# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from scipy.signal import get_window
from .utils import _ensure_int, _validate_type, logger, verbose
###############################################################################
# Class for interpolation between adjacent points
class _Interp2:
r"""Interpolate between two points.
Parameters
----------
control_points : array, shape (n_changes,)
The control points (indices) to use.
values : callable | array, shape (n_changes, ...)
Callable that takes the control point and returns a list of
arrays that must be interpolated.
interp : str
Can be 'zero', 'linear', 'hann', or 'cos2' (same as hann).
Notes
-----
This will process data using overlapping windows of potentially
different sizes to achieve a constant output value using different
2-point interpolation schemes. For example, for linear interpolation,
and window sizes of 6 and 17, this would look like::
1 _ _
|\ / '-. .-'
| \ / '-. .-'
| x |-.-|
| / \ .-' '-.
|/ \_.-' '-.
0 +----|----|----|----|---
0 5 10 15 20 25
"""
def __init__(self, control_points, values, interp="hann", *, name="Interp2"):
# set up interpolation
self.control_points = np.array(control_points, int).ravel()
if not np.array_equal(np.unique(self.control_points), self.control_points):
raise ValueError("Control points must be sorted and unique")
if len(self.control_points) == 0:
raise ValueError("Must be at least one control point")
if not (self.control_points >= 0).all():
raise ValueError(
f"All control points must be positive (got {self.control_points[:3]})"
)
if isinstance(values, np.ndarray):
values = [values]
if isinstance(values, list | tuple):
for v in values:
if not (v is None or isinstance(v, np.ndarray)):
raise TypeError(
'All entries in "values" must be ndarray or None, got '
f"{type(v)}"
)
if v is not None and v.shape[0] != len(self.control_points):
raise ValueError(
"Values, if provided, must be the same length as the number of "
f"control points ({len(self.control_points)}), got {v.shape[0]}"
)
use_values = values
def val(pt):
idx = np.where(control_points == pt)[0][0]
return [v[idx] if v is not None else None for v in use_values]
values = val
self.values = values
self.n_last = None
self._position = 0 # start at zero
self._left_idx = 0
self._left = self._right = self._use_interp = None
self.name = name
known_types = ("cos2", "linear", "zero", "hann")
if interp not in known_types:
raise ValueError(f'interp must be one of {known_types}, got "{interp}"')
self._interp = interp
def feed_generator(self, n_pts):
"""Feed data and get interpolators as a generator."""
self.n_last = 0
n_pts = _ensure_int(n_pts, "n_pts")
original_position = self._position
stop = self._position + n_pts
logger.debug(f" ~ {self.name} Feed {n_pts} ({self._position}-{stop})")
used = np.zeros(n_pts, bool)
if self._left is None: # first one
logger.debug(f" ~ {self.name} Eval @ 0 ({self.control_points[0]})")
self._left = self.values(self.control_points[0])
if len(self.control_points) == 1:
self._right = self._left
n_used = 0
# Left zero-order hold condition
if self._position < self.control_points[self._left_idx]:
n_use = min(self.control_points[self._left_idx] - self._position, n_pts)
logger.debug(f" ~ {self.name} Left ZOH {n_use}")
this_sl = slice(None, n_use)
assert used[this_sl].size == n_use
assert not used[this_sl].any()
used[this_sl] = True
yield [this_sl, self._left, None, None]
self._position += n_use
n_used += n_use
self.n_last += 1
# Standard interpolation condition
stop_right_idx = np.where(self.control_points >= stop)[0]
if len(stop_right_idx) == 0:
stop_right_idx = [len(self.control_points) - 1]
stop_right_idx = stop_right_idx[0]
left_idxs = np.arange(self._left_idx, stop_right_idx)
self.n_last += max(len(left_idxs) - 1, 0)
for bi, left_idx in enumerate(left_idxs):
if left_idx != self._left_idx or self._right is None:
if self._right is not None:
assert left_idx == self._left_idx + 1
