
"""Mixin class for Annotations in Epochs."""
@property
def annotations(self): # noqa: D102
return self._annotations
@verbose
def set_annotations(self, annotations, on_missing="raise", *, verbose=None):
"""Setter for Epoch annotations from Raw.
This method does not handle offsetting the times based
on first_samp or measurement dates, since that is expected
to occur in Raw.set_annotations().
Parameters
----------
annotations : instance of mne.Annotations | None
Annotations to set.
%(on_missing_ch_names)s
%(verbose)s
Returns
-------
self : instance of Epochs
The epochs object with annotations.
Notes
-----
Annotation onsets and offsets are stored as time in seconds (not as
sample numbers).
If you have an ``-epo.fif`` file saved to disk created before 1.0,
annotations can be added correctly only if no decimation or
resampling was performed. We thus suggest to regenerate your
:class:`mne.Epochs` from raw and re-save to disk with 1.0+ if you
want to safely work with :class:`~mne.Annotations` in epochs.
Since this method does not handle offsetting the times based
on first_samp or measurement dates, the recommended way to add
Annotations is::
raw.set_annotations(annotations)
annotations = raw.annotations
epochs.set_annotations(annotations)
.. versionadded:: 1.0
"""
_validate_type(annotations, (Annotations, None), "annotations")
if annotations is None:
self._annotations = None
else:
if getattr(self, "_unsafe_annot_add", False):
warn(
"Adding annotations to Epochs created (and saved to disk) before "
"1.0 will yield incorrect results if decimation or resampling was "
"performed on the instance, we recommend regenerating the Epochs "
"and re-saving them to disk."
)
new_annotations = annotations.copy()
new_annotations._prune_ch_names(self.info, on_missing)
self._annotations = new_annotations
return self
def get_annotations_per_epoch(self):
"""Get a list of annotations that occur during each epoch.
Returns
-------
epoch_annots : list
A list of lists (with length equal to number of epochs) where each
inner list contains any annotations that overlap the corresponding
epoch. Annotations are stored as a :class:`tuple` of onset,
duration, description (not as a :class:`~mne.Annotations` object),
where the onset is now relative to time=0 of the epoch, rather than
time=0 of the original continuous (raw) data.
"""
# create a list of annotations for each epoch
epoch_annot_list = [[] for _ in range(len(self.events))]
# check if annotations exist
if self.annotations is None:
return epoch_annot_list
# when each epoch and annotation starts/stops
# no need to account for first_samp here...
epoch_tzeros = self.events[:, 0] / self._raw_sfreq
epoch_starts, epoch_stops = (
np.atleast_2d(epoch_tzeros) + np.atleast_2d(self.times[[0, -1]]).T
)
# ... because first_samp isn't accounted for here either
annot_starts = self._annotations.onset
annot_stops = annot_starts + self._annotations.duration
# the first two cases (annot_straddles_epoch_{start|end}) will both
# (redundantly) capture cases where an annotation fully encompasses
# an epoch (e.g., annot from 1-4s, epoch from 2-3s). The redundancy
# doesn't matter because results are summed and then cast to bool (all
# we care about is presence/absence of overlap).
annot_straddles_epoch_start = np.logical_and(
np.atleast_2d(epoch_starts) >= np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_starts) < np.atleast_2d(annot_stops).T,
)
annot_straddles_epoch_end = np.logical_and(
np.atleast_2d(epoch_stops) > np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_stops) <= np.atleast_2d(annot_stops).T,
)
# this captures the only remaining case we care about: annotations
# fully contained within an epoch (or exactly coextensive with it).
annot_fully_within_epoch = np.logical_and(
np.atleast_2d(epoch_starts) <= np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_stops) >= np.atleast_2d(annot_stops).T,
)
