[074d3d]: / mne / utils / check.py

Download this file

1290 lines (1095 with data), 43.7 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
"""The check functions."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numbers
import operator
import os
import re
from builtins import input # noqa: A004, UP029
from difflib import get_close_matches
from importlib import import_module
from inspect import signature
from pathlib import Path
import numpy as np
from ..defaults import HEAD_SIZE_DEFAULT, _handle_default
from ..fixes import _compare_version, _median_complex
from ._logging import _record_warnings, _verbose_safe_false, logger, verbose, warn
def _ensure_int(x, name="unknown", must_be="an int", *, extra=""):
"""Ensure a variable is an integer."""
# This is preferred over numbers.Integral, see:
# https://github.com/scipy/scipy/pull/7351#issuecomment-299713159
extra = f" {extra}" if extra else extra
try:
# someone passing True/False is much more likely to be an error than
# intentional usage
if isinstance(x, bool):
raise TypeError()
x = int(operator.index(x))
except TypeError:
raise TypeError(f"{name} must be {must_be}{extra}, got {type(x)}")
return x
def _check_integer_or_list(arg, name):
"""Validate arguments that should be an integer or a list.
Always returns a list.
"""
if not isinstance(arg, list):
arg = [_ensure_int(arg, name=name, must_be="an integer or a list")]
return arg
def check_fname(fname, filetype, endings, endings_err=()):
"""Enforce MNE filename conventions.
Parameters
----------
fname : path-like
Name of the file.
filetype : str
Type of file. e.g., ICA, Epochs, etc.
endings : tuple
Acceptable endings for the filename.
endings_err : tuple
Obligatory possible endings for the filename.
"""
_validate_type(fname, "path-like", "fname")
fname = str(fname)
if len(endings_err) > 0 and not fname.endswith(endings_err):
print_endings = " or ".join([", ".join(endings_err[:-1]), endings_err[-1]])
raise OSError(
f"The filename ({fname}) for file type {filetype} must end "
f"with {print_endings}"
)
print_endings = " or ".join([", ".join(endings[:-1]), endings[-1]])
if not fname.endswith(endings):
warn(
f"This filename ({fname}) does not conform to MNE naming conventions. "
f"All {filetype} files should end with {print_endings}"
)
def check_version(library, min_version="0.0", *, strip=True, return_version=False):
r"""Check minimum library version required.
Parameters
----------
library : str
The library name to import. Must have a ``__version__`` property.
min_version : str
The minimum version string. Anything that matches
``'(\d+ | [a-z]+ | \.)'``. Can also be empty to skip version
check (just check for library presence).
strip : bool
If True (default), then PEP440 development markers like ``.devN``
will be stripped from the version. This makes it so that
``check_version('mne', '1.1')`` will be ``True`` even when on version
``'1.1.dev0'`` (prerelease/dev version). This option is provided for
backward compatibility with the behavior of ``LooseVersion``, and
diverges from how modern parsing in ``packaging.version.parse`` works.
.. versionadded:: 1.0
return_version : bool
If True (default False), also return the version (can be None if the
library is missing).
.. versionadded:: 1.0
Returns
-------
ok : bool
True if the library exists with at least the specified version.
version : str | None
The version. Only returned when ``return_version=True``.
"""
ok = True
version = None
try:
library = import_module(library)
except ImportError:
ok = False
else:
check_version = min_version and min_version != "0.0"
get_version = check_version or return_version
if get_version:
version = library.__version__
if strip:
version = _strip_dev(version)
if check_version:
if _compare_version(version, "<", min_version):
ok = False
out = (ok, version) if return_version else ok
return out
def _strip_dev(version):
# First capturing group () is what we want to keep, at the beginning:
#
# - at least one numeral, then
# - repeats of {dot, at least one numeral}
#
# The rest (consume to the end of the string) is the stuff we want to cut
# off:
#
# - A period (maybe), then
# - "dev", "rc", or "+", then
# - numerals, periods, dashes, and "a" through "g" (hex chars)
#
# Thanks https://www.regextester.com !
exp = r"^([0-9]+(?:\.[0-9]+)*)\.?(?:dev|rc|\+)[0-9+a-g\.\-]+$"
match = re.match(exp, version)
return match.groups()[0] if match is not None else version
def _require_version(lib, what, version="0.0"):
"""Require library for a purpose."""
