# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_almost_equal
from scipy.signal import lfilter
from mne import io
from mne.time_frequency.ar import _yule_walker, fit_iir_model_raw
raw_fname = Path(__file__).parents[2] / "io" / "tests" / "data" / "test_raw.fif"
def test_yule_walker():
"""Test Yule-Walker against statsmodels."""
pytest.importorskip("patsy", "0.4")
pytest.importorskip("statsmodels", "0.8")
from statsmodels.regression.linear_model import yule_walker as sm_yw
d = np.random.randn(100)
sm_rho, sm_sigma = sm_yw(d, order=2)
rho, sigma = _yule_walker(d[np.newaxis], order=2)
assert_array_almost_equal(sm_sigma, sigma)
assert_array_almost_equal(sm_rho, rho)
def test_ar_raw():
"""Test fitting AR model on raw data."""
raw = io.read_raw_fif(raw_fname).crop(0, 2).load_data()
raw.pick(picks="grad")
# pick MEG gradiometers
for order in (2, 5, 10):
coeffs = fit_iir_model_raw(raw, order)[1][1:]
assert coeffs.shape == (order,)
assert_allclose(-coeffs[0], 1.0, atol=0.5)
# let's make sure we're doing something reasonable: first, white noise
rng = np.random.RandomState(0)
raw._data = rng.randn(*raw._data.shape)
raw._data *= 1e-15
for order in (2, 5, 10):
coeffs = fit_iir_model_raw(raw, order)[1]
assert_allclose(coeffs, [1.0] + [0.0] * order, atol=2e-2)
# Now let's try pink noise
iir = [1, -1, 0.2]
raw._data = lfilter([1.0], iir, raw._data)
for order in (2, 5, 10):
coeffs = fit_iir_model_raw(raw, order)[1]
assert_allclose(coeffs, iir + [0.0] * (order - 2), atol=5e-2)