# combine all cases to get array of shape (n_annotations, n_epochs).
# Nonzero entries indicate overlap between the corresponding
# annotation (row index) and epoch (column index).
all_cases = (
annot_straddles_epoch_start
+ annot_straddles_epoch_end
+ annot_fully_within_epoch
)
# for each Epoch-Annotation overlap occurrence:
for annot_ix, epo_ix in zip(*np.nonzero(all_cases)):
this_annot = self._annotations[annot_ix]
this_tzero = epoch_tzeros[epo_ix]
# adjust annotation onset to be relative to epoch tzero...
annot = (
this_annot["onset"] - this_tzero,
this_annot["duration"],
this_annot["description"],
)
# ...then add it to the correct sublist of `epoch_annot_list`
epoch_annot_list[epo_ix].append(annot)
return epoch_annot_list
def add_annotations_to_metadata(self, overwrite=False):
"""Add raw annotations into the Epochs metadata data frame.
Adds three columns to the ``metadata`` consisting of a list
in each row:
- ``annot_onset``: the onset of each Annotation within
the Epoch relative to the start time of the Epoch (in seconds).
- ``annot_duration``: the duration of each Annotation
within the Epoch in seconds.
- ``annot_description``: the free-form text description of each
Annotation.
Parameters
----------
overwrite : bool
Whether to overwrite existing columns in metadata or not.
Default is False.
Returns
-------
self : instance of Epochs
The modified instance (instance is also modified inplace).
Notes
-----
.. versionadded:: 1.0
"""
pd = _check_pandas_installed()
# check if annotations exist
if self.annotations is None:
warn(
f"There were no Annotations stored in {self}, so "
"metadata was not modified."
)
return self
# get existing metadata DataFrame or instantiate an empty one
if self._metadata is not None:
metadata = self._metadata
else:
data = np.empty((len(self.events), 0))
metadata = pd.DataFrame(data=data)
if (
any(
name in metadata.columns
for name in ["annot_onset", "annot_duration", "annot_description"]
)
and not overwrite
):
raise RuntimeError(
"Metadata for Epochs already contains columns "
'"annot_onset", "annot_duration", or "annot_description".'
)
# get the Epoch annotations, then convert to separate lists for
# onsets, durations, and descriptions
epoch_annot_list = self.get_annotations_per_epoch()
onset, duration, description = [], [], []
for epoch_annot in epoch_annot_list:
for ix, annot_prop in enumerate((onset, duration, description)):
entry = [annot[ix] for annot in epoch_annot]
# round onset and duration to avoid IO round trip mismatch
if ix < 2:
entry = np.round(entry, decimals=12).tolist()
annot_prop.append(entry)
# Create a new Annotations column that is instantiated as an empty
# list per Epoch.
metadata["annot_onset"] = pd.Series(onset)
metadata["annot_duration"] = pd.Series(duration)
metadata["annot_description"] = pd.Series(description)
# reset the metadata
self.metadata = metadata
return self
def _combine_annotations(
one, two, one_n_samples, one_first_samp, two_first_samp, sfreq
):
"""Combine a tuple of annotations."""
assert one is not None
assert two is not None
shift = one_n_samples / sfreq # to the right by the number of samples
shift += one_first_samp / sfreq # to the right by the offset
shift -= two_first_samp / sfreq # undo its offset
onset = np.concatenate([one.onset, two.onset + shift])
duration = np.concatenate([one.duration, two.duration])
description = np.concatenate([one.description, two.description])
ch_names = np.concatenate([one.ch_names, two.ch_names])
return Annotations(onset, duration, description, one.orig_time, ch_names)
def _handle_meas_date(meas_date):
"""Convert meas_date to datetime or None.
If `meas_date` is a string, it should conform to the ISO8601 format.
More precisely to this '%Y-%m-%d %H:%M:%S.%f' particular case of the
ISO8601 format where the delimiter between date and time is ' '.
Note that ISO8601 allows for ' ' or 'T' as delimiters between date and
time.
