--- a +++ b/doc/_includes/channel_interpolation.rst @@ -0,0 +1,70 @@ +:orphan: + +Bad channel repair via interpolation +==================================== + +Spherical spline interpolation (EEG) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. NOTE: part of this file is included in doc/overview/implementation.rst. + Changes here are reflected there. If you want to link to this content, link + to :ref:`channel-interpolation` to link to that section of the + implementation.rst page. The next line is a target for :start-after: so we + can omit the title from the include: + channel-interpolation-begin-content + +In short, data repair using spherical spline interpolation :footcite:`PerrinEtAl1989` consists of the following steps: + +* Project the good and bad electrodes onto a unit sphere +* Compute a mapping matrix that maps :math:`N` good channels to :math:`M` bad channels +* Use this mapping matrix to compute interpolated data in the bad channels + +Spherical splines assume that the potential :math:`V(\boldsymbol{r_i})` at any point :math:`\boldsymbol{r_i}` on the surface of the sphere can be represented by: + +.. math:: V(\boldsymbol{r_i}) = c_0 + \sum_{j=1}^{N}c_{i}g_{m}(cos(\boldsymbol{r_i}, \boldsymbol{r_{j}})) + :name: model + +where the :math:`C = (c_{1}, ..., c_{N})^{T}` are constants which must be estimated. The function :math:`g_{m}(\cdot)` of order :math:`m` is given by: + +.. math:: g_{m}(x) = \frac{1}{4 \pi}\sum_{n=1}^{\infty} \frac{2n + 1}{(n(n + 1))^m}P_{n}(x) + +where :math:`P_{n}(x)` are `Legendre polynomials`_ of order :math:`n`. + +.. _Legendre polynomials: https://en.wikipedia.org/wiki/Legendre_polynomials + +To estimate the constants :math:`C`, we must solve the following two equations simultaneously: + +.. math:: G_{ss}C + T_{s}c_0 = X + :name: matrix_form + +.. math:: {T_s}^{T}C = 0 + :name: constraint + +where :math:`G_{ss} \in R^{N \times N}` is a matrix whose entries are :math:`G_{ss}[i, j] = g_{m}(cos(\boldsymbol{r_i}, \boldsymbol{r_j}))` and :math:`X \in R^{N \times 1}` are the potentials :math:`V(\boldsymbol{r_i})` measured at the good channels. :math:`T_{s} = (1, 1, ..., 1)^\top` is a column vector of dimension :math:`N`. Equation :eq:`matrix_form` is the matrix formulation of Equation :eq:`model` and equation :eq:`constraint` is like applying an average reference to the data. From equation :eq:`matrix_form` and :eq:`constraint`, we get: + +.. math:: \begin{bmatrix} c_0 \\ C \end{bmatrix} = {\begin{bmatrix} {T_s}^{T} && 0 \\ T_s && G_{ss} \end{bmatrix}}^{-1} \begin{bmatrix} 0 \\ X \end{bmatrix} = C_{i}X + :name: estimate_constant + +:math:`C_{i}` is the same as matrix :math:`{\begin{bmatrix} {T_s}^{T} && 0 \\ T_s && G_{ss} \end{bmatrix}}^{-1}` but with its first column deleted, therefore giving a matrix of dimension :math:`(N + 1) \times N`. + +Now, to estimate the potentials :math:`\hat{X} \in R^{M \times 1}` at the bad channels, we have to do: + +.. math:: \hat{X} = G_{ds}C + T_{d}c_0 + :name: estimate_data + +where :math:`G_{ds} \in R^{M \times N}` computes :math:`g_{m}(\boldsymbol{r_i}, \boldsymbol{r_j})` between the bad and good channels. :math:`T_{d} = (1, 1, ..., 1)^\top` is a column vector of dimension :math:`M`. Plugging in equation :eq:`estimate_constant` in :eq:`estimate_data`, we get + +.. math:: \hat{X} = \begin{bmatrix} T_d && G_{ds} \end{bmatrix} \begin{bmatrix} c_0 \\ C \end{bmatrix} = \underbrace{\begin{bmatrix} T_d && G_{ds} \end{bmatrix} C_{i}}_\text{mapping matrix}X + + +To interpolate bad channels, one can simply do: + + >>> evoked.interpolate_bads(reset_bads=False) # doctest: +SKIP + +and the bad channel will be fixed. + +.. target for :end-before: channel-interpolation-end-content + +.. topic:: Examples: + + * :ref:`ex-interpolate-bad-channels`