ok, got = check_version(lib, version, return_version=True)
if not ok:
extra = f" (version >= {version})" if version != "0.0" else ""
why = "package was not found" if got is None else f"got {repr(got)}"
raise ImportError(f"The {lib} package{extra} is required to {what}, {why}")
def _import_h5py():
_require_version("h5py", "read MATLAB files >= v7.3")
import h5py
return h5py
def _import_h5io_funcs():
h5io = _soft_import("h5io", "HDF5-based I/O")
# Saving to HDF5 does not support pathlib.Path objects, which are more and more used
# in MNE-Python.
# Related issue in h5io: https://github.com/h5io/h5io/issues/113
def cast_path_to_str(data: dict) -> dict:
"""Cast all paths value to string in data."""
keys2cast = []
for key, value in data.items():
if isinstance(value, dict):
cast_path_to_str(value)
if isinstance(value, Path):
data[key] = value.as_posix()
if isinstance(key, Path):
keys2cast.append(key)
for key in keys2cast:
data[key.as_posix()] = data.pop(key)
return data
def write_hdf5(fname, data, *args, **kwargs):
"""Write h5 and cast all paths to string in data."""
if isinstance(data, dict):
data = cast_path_to_str(data)
elif isinstance(data, list):
for k, elt in enumerate(data):
if isinstance(elt, dict):
data[k] = cast_path_to_str(elt)
h5io.write_hdf5(fname, data, *args, **kwargs)
return h5io.read_hdf5, write_hdf5
def _import_pymatreader_funcs(purpose):
pymatreader = _soft_import("pymatreader", purpose)
return pymatreader.read_mat
# adapted from scikit-learn utils/validation.py
def check_random_state(seed):
"""Turn seed into a numpy.random.mtrand.RandomState instance.
If seed is None, return the RandomState singleton used by np.random.mtrand.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, int | np.integer):
return np.random.mtrand.RandomState(seed)
if isinstance(seed, np.random.mtrand.RandomState):
return seed
if isinstance(seed, np.random.Generator):
return seed
raise ValueError(
f"{seed!r} cannot be used to seed a numpy.random.mtrand.RandomState instance"
)
def _check_event_id(event_id, events):
"""Check event_id and convert to default format."""
# check out event_id dict
if event_id is None: # convert to int to make typing-checks happy
event_id = list(np.unique(events[:, 2]))
if isinstance(event_id, dict):
for key in event_id.keys():
_validate_type(key, str, "Event names")
event_id = {
key: _ensure_int(val, f"event_id[{key}]") for key, val in event_id.items()
}
elif isinstance(event_id, list):
event_id = [_ensure_int(v, f"event_id[{vi}]") for vi, v in enumerate(event_id)]
event_id = dict(zip((str(i) for i in event_id), event_id))
else:
event_id = _ensure_int(event_id, "event_id")
event_id = {str(event_id): event_id}
return event_id
@verbose
def _check_fname(
fname,
overwrite=False,
must_exist=False,
name="File",
need_dir=False,
*,
check_bids_split=False,
verbose=None,
) -> Path:
"""Check for file existence, and return its absolute path."""
_validate_type(fname, "path-like", name)
# special case for MNE-BIDS, check split
fname_path = Path(fname)
if check_bids_split:
try:
from mne_bids import BIDSPath
except Exception:
pass
else:
if isinstance(fname, BIDSPath) and fname.split is not None:
raise ValueError(
f"Passing a BIDSPath {name} with `{fname.split=}` is unsafe as it "
"can unexpectedly lead to invalid BIDS split naming. Explicitly "
f"set `{name}.split = None` to avoid ambiguity. If you want the "
f"old misleading split naming, you can pass `str({name})`."
)
fname = fname_path.expanduser().absolute()
del fname_path
if fname.exists():
if not overwrite:
raise FileExistsError(
"Destination file exists. Please use option "
'"overwrite=True" to force overwriting.'
)
elif overwrite != "read":
logger.info("Overwriting existing file.")
if must_exist:
if need_dir:
if not fname.is_dir():
raise OSError(
f"Need a directory for {name} but found a file at {fname}"
)
else:
if not fname.is_file():
raise OSError(
f"Need a file for {name} but found a directory at {fname}"
)
if not os.access(fname, os.R_OK):
raise PermissionError(f"{name} does not have read permissions: {fname}")
elif must_exist:
raise FileNotFoundError(f'{name} does not exist: "{fname}"')
return fname
def _check_subject(
first,
second,
*,
raise_error=True,
first_kind="class subject attribute",
second_kind="input subject",
):
"""Get subject name from class."""
if second is not None:
_validate_type(second, "str", "subject input")
if first is not None and first != second:
raise ValueError(
f"{first_kind} ({repr(first)}) did not match {second_kind} ({second})"
)
return second
elif first is not None:
_validate_type(first, "str", f"Either {second_kind} subject or {first_kind}")
return first
elif raise_error is True:
raise ValueError(f"Neither {second_kind} subject nor {first_kind} was a string")
return None
def _check_preload(inst, msg):
"""Ensure data are preloaded."""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..source_estimate import _BaseSourceEstimate
from ..time_frequency import BaseTFR
from ..time_frequency.spectrum import BaseSpectrum
if isinstance(inst, BaseTFR | Evoked | BaseSpectrum | _BaseSourceEstimate):
pass
else:
name = "epochs" if isinstance(inst, BaseEpochs) else "raw"
if not inst.preload:
raise RuntimeError(
"By default, MNE does not load data into main memory to "
"conserve resources. " + msg + f" requires {name} data to be "
"loaded. Use preload=True (or string) in the constructor or "
f"{name}.load_data()."