"""
if isinstance(meas_date, str):
ACCEPTED_ISO8601 = "%Y-%m-%d %H:%M:%S.%f"
try:
meas_date = datetime.strptime(meas_date, ACCEPTED_ISO8601)
except ValueError:
meas_date = None
else:
meas_date = meas_date.replace(tzinfo=timezone.utc)
elif isinstance(meas_date, tuple):
# old way
meas_date = _stamp_to_dt(meas_date)
if meas_date is not None:
if np.isscalar(meas_date):
# It would be nice just to do:
#
# meas_date = datetime.fromtimestamp(meas_date, timezone.utc)
#
# But Windows does not like timestamps < 0. So we'll use
# our specialized wrapper instead:
meas_date = np.array(np.modf(meas_date)[::-1])
meas_date *= [1, 1e6]
meas_date = _stamp_to_dt(np.round(meas_date))
_check_dt(meas_date) # run checks
return meas_date
def _sync_onset(raw, onset, inverse=False):
"""Adjust onsets in relation to raw data."""
offset = (-1 if inverse else 1) * raw._first_time
assert raw.info["meas_date"] == raw.annotations.orig_time
annot_start = onset - offset
return annot_start
def _annotations_starts_stops(raw, kinds, name="skip_by_annotation", invert=False):
"""Get starts and stops from given kinds.
onsets and ends are inclusive.
"""
_validate_type(kinds, (str, list, tuple), name)
if isinstance(kinds, str):
kinds = [kinds]
else:
for kind in kinds:
_validate_type(kind, "str", "All entries")
if len(raw.annotations) == 0:
onsets, ends = np.array([], int), np.array([], int)
else:
idxs = [
idx
for idx, desc in enumerate(raw.annotations.description)
if any(desc.upper().startswith(kind.upper()) for kind in kinds)
]
# onsets are already sorted
onsets = raw.annotations.onset[idxs]
onsets = _sync_onset(raw, onsets)
ends = onsets + raw.annotations.duration[idxs]
onsets = raw.time_as_index(onsets, use_rounding=True)
ends = raw.time_as_index(ends, use_rounding=True)
assert (onsets <= ends).all() # all durations >= 0
if invert:
# We need to eliminate overlaps here, otherwise wacky things happen,
# so we carefully invert the relationship
mask = np.zeros(len(raw.times), bool)
for onset, end in zip(onsets, ends):
mask[onset:end] = True
mask = ~mask
extras = onsets == ends
extra_onsets, extra_ends = onsets[extras], ends[extras]
onsets, ends = _mask_to_onsets_offsets(mask)
# Keep ones where things were exactly equal
del extras
# we could do this with a np.insert+np.searchsorted, but our
# ordered-ness should get us it for free
onsets = np.sort(np.concatenate([onsets, extra_onsets]))
ends = np.sort(np.concatenate([ends, extra_ends]))
assert (onsets <= ends).all()
return onsets, ends
def _write_annotations(fid, annotations):
"""Write annotations."""
start_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, annotations.onset)
write_float(
fid, FIFF.FIFF_MNE_BASELINE_MAX, annotations.duration + annotations.onset
)
write_name_list_sanitized(
fid, FIFF.FIFF_COMMENT, annotations.description, name="description"
)
if annotations.orig_time is not None:
write_double(fid, FIFF.FIFF_MEAS_DATE, _dt_to_stamp(annotations.orig_time))
if annotations._any_ch_names():
write_string(
fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG, json.dumps(tuple(annotations.ch_names))
)
end_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
def _write_annotations_csv(fname, annot):
annot = annot.to_data_frame()
if "ch_names" in annot:
annot["ch_names"] = [
_safe_name_list(ch, "write", name=f'annot["ch_names"][{ci}')
for ci, ch in enumerate(annot["ch_names"])
]
annot.to_csv(fname, index=False)
def _write_annotations_txt(fname, annot):
content = "# MNE-Annotations\n"
if annot.orig_time is not None:
# for backward compat, we do not write tzinfo (assumed UTC)
content += f"# orig_time : {annot.orig_time.replace(tzinfo=None)}\n"
content += "# onset, duration, description"
data = [annot.onset, annot.duration, annot.description]
if annot._any_ch_names():
content += ", ch_names"
data.append(
[
_safe_name_list(ch, "write", f"annot.ch_names[{ci}]")
for ci, ch in enumerate(annot.ch_names)
]
)
content += "\n"
data = np.array(data, dtype=str).T
assert data.ndim == 2
assert data.shape[0] == len(annot.onset)
assert data.shape[1] in (3, 4)
with open(fname, "wb") as fid:
fid.write(content.encode())
np.savetxt(fid, data, delimiter=",", fmt="%s")
@fill_doc
def read_annotations(
fname, sfreq="auto", uint16_codec=None, encoding="utf8", ignore_marker_types=False
) -> Annotations:
r"""Read annotations from a file.