self._left = self._right
self._left_idx += 1
self._use_interp = None # need to recreate it
eval_pt = self.control_points[self._left_idx + 1]
logger.debug(
f" ~ {self.name} Eval @ {self._left_idx + 1} ({eval_pt})"
)
self._right = self.values(eval_pt)
assert self._right is not None
left_point = self.control_points[self._left_idx]
right_point = self.control_points[self._left_idx + 1]
if self._use_interp is None:
interp_span = right_point - left_point
if self._interp == "zero":
self._use_interp = None
elif self._interp == "linear":
self._use_interp = np.linspace(
1.0, 0.0, interp_span, endpoint=False
)
else: # self._interp in ('cos2', 'hann'):
self._use_interp = np.cos(
np.linspace(0, np.pi / 2.0, interp_span, endpoint=False)
)
self._use_interp *= self._use_interp
n_use = min(stop, right_point) - self._position
if n_use > 0:
logger.debug(
f" ~ {self.name} Interp {self._interp} {n_use} "
f"({left_point}-{right_point})"
)
interp_start = self._position - left_point
assert interp_start >= 0
if self._use_interp is None:
this_interp = None
else:
this_interp = self._use_interp[interp_start : interp_start + n_use]
assert this_interp.size == n_use
this_sl = slice(n_used, n_used + n_use)
assert used[this_sl].size == n_use
assert not used[this_sl].any()
used[this_sl] = True
yield [this_sl, self._left, self._right, this_interp]
self._position += n_use
n_used += n_use
# Right zero-order hold condition
if self.control_points[self._left_idx] <= self._position:
n_use = stop - self._position
if n_use > 0:
logger.debug(f" ~ {self.name} Right ZOH %s" % n_use)
this_sl = slice(n_pts - n_use, None)
assert not used[this_sl].any()
used[this_sl] = True
assert self._right is not None
yield [this_sl, self._right, None, None]
self._position += n_use
n_used += n_use
self.n_last += 1
assert self._position == stop
assert n_used == n_pts
assert used.all()
assert self._position == original_position + n_pts
def feed(self, n_pts):
"""Feed data and get interpolated values."""
# Convenience function for assembly
out_arrays = None
for o in self.feed_generator(n_pts):
if out_arrays is None:
out_arrays = [
np.empty(v.shape + (n_pts,)) if v is not None else None
for v in o[1]
]
for ai, arr in enumerate(out_arrays):
if arr is not None:
if o[3] is None:
arr[..., o[0]] = o[1][ai][..., np.newaxis]
else:
arr[..., o[0]] = o[1][ai][..., np.newaxis] * o[3] + o[2][ai][
..., np.newaxis
] * (1.0 - o[3])
assert out_arrays is not None
return out_arrays
###############################################################################
# Constant overlap-add processing class
def _check_store(store):
_validate_type(store, (np.ndarray, list, tuple, _Storer), "store")
if isinstance(store, np.ndarray):
store = [store]
if not isinstance(store, _Storer):
if not all(isinstance(s, np.ndarray) for s in store):
raise TypeError("All instances must be ndarrays")
store = _Storer(*store)
return store
class _COLA:
r"""Constant overlap-add processing helper.
Parameters
----------
process : callable
A function that takes a chunk of input data with shape
``(n_channels, n_samples)`` and processes it.
store : ndarray | list of ndarray | _Storer
The output data in which to store the results.
n_total : int
The total number of samples.
n_samples : int
The number of samples per window.
n_overlap : int
The overlap between windows.
window : str
The window to use. Default is "hann".
tol : float
The tolerance for COLA checking.
Notes
-----
This will process data using overlapping windows to achieve a constant
output value. For example, for ``n_total=27``, ``n_samples=10``,
``n_overlap=5`` and ``window='triang'``::
1 _____ _______
| \ /\ /\ /
| \ / \ / \ /
| x x x
| / \ / \ / \
| / \/ \/ \
0 +----|----|----|----|----|-
0 5 10 15 20 25
This produces four windows: the first three are the requested length
(10 samples) and the last one is longer (12 samples). The first and last
window are asymmetric.