)
if name == "epochs":
inst._handle_empty("raise", msg)
def _check_compensation_grade(info1, info2, name1, name2="data", ch_names=None):
"""Ensure that objects have same compensation_grade."""
from .._fiff.compensator import get_current_comp
from .._fiff.meas_info import Info
from .._fiff.pick import pick_channels, pick_info
for t_info in (info1, info2):
if t_info is None:
return
assert isinstance(t_info, Info), t_info # or internal code is wrong
if ch_names is not None:
info1 = info1.copy()
info2 = info2.copy()
# pick channels
for t_info in [info1, info2]:
if t_info["comps"]:
with t_info._unlock():
t_info["comps"] = []
picks = pick_channels(t_info["ch_names"], ch_names, ordered=False)
pick_info(t_info, picks, copy=False)
# "or 0" here aliases None -> 0, as they are equivalent
grade1 = get_current_comp(info1) or 0
grade2 = get_current_comp(info2) or 0
# perform check
if grade1 != grade2:
raise RuntimeError(
f"Compensation grade of {name1} ({grade1}) and {name2} ({grade2}) "
"do not match"
)
def _soft_import(name, purpose, strict=True, *, min_version=None):
"""Import soft dependencies, providing informative errors on failure.
Parameters
----------
name : str
Name of the module to be imported. For example, 'pandas'.
purpose : str
A very brief statement (formulated as a noun phrase) explaining what
functionality the package provides to MNE-Python.
strict : bool
Whether to raise an error if module import fails.
"""
# Mapping import namespaces to their pypi package name
pip_name = dict(
sklearn="scikit-learn",
mne_bids="mne-bids",
mne_nirs="mne-nirs",
mne_features="mne-features",
mne_qt_browser="mne-qt-browser",
mne_connectivity="mne-connectivity",
mne_gui_addons="mne-gui-addons",
pyvista="pyvistaqt",
).get(name, name)
got_version = None
try:
mod = import_module(name)
except (ImportError, ModuleNotFoundError):
mod = False
else:
have, got_version = check_version(
name,
min_version=min_version,
return_version=True,
)
if not have:
mod = False
if mod is False and strict:
extra = "" if min_version is None else f">={min_version}"
if got_version is not None:
extra += f" (found version {got_version})"
raise RuntimeError(
f"For {purpose} to work, the module {name}{extra} is needed, "
"but it could not be imported. Use the following installation method "
"appropriate for your environment:\n\n"
f" pip install {pip_name}\n"
f" conda install -c conda-forge {pip_name}"
)
return mod
def _check_pandas_installed(strict=True):
"""Aux function."""
return _soft_import("pandas", "dataframe integration", strict=strict)
def _check_eeglabio_installed(strict=True):
"""Aux function."""
return _soft_import("eeglabio", "exporting to EEGLab", strict=strict)
def _check_edfio_installed(strict=True):
"""Aux function."""
return _soft_import("edfio", "exporting to EDF", strict=strict)
def _check_pybv_installed(strict=True):
"""Aux function."""
return _soft_import("pybv", "exporting to BrainVision", strict=strict)
def _check_pymatreader_installed(strict=True):
"""Aux function."""
return _soft_import("pymatreader", "loading v7.3 (HDF5) .MAT files", strict=strict)
def _check_pandas_index_arguments(index, valid):
"""Check pandas index arguments."""
if index is None:
return
if isinstance(index, str):
index = [index]
if not isinstance(index, list):
raise TypeError(
"index must be `None` or a string or list of strings, got type "
f"{type(index)}."
)
invalid = set(index) - set(valid)
if invalid:
plural = ("is not a valid option", "are not valid options")[
int(len(invalid) > 1)
]
raise ValueError(
'"{}" {}. Valid index options are `None`, "{}".'.format(
'", "'.join(invalid), plural, '", "'.join(valid)
)
)
return index
def _check_time_format(time_format, valid, meas_date=None):
"""Check time_format argument."""
if time_format not in valid and time_format is not None:
valid_str = '", "'.join(valid)
raise ValueError(
f'"{time_format}" is not a valid time format. Valid options are '
f'"{valid_str}" and None.'