This function reads a ``.fif``, ``.fif.gz``, ``.vmrk``, ``.amrk``,
``.edf``, ``.bdf``, ``.gdf``, ``.txt``, ``.csv``, ``.cnt``, ``.cef``, or
``.set`` file and makes an :class:`mne.Annotations` object.
Parameters
----------
fname : path-like
The filename.
sfreq : float | ``'auto'``
The sampling frequency in the file. This parameter is necessary for
\*.vmrk, \*.amrk, and \*.cef files as Annotations are expressed in
seconds and \*.vmrk/\*.amrk/\*.cef files are in samples. For any other
file format, ``sfreq`` is omitted. If set to 'auto' then the ``sfreq``
is taken from the respective info file of the same name with according
file extension (\*.vhdr/\*.ahdr for brainvision; \*.dap for Curry 7;
\*.cdt.dpa for Curry 8). So data.vmrk/amrk looks for sfreq in
data.vhdr/ahdr, data.cef looks in data.dap and data.cdt.cef looks in
data.cdt.dpa.
uint16_codec : str | None
This parameter is only used in EEGLAB (\*.set) and omitted otherwise.
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
``'latin1'`` or ``'utf-8'``) should be used when reading character
arrays and can therefore help you solve this problem.
%(encoding_edf)s
Only used when reading EDF annotations.
ignore_marker_types : bool
If ``True``, ignore marker types in BrainVision files (and only use their
descriptions). Defaults to ``False``.
Returns
-------
annot : instance of Annotations
The annotations.
Notes
-----
The annotations stored in a ``.csv`` require the onset columns to be
timestamps. If you have onsets as floats (in seconds), you should use the
``.txt`` extension.
"""
from .io.brainvision.brainvision import _read_annotations_brainvision
from .io.cnt.cnt import _read_annotations_cnt
from .io.ctf.markers import _read_annotations_ctf
from .io.curry.curry import _read_annotations_curry
from .io.edf.edf import _read_annotations_edf
from .io.eeglab.eeglab import _read_annotations_eeglab
fname = _check_fname(
fname,
overwrite="read",
must_exist=True,
need_dir=str(fname).endswith(".ds"), # for CTF
name="fname",
)
readers = {
".csv": _read_annotations_csv,
".cnt": _read_annotations_cnt,
".ds": _read_annotations_ctf,
".cef": _read_annotations_curry,
".set": _read_annotations_eeglab,
".edf": _read_annotations_edf,
".bdf": _read_annotations_edf,
".gdf": _read_annotations_edf,
".vmrk": _read_annotations_brainvision,
".amrk": _read_annotations_brainvision,
".txt": _read_annotations_txt,
}
kwargs = {
".vmrk": {"sfreq": sfreq, "ignore_marker_types": ignore_marker_types},
".amrk": {"sfreq": sfreq, "ignore_marker_types": ignore_marker_types},
".cef": {"sfreq": sfreq},
".set": {"uint16_codec": uint16_codec},
".edf": {"encoding": encoding},
".bdf": {"encoding": encoding},
".gdf": {"encoding": encoding},
}
if fname.suffix in readers:
annotations = readers[fname.suffix](fname, **kwargs.get(fname.suffix, {}))
elif fname.name.endswith(("fif", "fif.gz")):
# Read FiF files
ff, tree, _ = fiff_open(fname, preload=False)
with ff as fid:
annotations = _read_annotations_fif(fid, tree)
elif fname.name.startswith("events_") and fname.suffix == ".mat":
annotations = _read_brainstorm_annotations(fname)
else:
raise OSError(f'Unknown annotation file format "{fname}"')
if annotations is None:
raise OSError(f'No annotation data found in file "{fname}"')
return annotations
def _read_annotations_csv(fname):
"""Read annotations from csv.