"""
@verbose
def __init__(
self,
process,
store,
n_total,
n_samples,
n_overlap,
sfreq,
window="hann",
tol=1e-10,
*,
name="COLA",
verbose=None,
):
n_samples = _ensure_int(n_samples, "n_samples")
n_overlap = _ensure_int(n_overlap, "n_overlap")
n_total = _ensure_int(n_total, "n_total")
if n_samples <= 0:
raise ValueError(f"n_samples must be > 0, got {n_samples}")
if n_overlap < 0:
raise ValueError(f"n_overlap must be >= 0, got {n_overlap}")
if n_total < 0:
raise ValueError(f"n_total must be >= 0, got {n_total}")
self._n_samples = int(n_samples)
self._n_overlap = int(n_overlap)
del n_samples, n_overlap
if n_total < self._n_samples:
raise ValueError(
f"Number of samples per window ({self._n_samples}) must be at "
f"most the total number of samples ({n_total})"
)
if not callable(process):
raise TypeError(f"process must be callable, got type {type(process)}")
self._process = process
self._step = self._n_samples - self._n_overlap
self._store = _check_store(store)
self._idx = 0
self._in_buffers = self._out_buffers = None
self.name = name
# Create our window boundaries
window_name = window if isinstance(window, str) else "custom"
self._window = get_window(
window, self._n_samples, fftbins=(self._n_samples - 1) % 2
)
self._window /= _check_cola(
self._window, self._n_samples, self._step, window_name, tol=tol
)
self.starts = np.arange(0, n_total - self._n_samples + 1, self._step)
self.stops = self.starts + self._n_samples
delta = n_total - self.stops[-1]
self.stops[-1] = n_total
sfreq = float(sfreq)
pl = "s" if len(self.starts) != 1 else ""
logger.info(
f" Processing {len(self.starts):4d} data chunk{pl} of (at least) "
f"{self._n_samples / sfreq:0.1f} s with "
f"{self._n_overlap / sfreq:0.1f} s overlap and {window_name} windowing"
)
del window, window_name
if delta > 0:
logger.info(
f" The final {delta / sfreq} s will be lumped into the final window"
)
@property
def _in_offset(self):
"""Compute from current processing window start and buffer len."""
return self.starts[self._idx] + self._in_buffers[0].shape[-1]
@verbose
def feed(self, *datas, verbose=None, **kwargs):
"""Pass in a chunk of data."""
# Append to our input buffer
if self._in_buffers is None:
self._in_buffers = [None] * len(datas)
if len(datas) != len(self._in_buffers):
raise ValueError(
f"Got {len(datas)} array(s), needed {len(self._in_buffers)}"
)
current_offset = 0 # should be updated below
for di, data in enumerate(datas):
if not isinstance(data, np.ndarray) or data.ndim < 1:
raise TypeError(
f"data entry {di} must be an 2D ndarray, got {type(data)}"
)
if self._in_buffers[di] is None:
# In practice, users can give large chunks, so we use
# dynamic allocation of the in buffer. We could save some
# memory allocation by only ever processing max_len at once,
# but this would increase code complexity.
self._in_buffers[di] = np.empty(data.shape[:-1] + (0,), data.dtype)
if (
data.shape[:-1] != self._in_buffers[di].shape[:-1]
or self._in_buffers[di].dtype != data.dtype
):
raise TypeError(
f"data must dtype {self._in_buffers[di].dtype} and "
f"shape[:-1]=={self._in_buffers[di].shape[:-1]}, got dtype "
f"{data.dtype} shape[:-1]={data.shape[:-1]}"
)
# This gets updated on first iteration, so store it before it updates
if di == 0:
current_offset = self._in_offset
logger.debug(
f" + {self.name}[{di}] Appending "
f"{current_offset}:{current_offset + data.shape[-1]}"
)
self._in_buffers[di] = np.concatenate([self._in_buffers[di], data], -1)
if self._in_offset > self.stops[-1]:
raise ValueError(
f"data (shape {data.shape}) exceeded expected total buffer size ("
f"{self._in_offset} > {self.stops[-1]})"
)
# Check to see if we can process the next chunk and dump outputs
while self._idx < len(self.starts) and self._in_offset >= self.stops[self._idx]:
start, stop = self.starts[self._idx], self.stops[self._idx]
this_len = stop - start
this_window = self._window.copy()
if self._idx == len(self.starts) - 1:
this_window = np.pad(
self._window, (0, this_len - len(this_window)), "constant"
)
for offset in range(self._step, len(this_window), self._step):
n_use = len(this_window) - offset
this_window[offset:] += self._window[:n_use]
if self._idx == 0:
for offset in range(self._n_samples - self._step, 0, -self._step):
this_window[:offset] += self._window[-offset:]
this_proc = [in_[..., :this_len].copy() for in_ in self._in_buffers]
logger.debug(
f" * {self.name}[:] Processing {start}:{stop} "
f"(e.g., {this_proc[0].flat[[0, -1]]})"
)
if not all(
proc.shape[-1] == this_len == this_window.size for proc in this_proc
):
raise RuntimeError("internal indexing error")
start = self._store.idx
stop = self._store.idx + this_len
outs = self._process(*this_proc, start=start, stop=stop, **kwargs)
if self._out_buffers is None:
max_len = np.max(self.stops - self.starts)
self._out_buffers = [
np.zeros(o.shape[:-1] + (max_len,), o.dtype) for o in outs
]
for oi, out in enumerate(outs):
out *= this_window
self._out_buffers[oi][..., : stop - start] += out
self._idx += 1
if self._idx < len(self.starts):
next_start = self.starts[self._idx]
else:
next_start = self.stops[-1]
delta = next_start - self.starts[self._idx - 1]
logger.debug(
f" + {self.name}[:] Shifting input and output buffers by "
f"{delta} samples (storing {start}:{stop})"
)
for di in range(len(self._in_buffers)):
self._in_buffers[di] = self._in_buffers[di][..., delta:]
self._store(*[o[..., :delta] for o in self._out_buffers])
for ob in self._out_buffers:
ob[..., :-delta] = ob[..., delta:]
ob[..., -delta:] = 0.0
def _check_cola(win, nperseg, step, window_name, tol=1e-10):
"""Check whether the Constant OverLap Add (COLA) constraint is met."""
# adapted from SciPy
binsums = np.sum(
[win[ii * step : (ii + 1) * step] for ii in range(nperseg // step)], axis=0
)
if nperseg % step != 0:
binsums[: nperseg % step] += win[-(nperseg % step) :]
const = np.median(binsums)
deviation = np.max(np.abs(binsums - const))
if deviation > tol:
raise ValueError(
f"segment length {nperseg} with step {step} for {window_name} "
"window type does not provide a constant output "
f"({100 * deviation / const:g}% deviation)"
)
return const
class _Storer:
"""Store data in chunks."""
def __init__(self, *outs, picks=None):
for oi, out in enumerate(outs):
if not isinstance(out, np.ndarray) or out.ndim < 1:
raise TypeError(f"outs[oi] must be >= 1D ndarray, got {out}")
self.outs = outs
self.idx = 0
self.picks = picks
def __call__(self, *outs):
if len(outs) != len(self.outs) or not all(
out.shape[-1] == outs[0].shape[-1] for out in outs
):
raise ValueError("Bad outs")
idx = (Ellipsis,)
if self.picks is not None:
idx += (self.picks,)
stop = self.idx + outs[0].shape[-1]
idx += (slice(self.idx, stop),)
for o1, o2 in zip(self.outs, outs):
o1[idx] = o2
self.idx = stop