)
# allow datetime only if meas_date available
if time_format == "datetime" and meas_date is None:
warn(
"Cannot convert to Datetime when raw.info['meas_date'] is "
"None. Falling back to Timedelta."
)
time_format = "timedelta"
return time_format
def _check_ch_locs(info, picks=None, ch_type=None):
"""Check if channel locations exist.
Parameters
----------
info : Info | None
`~mne.Info` instance.
picks : list of int
Channel indices to consider. If provided, ``ch_type`` must be ``None``.
ch_type : str | None
The channel type to restrict the check to. If ``None``, check all
channel types. If provided, ``picks`` must be ``None``.
"""
from .._fiff.pick import _picks_to_idx, pick_info
if picks is not None and ch_type is not None:
raise ValueError("Either picks or ch_type may be provided, not both")
if picks is not None:
info = pick_info(info=info, sel=picks)
elif ch_type is not None:
picks = _picks_to_idx(info=info, picks=ch_type, none=ch_type)
info = pick_info(info=info, sel=picks)
chs = info["chs"]
locs3d = np.array([ch["loc"][:3] for ch in chs])
return not (
(locs3d == 0).all() or (~np.isfinite(locs3d)).all() or np.allclose(locs3d, 0.0)
)
def _is_numeric(n):
return isinstance(n, numbers.Number)
class _IntLike:
@classmethod
def __instancecheck__(cls, other):
try:
_ensure_int(other)
except TypeError:
return False
else:
return True
int_like = _IntLike()
path_like = (str, Path, os.PathLike)
class _Callable:
@classmethod
def __instancecheck__(cls, other):
return callable(other)
class _Sparse:
@classmethod
def __instancecheck__(cls, other):
from scipy import sparse
return sparse.issparse(other)
_multi = {
"str": (str,),
"numeric": (np.floating, float, int_like),
"path-like": path_like,
"int-like": (int_like,),
"callable": (_Callable(),),
"array-like": (list, tuple, set, np.ndarray),
"sparse": (_Sparse(),),
}
def _validate_type(item, types=None, item_name=None, type_name=None, *, extra=""):
"""Validate that `item` is an instance of `types`.
Parameters
----------
item : object
The thing to be checked.
types : type | str | tuple of types | tuple of str
The types to be checked against.
If str, must be one of {'int', 'int-like', 'str', 'numeric', 'info',
'path-like', 'callable', 'array-like'}.
If a tuple of str is passed, use 'int-like' and not 'int' for integers.
item_name : str | None
Name of the item to show inside the error message.
type_name : str | None
Possible types to show inside the error message that the checked item
can be.
extra : str
Extra text to append to the warning.
"""
if types == "int":
_ensure_int(item, name=item_name, extra=extra)
return # terminate prematurely
elif types == "info":
from .._fiff.meas_info import Info as types
if not isinstance(types, list | tuple):
types = [types]
check_types = sum(
(
(type(None),)
if type_ is None
else (type_,)
if not isinstance(type_, str)
else _multi[type_]
for type_ in types
),
(),
)
extra = f" {extra}" if extra else extra
if not isinstance(item, check_types):
if type_name is None:
type_name = [
"None"
if cls_ is None
else cls_.__name__
if not isinstance(cls_, str)
else cls_
for cls_ in types
]
if len(type_name) == 1:
type_name = type_name[0]
elif len(type_name) == 2:
type_name = " or ".join(type_name)
else:
type_name[-1] = "or " + type_name[-1]
type_name = ", ".join(type_name)
_item_name = "Item" if item_name is None else item_name
raise TypeError(
f"{_item_name} must be an instance of {type_name}{extra}, "
f"got {type(item)} instead."
)
def _check_range(val, min_val, max_val, name, min_inclusive=True, max_inclusive=True):
"""Check that item is within range.
Parameters
----------
val : int | float
The value to be checked.
min_val : int | float
The minimum value allowed.
max_val : int | float
The maximum value allowed.
name : str
The name of the value.
min_inclusive : bool
Whether ``val`` is allowed to be ``min_val``.
max_inclusive : bool
Whether ``val`` is allowed to be ``max_val``.
"""
below_min = val < min_val if min_inclusive else val <= min_val
above_max = val > max_val if max_inclusive else val >= max_val
if below_min or above_max:
error_str = f"The value of {name} must be between {min_val} "
if min_inclusive:
error_str += "inclusive "
error_str += f"and {max_val}"
if max_inclusive:
error_str += "inclusive "
raise ValueError(error_str)
def _path_like(item):
"""Validate that `item` is `path-like`.
Parameters
----------
item : object
The thing to be checked.