Parameters
----------
fname : path-like
The filename.
Returns
-------
annot : instance of Annotations
The annotations.
"""
pd = _check_pandas_installed(strict=True)
df = pd.read_csv(fname, keep_default_na=False)
orig_time = df["onset"].values[0]
try:
float(orig_time)
warn(
"It looks like you have provided annotation onsets as floats. "
"These will be interpreted as MILLISECONDS. If that is not what "
"you want, save your CSV as a TXT file; the TXT reader accepts "
"onsets in seconds."
)
except ValueError:
pass
onset_dt = pd.to_datetime(df["onset"])
onset = (onset_dt - onset_dt[0]).dt.total_seconds()
duration = df["duration"].values.astype(float)
description = df["description"].values
ch_names = None
if "ch_names" in df.columns:
ch_names = [
_safe_name_list(val, "read", "annotation channel name")
for val in df["ch_names"].values
]
return Annotations(onset, duration, description, orig_time, ch_names)
def _read_brainstorm_annotations(fname, orig_time=None):
"""Read annotations from a Brainstorm events_ file.
Parameters
----------
fname : path-like
The filename
orig_time : float | int | instance of datetime | array of int | None
A POSIX Timestamp, datetime or an array containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisition is started at the
same time.
Returns
-------
annot : instance of Annotations | None
The annotations.
"""
def get_duration_from_times(t):
return t[1] - t[0] if t.shape[0] == 2 else np.zeros(len(t[0]))
annot_data = loadmat(fname)
onsets, durations, descriptions = (list(), list(), list())
for label, _, _, _, times, _, _ in annot_data["events"][0]:
onsets.append(times[0])
durations.append(get_duration_from_times(times))
n_annot = len(times[0])
descriptions += [str(label[0])] * n_annot
return Annotations(
onset=np.concatenate(onsets),
duration=np.concatenate(durations),
description=descriptions,
orig_time=orig_time,
)
def _is_iso8601(candidate_str):
ISO8601 = r"^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}\.\d{6}$"
return re.compile(ISO8601).match(candidate_str) is not None
def _read_annotations_txt_parse_header(fname):
def is_orig_time(x):
return x.startswith("# orig_time :")
with open(fname) as fid:
header = list(takewhile(lambda x: x.startswith("#"), fid))
orig_values = [h[13:].strip() for h in header if is_orig_time(h)]
orig_values = [_handle_meas_date(orig) for orig in orig_values if _is_iso8601(orig)]
return None if not orig_values else orig_values[0]
def _read_annotations_txt(fname):
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
out = np.loadtxt(fname, delimiter=",", dtype=np.bytes_, unpack=True)
ch_names = None
if len(out) == 0:
onset, duration, desc = [], [], []
else:
_check_option("text header", len(out), (3, 4))
if len(out) == 3:
onset, duration, desc = out
else:
onset, duration, desc, ch_names = out
onset = [float(o.decode()) for o in np.atleast_1d(onset)]
duration = [float(d.decode()) for d in np.atleast_1d(duration)]
desc = [str(d.decode()).strip() for d in np.atleast_1d(desc)]
if ch_names is not None:
ch_names = [
_safe_name_list(ch.decode().strip(), "read", f"ch_names[{ci}]")
for ci, ch in enumerate(ch_names)
]
orig_time = _read_annotations_txt_parse_header(fname)
annotations = Annotations(
onset=onset,
duration=duration,
description=desc,
orig_time=orig_time,
ch_names=ch_names,
)
return annotations
def _read_annotations_fif(fid, tree):
"""Read annotations."""
annot_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ANNOTATIONS)
if len(annot_data) == 0:
annotations = None
else:
annot_data = annot_data[0]
orig_time = ch_names = None
onset, duration, description = list(), list(), list()
for ent in annot_data["directory"]:
kind = ent.kind
pos = ent.pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_BASELINE_MIN:
onset = tag.data
onset = list() if onset is None else onset
elif kind == FIFF.FIFF_MNE_BASELINE_MAX:
duration = tag.data
duration = list() if duration is None else duration - onset
elif kind == FIFF.FIFF_COMMENT:
description = _safe_name_list(tag.data, "read", "description")
elif kind == FIFF.FIFF_MEAS_DATE:
orig_time = tag.data
try:
orig_time = float(orig_time) # old way
except TypeError:
orig_time = tuple(orig_time) # new way
elif kind == FIFF.FIFF_MNE_EPOCHS_DROP_LOG:
ch_names = tuple(tuple(x) for x in json.loads(tag.data))
assert len(onset) == len(duration) == len(description)
annotations = Annotations(onset, duration, description, orig_time, ch_names)
return annotations
def _select_annotations_based_on_description(descriptions, event_id, regexp):
"""Get a collection of descriptions and returns index of selected."""
regexp_comp = re.compile(".*" if regexp is None else regexp)
event_id_ = dict()
dropped = []
# Iterate over the sorted descriptions so that the Counter mapping
# is slightly less arbitrary
for desc in sorted(descriptions):
if desc in event_id_:
continue
if regexp_comp.match(desc) is None:
continue
if isinstance(event_id, dict):
if desc in event_id:
event_id_[desc] = event_id[desc]
else:
continue
else:
trigger = event_id(desc)
if trigger is not None:
event_id_[desc] = trigger
else:
dropped.append(desc)
event_sel = [ii for ii, kk in enumerate(descriptions) if kk in event_id_]
if len(event_sel) == 0 and regexp is not None:
raise ValueError("Could not find any of the events you specified.")
return event_sel, event_id_
def _select_events_based_on_id(events, event_desc):
"""Get a collection of events and returns index of selected."""
event_desc_ = dict()
func = event_desc.get if isinstance(event_desc, dict) else event_desc
event_ids = events[np.unique(events[:, 2], return_index=True)[1], 2]
for e in event_ids:
trigger = func(e)
if trigger is not None:
event_desc_[e] = trigger
event_sel = [ii for ii, e in enumerate(events) if e[2] in event_desc_]
if len(event_sel) == 0:
raise ValueError("Could not find any of the events you specified.")
return event_sel, event_desc_
def _check_event_id(event_id, raw):
from .io import Raw, RawArray
from .io.brainvision.brainvision import (
RawBrainVision,
_BVEventParser,
_check_bv_annot,
)
if event_id is None:
return _DefaultEventParser()
elif event_id == "auto":
if isinstance(raw, RawBrainVision):
return _BVEventParser()
elif isinstance(raw, Raw | RawArray) and _check_bv_annot(
raw.annotations.description
):
logger.info("Non-RawBrainVision raw using branvision markers")
return _BVEventParser()
else:
return _DefaultEventParser()
elif callable(event_id) or isinstance(event_id, dict):
return event_id
else:
raise ValueError(
"Invalid type for event_id (should be None, str, "
f"dict or callable). Got {type(event_id)}."