Returns
-------
bool
``True`` if `item` is a `path-like` object; ``False`` otherwise.
"""
try:
_validate_type(item, types="path-like")
return True
except TypeError:
return False
def _check_if_nan(data, msg=" to be plotted"):
"""Raise if any of the values are NaN."""
if not np.isfinite(data).all():
raise ValueError(f"Some of the values {msg} are NaN.")
@verbose
def _check_info_inv(info, forward, data_cov=None, noise_cov=None, verbose=None):
"""Return good channels common to forward model and covariance matrices."""
from .._fiff.pick import pick_types
# get a list of all channel names:
fwd_ch_names = forward["info"]["ch_names"]
# handle channels from forward model and info:
ch_names = _compare_ch_names(info["ch_names"], fwd_ch_names, info["bads"])
# make sure that no reference channels are left:
ref_chs = pick_types(info, meg=False, ref_meg=True)
ref_chs = [info["ch_names"][ch] for ch in ref_chs]
ch_names = [ch for ch in ch_names if ch not in ref_chs]
# inform about excluding channels:
if (
data_cov is not None
and set(info["bads"]) != set(data_cov["bads"])
and (len(set(ch_names).intersection(data_cov["bads"])) > 0)
):
logger.info(
'info["bads"] and data_cov["bads"] do not match, '
"excluding bad channels from both."
)
if (
noise_cov is not None
and set(info["bads"]) != set(noise_cov["bads"])
and (len(set(ch_names).intersection(noise_cov["bads"])) > 0)
):
logger.info(
'info["bads"] and noise_cov["bads"] do not match, '
"excluding bad channels from both."
)
# handle channels from data cov if data cov is not None
# Note: data cov is supposed to be None in tf_lcmv
if data_cov is not None:
ch_names = _compare_ch_names(ch_names, data_cov.ch_names, data_cov["bads"])
# handle channels from noise cov if noise cov available:
if noise_cov is not None:
ch_names = _compare_ch_names(ch_names, noise_cov.ch_names, noise_cov["bads"])
# inform about excluding any channels apart from bads and reference
all_bads = info["bads"] + ref_chs
if data_cov is not None:
all_bads += data_cov["bads"]
if noise_cov is not None:
all_bads += noise_cov["bads"]
dropped_nonbads = set(info["ch_names"]) - set(ch_names) - set(all_bads)
if dropped_nonbads:
logger.info(
f"Excluding {len(dropped_nonbads)} channel(s) missing from the "
"provided forward operator and/or covariance matrices"
)
picks = [info["ch_names"].index(k) for k in ch_names if k in info["ch_names"]]
return picks
def _compare_ch_names(names1, names2, bads):
"""Return channel names of common and good channels."""
ch_names = [ch for ch in names1 if ch not in bads and ch in names2]
return ch_names
def _check_channels_spatial_filter(ch_names, filters):
"""Return data channel indices to be used with spatial filter.
Unlike ``pick_channels``, this respects the order of ch_names.
"""
sel = []
# first check for channel discrepancies between filter and data:
for ch_name in filters["ch_names"]:
if ch_name not in ch_names:
raise ValueError(
f"The spatial filter was computed with channel {ch_name} "
"which is not present in the data. You should "
"compute a new spatial filter restricted to the "
"good data channels."
)
# then compare list of channels and get selection based on data:
sel = [ii for ii, ch_name in enumerate(ch_names) if ch_name in filters["ch_names"]]
return sel
def _check_rank(rank):
"""Check rank parameter."""
_validate_type(rank, (None, dict, str), "rank")
if isinstance(rank, str):
if rank not in ["full", "info"]:
raise ValueError(f'rank, if str, must be "full" or "info", got {rank}')
return rank
def _check_one_ch_type(method, info, forward, data_cov=None, noise_cov=None):
"""Check number of sensor types and presence of noise covariance matrix."""
from .._fiff.pick import _contains_ch_type, pick_info
from ..cov import Covariance, make_ad_hoc_cov
from ..time_frequency.csd import CrossSpectralDensity
if isinstance(data_cov, CrossSpectralDensity):
_validate_type(noise_cov, [None, CrossSpectralDensity], "noise_cov")
# FIXME
picks = list(range(len(data_cov.ch_names)))
info_pick = info
else:
_validate_type(noise_cov, [None, Covariance], "noise_cov")
picks = _check_info_inv(
info,
forward,
data_cov=data_cov,
noise_cov=noise_cov,
verbose=_verbose_safe_false(),
)
info_pick = pick_info(info, picks)
ch_types = [_contains_ch_type(info_pick, tt) for tt in ("mag", "grad", "eeg")]
if sum(ch_types) > 1:
if noise_cov is None:
raise ValueError(
"Source reconstruction with several sensor types"
" requires a noise covariance matrix to be "
"able to apply whitening."