)
def _check_event_description(event_desc, events):
"""Check event_id and convert to default format."""
if event_desc is None: # convert to int to make typing-checks happy
event_desc = list(np.unique(events[:, 2]))
if isinstance(event_desc, dict):
for val in event_desc.values():
_validate_type(val, (str, None), "Event names")
elif isinstance(event_desc, Iterable):
event_desc = np.asarray(event_desc)
if event_desc.ndim != 1:
raise ValueError(f"event_desc must be 1D, got shape {event_desc.shape}")
event_desc = dict(zip(event_desc, map(str, event_desc)))
elif callable(event_desc):
pass
else:
raise ValueError(
"Invalid type for event_desc (should be None, list, "
f"1darray, dict or callable). Got {type(event_desc)}."
)
return event_desc
@verbose
def events_from_annotations(
raw,
event_id="auto",
regexp=r"^(?![Bb][Aa][Dd]|[Ee][Dd][Gg][Ee]).*$",
use_rounding=True,
chunk_duration=None,
tol=1e-8,
verbose=None,
):
"""Get :term:`events` and ``event_id`` from an Annotations object.
Parameters
----------
raw : instance of Raw
The raw data for which Annotations are defined.
event_id : dict | callable | None | ``'auto'``
Can be:
- **dict**: map descriptions (keys) to integer event codes (values).
Only the descriptions present will be mapped, others will be ignored.
- **callable**: must take a string input and return an integer event
code, or return ``None`` to ignore the event.
- **None**: Map descriptions to unique integer values based on their
``sorted`` order.
- **'auto' (default)**: prefer a raw-format-specific parser:
- Brainvision: map stimulus events to their integer part; response
events to integer part + 1000; optic events to integer part + 2000;
'SyncStatus/Sync On' to 99998; 'New Segment/' to 99999;
all others like ``None`` with an offset of 10000.
- Other raw formats: Behaves like None.
.. versionadded:: 0.18
regexp : str | None
Regular expression used to filter the annotations whose
descriptions is a match. The default ignores descriptions beginning
``'bad'`` or ``'edge'`` (case-insensitive).
.. versionchanged:: 0.18
Default ignores bad and edge descriptions.
use_rounding : bool
If True, use rounding (instead of truncation) when converting
times to indices. This can help avoid non-unique indices.
chunk_duration : float | None
Chunk duration in seconds. If ``chunk_duration`` is set to None
(default), generated events correspond to the annotation onsets.
If not, :func:`mne.events_from_annotations` returns as many events as
they fit within the annotation duration spaced according to
``chunk_duration``. As a consequence annotations with duration shorter
than ``chunk_duration`` will not contribute events.
tol : float
The tolerance used to check if a chunk fits within an annotation when
``chunk_duration`` is not ``None``. If the duration from a computed
chunk onset to the end of the annotation is smaller than
``chunk_duration`` minus ``tol``, the onset will be discarded.
%(verbose)s
Returns
-------
%(events)s
event_id : dict
The event_id variable that can be passed to :class:`~mne.Epochs`.
See Also
--------
mne.annotations_from_events
Notes
-----
For data formats that store integer events as strings (e.g., NeuroScan
``.cnt`` files), passing the Python built-in function :class:`int` as the
``event_id`` parameter will do what most users probably want in those
circumstances: return an ``event_id`` dictionary that maps event ``'1'`` to
integer event code ``1``, ``'2'`` to ``2``, etc.