)
if noise_cov is None:
noise_cov = make_ad_hoc_cov(info_pick, std=1.0)
allow_mismatch = True
else:
noise_cov = noise_cov.copy()
if isinstance(noise_cov, Covariance) and "estimator" in noise_cov:
del noise_cov["estimator"]
allow_mismatch = False
_validate_type(noise_cov, (Covariance, CrossSpectralDensity), "noise_cov")
return noise_cov, picks, allow_mismatch
def _check_depth(depth, kind="depth_mne"):
"""Check depth options."""
if not isinstance(depth, dict):
depth = dict(exp=None if depth is None else float(depth))
return _handle_default(kind, depth)
def _check_dict_keys(mapping, valid_keys, key_description, valid_key_source):
"""Check that the keys in dictionary are valid against a set list.
Return the input dictionary if it is valid,
otherwise raise a ValueError with a readable error message.
Parameters
----------
mapping : dict
The user-provided dict whose keys we want to check.
valid_keys : iterable
The valid keys.
key_description : str
Description of the keys in ``mapping``, e.g., "channel name(s)" or
"annotation(s)".
valid_key_source : str
Description of the ``valid_keys`` source, e.g., "info dict" or
"annotations in the data".
Returns
-------
mapping
If all keys are valid the input dict is returned unmodified.
"""
missing = set(mapping) - set(valid_keys)
if len(missing):
_is = "are" if len(missing) > 1 else "is"
msg = (
f"Invalid {key_description} {missing} {_is} not present in "
f"{valid_key_source}"
)
raise ValueError(msg)
return mapping
def _check_option(parameter, value, allowed_values, extra=""):
"""Check the value of a parameter against a list of valid options.
Return the value if it is valid, otherwise raise a ValueError with a
readable error message.
Parameters
----------
parameter : str
The name of the parameter to check. This is used in the error message.
value : any type
The value of the parameter to check.
allowed_values : list
The list of allowed values for the parameter.
extra : str
Extra string to append to the invalid value sentence, e.g.
"when using ico mode".
Raises
------
ValueError
When the value of the parameter is not one of the valid options.
Returns
-------
value : any type
The value if it is valid.
"""
if value in allowed_values:
return value
# Prepare a nice error message for the user
extra = f" {extra}" if extra else extra
msg = (
"Invalid value for the '{parameter}' parameter{extra}. "
"{options}, but got {value!r} instead."
)
allowed_values = list(allowed_values) # e.g., if a dict was given
if len(allowed_values) == 1:
options = f"The only allowed value is {repr(allowed_values[0])}"
else:
options = "Allowed values are "
if len(allowed_values) == 2:
options += " and ".join(repr(v) for v in allowed_values)
else:
options += ", ".join(repr(v) for v in allowed_values[:-1])
options += f", and {repr(allowed_values[-1])}"
raise ValueError(
msg.format(parameter=parameter, options=options, value=value, extra=extra)
)
def _check_all_same_channel_names(instances):
"""Check if a collection of instances all have the same channels."""
ch_names = instances[0].info["ch_names"]
for inst in instances:
if ch_names != inst.info["ch_names"]:
return False
return True
def _check_combine(mode, valid=("mean", "median", "std"), axis=0):
# XXX TODO Possibly de-duplicate with _make_combine_callable of mne/viz/utils.py
if mode == "mean":
def fun(data):
return np.mean(data, axis=axis)
elif mode == "std":
def fun(data):
return np.std(data, axis=axis)
elif mode == "median" or mode == np.median:
def fun(data):
return _median_complex(data, axis=axis)
elif callable(mode):
fun = mode
else:
raise ValueError(
"Combine option must be "
+ ", ".join(valid)
+ f" or callable, got {mode} (type {type(mode)})."
)
return fun
def _check_src_normal(pick_ori, src):
from ..source_space import SourceSpaces
_validate_type(src, SourceSpaces, "src")
if pick_ori == "normal" and src.kind not in ("surface", "discrete"):
raise RuntimeError(
"Normal source orientation is supported only for "
"surface or discrete SourceSpaces, got type "
f"{src.kind}"
)
def _check_stc_units(stc, threshold=1e-7): # 100 nAm threshold for warning
max_cur = np.max(np.abs(stc.data))
if max_cur > threshold:
warn(
f"The maximum current magnitude is {1e9 * max_cur:.1f} nAm, which is very "
"large. Are you trying to apply the forward model to noise-normalized "
"(dSPM, sLORETA, or eLORETA) values? The result will only be "
"correct if currents (in units of Am) are used."
)
def _check_qt_version(*, return_api=False, check_usable_display=True):
"""Check if Qt is installed."""
from ..viz.backends._utils import _init_mne_qtapp
try:
from qtpy import API_NAME as api
from qtpy import QtCore
except Exception:
api = version = None
else:
try: # pyside
version = QtCore.__version__
except AttributeError:
version = QtCore.QT_VERSION_STR
# Having Qt installed is not enough -- sometimes the app is unusable
# for example because there is no usable display (e.g., on a server),
# so we have to try instantiating one to actually know.
if check_usable_display:
try:
_init_mne_qtapp()
except Exception:
api = version = None
if return_api:
return version, api
else:
return version
def _check_sphere(sphere, info=None, sphere_units="m"):
from ..bem import ConductorModel, fit_sphere_to_headshape, get_fitting_dig
if sphere is None:
sphere = HEAD_SIZE_DEFAULT
if info is not None:
# Decide if we have enough dig points to do the auto fit
try:
get_fitting_dig(info, "extra", verbose="error")
except (RuntimeError, ValueError):
pass
else:
sphere = "auto"
if isinstance(sphere, str):
if sphere not in ("auto", "eeglab"):
raise ValueError(
f'sphere, if str, must be "auto" or "eeglab", got {sphere}'
)
assert info is not None
if sphere == "auto":
R, r0, _ = fit_sphere_to_headshape(
info, verbose=_verbose_safe_false(), units="m"
)
sphere = tuple(r0) + (R,)
sphere_units = "m"
elif sphere == "eeglab":
# We need coordinates for the 2D plane formed by
# Fpz<->Oz and T7<->T8, as this plane will be the horizon (i.e. it
# will determine the location of the head circle).
#
# We implement some special-handling in case Fpz is missing, as
# this seems to be a quite common situation in numerous EEG labs.
montage = info.get_montage()
if montage is None:
raise ValueError(
'No montage was set on your data, but sphere="eeglab" '
"can only work if digitization points for the EEG "
"channels are available. Consider calling set_montage() "
"to apply a montage."
)
ch_pos = montage.get_positions()["ch_pos"]
horizon_ch_names = ("Fpz", "Oz", "T7", "T8")
if "FPz" in ch_pos: # "fix" naming
ch_pos["Fpz"] = ch_pos["FPz"]
del ch_pos["FPz"]
elif "Fpz" not in ch_pos and "Oz" in ch_pos:
logger.info(
"Approximating Fpz location by mirroring Oz along the X and Y axes."
)
# This assumes Fpz and Oz have the same Z coordinate
ch_pos["Fpz"] = ch_pos["Oz"] * [-1, -1, 1]
for ch_name in horizon_ch_names:
if ch_name not in ch_pos:
msg = (
f'sphere="eeglab" requires digitization points of '
f"the following electrode locations in the data: "
f"{', '.join(horizon_ch_names)}, but could not find: "
f"{ch_name}"
)
if ch_name == "Fpz":
msg += ", and was unable to approximate its location from Oz"
raise ValueError(msg)
# Calculate the radius from: T7<->T8, Fpz<->Oz
radius = np.abs(
[
ch_pos["T7"][0], # X axis
ch_pos["T8"][0], # X axis
ch_pos["Fpz"][1], # Y axis
ch_pos["Oz"][1], # Y axis
]
).mean()
# Calculate the center of the head sphere
# Use 4 digpoints for each of the 3 axes to hopefully get a better
# approximation than when using just 2 digpoints.
sphere_locs = dict()
for idx, axis in enumerate(("X", "Y", "Z")):
sphere_locs[axis] = np.mean(
[
ch_pos["T7"][idx],
ch_pos["T8"][idx],
ch_pos["Fpz"][idx],
ch_pos["Oz"][idx],
]
)
sphere = (sphere_locs["X"], sphere_locs["Y"], sphere_locs["Z"], radius)
sphere_units = "m"
del sphere_locs, radius, montage, ch_pos
elif isinstance(sphere, ConductorModel):
if not sphere["is_sphere"] or len(sphere["layers"]) == 0:
raise ValueError(
"sphere, if a ConductorModel, must be spherical "
"with multiple layers, not a BEM or single-layer "
f"sphere (got {sphere})"
)
sphere = tuple(sphere["r0"]) + (sphere["layers"][0]["rad"],)
sphere_units = "m"
sphere = np.array(sphere, dtype=float)
if sphere.shape == ():
sphere = np.concatenate([[0.0] * 3, [sphere]])
if sphere.shape != (4,):
raise ValueError(
"sphere must be float or 1D array of shape (4,), got "
f"array-like of shape {sphere.shape}"
)
_check_option("sphere_units", sphere_units, ("m", "mm"))
if sphere_units == "mm":
sphere /= 1000.0
sphere = np.array(sphere, float)
return sphere
def _check_head_radius(radius, add_info=""):
"""Check that head radius is within a reasonable range (5. - 10.85 cm).