"""
if len(raw.annotations) == 0:
event_id = dict() if not isinstance(event_id, dict) else event_id
return np.empty((0, 3), dtype=int), event_id
annotations = raw.annotations
event_id = _check_event_id(event_id, raw)
event_sel, event_id_ = _select_annotations_based_on_description(
annotations.description, event_id=event_id, regexp=regexp
)
if chunk_duration is None:
inds = raw.time_as_index(
annotations.onset, use_rounding=use_rounding, origin=annotations.orig_time
)
if annotations.orig_time is not None:
inds += raw.first_samp
values = [event_id_[kk] for kk in annotations.description[event_sel]]
inds = inds[event_sel]
else:
inds = values = np.array([]).astype(int)
for annot in annotations[event_sel]:
annot_offset = annot["onset"] + annot["duration"]
_onsets = np.arange(annot["onset"], annot_offset, chunk_duration)
good_events = annot_offset - _onsets >= chunk_duration - tol
if good_events.any():
_onsets = _onsets[good_events]
_inds = raw.time_as_index(
_onsets, use_rounding=use_rounding, origin=annotations.orig_time
)
_inds += raw.first_samp
inds = np.append(inds, _inds)
_values = np.full(
shape=len(_inds),
fill_value=event_id_[annot["description"]],
dtype=int,
)
values = np.append(values, _values)
events = np.c_[inds, np.zeros(len(inds)), values].astype(int)
logger.info(f"Used Annotations descriptions: {list(event_id_.keys())}")
return events, event_id_
@verbose
def annotations_from_events(
events, sfreq, event_desc=None, first_samp=0, orig_time=None, verbose=None
):
"""Convert an event array to an Annotations object.
Parameters
----------
events : ndarray, shape (n_events, 3)
The events.
sfreq : float
Sampling frequency.
event_desc : dict | array-like | callable | None
Events description. Can be:
- **dict**: map integer event codes (keys) to descriptions (values).
Only the descriptions present will be mapped, others will be ignored.
- **array-like**: list, or 1d array of integers event codes to include.
Only the event codes present will be mapped, others will be ignored.
Event codes will be passed as string descriptions.
- **callable**: must take a integer event code as input and return a
string description or None to ignore it.
- **None**: Use integer event codes as descriptions.
first_samp : int
The first data sample (default=0). See :attr:`mne.io.Raw.first_samp`
docstring.
orig_time : float | str | datetime | tuple of int | None
Determines the starting time of annotation acquisition. If None
(default), starting time is determined from beginning of raw data
acquisition. For details, see :meth:`mne.Annotations` docstring.
%(verbose)s
Returns
-------
annot : instance of Annotations
The annotations.
See Also
--------
mne.events_from_annotations
Notes
-----
Annotations returned by this function will all have zero (null) duration.
Creating events from annotations via the function
`mne.events_from_annotations` takes in event mappings with
key→value pairs as description→ID, whereas `mne.annotations_from_events`
takes in event mappings with key→value pairs as ID→description.
If you need to use these together, you can invert the mapping by doing::
event_desc = {v: k for k, v in event_id.items()}
"""
event_desc = _check_event_description(event_desc, events)
event_sel, event_desc_ = _select_events_based_on_id(events, event_desc)
events_sel = events[event_sel]
onsets = (events_sel[:, 0] - first_samp) / sfreq
descriptions = [event_desc_[e[2]] for e in events_sel]
durations = np.zeros(len(events_sel)) # dummy durations
# Create annotations
annots = Annotations(
onset=onsets, duration=durations, description=descriptions, orig_time=orig_time
)
return annots
def _adjust_onset_meas_date(annot, raw):
"""Adjust the annotation onsets based on raw meas_date."""
# If there is a non-None meas date, then the onset should take into
# account the first_samp / first_time.
if raw.info["meas_date"] is not None:
annot.onset += raw.first_time
def count_annotations(annotations):
"""Count annotations.
Parameters
----------
annotations : mne.Annotations
The annotations instance.
Returns
-------
counts : dict
A dictionary containing unique annotation descriptions as keys with their
counts as values.
Examples
--------
>>> annotations = mne.Annotations([0, 1, 2], [1, 2, 1], ["T0", "T1", "T0"])
>>> count_annotations(annotations)
{'T0': 2, 'T1': 1}
"""
types, counts = np.unique(annotations.description, return_counts=True)
return {str(t): int(count) for t, count in zip(types, counts)}