Parameters
----------
radius : float
Head radius in meters.
add_info : str
Additional info to add to the warning message.
Notes
-----
The maximum value was taken from the head size percentiles given in the
following Wikipedia infographic:
https://upload.wikimedia.org/wikipedia/commons/0/06/AvgHeadSizes.png
the maximum radius is taken from the 99th percentile for men Glabella
to back of the head measurements (Glabella is a point just above the
Nasion):
21.7cm / 2 = 10.85 cm = 0.1085 m
The minimum value was taken from The National Center for Health Statistics
(USA) infant head circumference percentiles:
https://www.cdc.gov/growthcharts/html_charts/hcageinf.htm
we take the minimum to be the radius corresponding to the 3rd percentile
head circumference of female 0-month infant, rounded down:
31.9302 cm circumference / (2 * pi) = 5.08 cm radius -> 0.05 m
"""
min_radius = 0.05
max_radius = 0.1085
if radius > max_radius:
msg = (
f"Estimated head radius ({1e2 * radius:0.1f} cm) is "
"above the 99th percentile for adult head size."
)
warn(msg + add_info)
elif radius < min_radius:
msg = (
f"Estimated head radius ({1e2 * radius:0.1f} cm) is "
"below the 3rd percentile for infant head size."
)
warn(msg + add_info)
def _check_freesurfer_home():
from .config import get_config
fs_home = get_config("FREESURFER_HOME")
if fs_home is None:
raise RuntimeError("The FREESURFER_HOME environment variable is not set.")
return fs_home
def _suggest(val, options, cutoff=0.66):
options = get_close_matches(val, options, cutoff=cutoff)
if len(options) == 0:
return ""
elif len(options) == 1:
return f" Did you mean {repr(options[0])}?"
else:
return f" Did you mean one of {repr(options)}?"
def _check_on_missing(on_missing, name="on_missing", *, extras=()):
_validate_type(on_missing, str, name)
_check_option(name, on_missing, ["raise", "warn", "ignore"] + list(extras))
def _on_missing(on_missing, msg, name="on_missing", error_klass=None):
_check_on_missing(on_missing, name)
error_klass = ValueError if error_klass is None else error_klass
on_missing = "raise" if on_missing == "error" else on_missing
on_missing = "warn" if on_missing == "warning" else on_missing
if on_missing == "raise":
raise error_klass(msg)
elif on_missing == "warn":
warn(msg)
else: # Ignore
assert on_missing == "ignore"
def _safe_input(msg, *, alt=None, use=None):
try:
return input(msg)
except EOFError: # MATLAB or other non-stdin
if use is not None:
return use
raise RuntimeError(
f"Could not use input() to get a response to:\n{msg}\n"
f"You can {alt} to avoid this error."
)
def _ensure_events(events):
err_msg = f"events should be a NumPy array of integers, got {type(events)}"
with _record_warnings():
try:
events = np.asarray(events)
except ValueError as np_err:
if str(np_err).startswith(
"setting an array element with a sequence. The requested "
"array has an inhomogeneous shape"
):
raise TypeError(err_msg) from None
else:
raise
if not np.issubdtype(events.dtype, np.integer):
raise TypeError(err_msg)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError(f"events must be of shape (N, 3), got {events.shape}")
return events
def _to_rgb(*args, name="color", alpha=False):
from matplotlib.colors import colorConverter
func = colorConverter.to_rgba if alpha else colorConverter.to_rgb
try:
return func(*args)
except ValueError:
args = args[0] if len(args) == 1 else args
raise ValueError(
f"Invalid RGB{'A' if alpha else ''} argument(s) for {name}: {repr(args)}"
) from None
def _import_nibabel(why="use MRI files"):
try:
import nibabel as nib
except ImportError as exp:
raise exp.__class__(f"nibabel is required to {why}, got:\n{exp}") from None
return nib
def _check_method_kwargs(func, kwargs, msg=None):
"""Ensure **kwargs are compatible with the function they're passed to."""
from .misc import _pl
valid = list(signature(func).parameters)
is_invalid = np.isin(list(kwargs), valid, invert=True)
if is_invalid.any():
invalid_kw = np.array(list(kwargs))[is_invalid].tolist()
s = _pl(invalid_kw)
if msg is None:
msg = f'function "{func}"'
raise TypeError(
f"Got unexpected keyword argument{s} {', '.join(invalid_kw)} for {msg}."
)