[074d3d]: / mne / surface.py

Download this file

2275 lines (1991 with data), 75.1 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# Many of the computations in this code were derived from Matti Hämäläinen's
# C code.
import json
import time
import warnings
from collections import OrderedDict
from copy import deepcopy
from functools import lru_cache, partial
from glob import glob
from os import path as op
from pathlib import Path
import numpy as np
from scipy.ndimage import binary_dilation
from scipy.sparse import coo_array, csr_array
from scipy.spatial import ConvexHull, Delaunay
from scipy.spatial.distance import cdist
from ._fiff.constants import FIFF
from ._fiff.pick import pick_types
from .fixes import bincount, jit, prange
from .parallel import parallel_func
from .transforms import (
Transform,
_angle_between_quats,
_cart_to_sph,
_fit_matched_points,
_get_trans,
_MatchedDisplacementFieldInterpolator,
_pol_to_cart,
apply_trans,
transform_surface_to,
)
from .utils import (
_check_fname,
_check_freesurfer_home,
_check_option,
_ensure_int,
_hashable_ndarray,
_import_nibabel,
_pl,
_soft_import,
_TempDir,
_validate_type,
fill_doc,
get_subjects_dir,
logger,
run_subprocess,
verbose,
warn,
)
_helmet_path = Path(__file__).parent / "data" / "helmets"
###############################################################################
# AUTOMATED SURFACE FINDING
@verbose
def get_head_surf(
subject, source=("bem", "head"), subjects_dir=None, on_defects="raise", verbose=None
):
"""Load the subject head surface.
Parameters
----------
subject : str
Subject name.
source : str | list of str
Type to load. Common choices would be ``'bem'`` or ``'head'``. We first
try loading ``'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'``, and
then look for ``'$SUBJECT*$SOURCE.fif'`` in the same directory by going
through all files matching the pattern. The head surface will be read
from the first file containing a head surface. Can also be a list
to try multiple strings.
subjects_dir : path-like | None
Path to the ``SUBJECTS_DIR``. If None, the path is obtained by using
the environment variable ``SUBJECTS_DIR``.
%(on_defects)s
.. versionadded:: 1.0
%(verbose)s
Returns
-------
surf : dict
The head surface.
"""
return _get_head_surface(
subject=subject, source=source, subjects_dir=subjects_dir, on_defects=on_defects
)
# TODO this should be refactored with mne._freesurfer._get_head_surface
def _get_head_surface(subject, source, subjects_dir, on_defects, raise_error=True):
"""Load the subject head surface."""
from .bem import read_bem_surfaces
# Load the head surface from the BEM
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
_validate_type(subject, str, "subject")
# use realpath to allow for linked surfaces (c.f. MNE manual 196-197)
if isinstance(source, str):
source = [source]
surf = None
for this_source in source:
this_head = op.realpath(
op.join(subjects_dir, subject, "bem", f"{subject}-{this_source}.fif")
)
if op.exists(this_head):
surf = read_bem_surfaces(
this_head,
True,
FIFF.FIFFV_BEM_SURF_ID_HEAD,
on_defects=on_defects,
verbose=False,
)
else:
# let's do a more sophisticated search
path = op.join(subjects_dir, subject, "bem")
if not op.isdir(path):
raise OSError(f'Subject bem directory "{path}" does not exist.')
files = sorted(glob(op.join(path, f"{subject}*{this_source}.fif")))
for this_head in files:
try:
surf = read_bem_surfaces(
this_head,
True,
FIFF.FIFFV_BEM_SURF_ID_HEAD,
on_defects=on_defects,
verbose=False,
)
except ValueError:
pass
else:
break
if surf is not None:
break
if surf is None:
if raise_error:
raise OSError(
f'No file matching "{subject}*{this_source}" and containing a head '
"surface found."
)
else:
return surf
logger.info(f"Using surface from {this_head}.")
return surf
# New helmets can be written for example with:
#
# import os.path as op
# import mne
# from mne.io.constants import FIFF
# surf = mne.read_surface('kernel.obj', return_dict=True)[-1]
# surf['rr'] *= 1000 # needs to be in mm
# mne.surface.complete_surface_info(surf, copy=False, do_neighbor_tri=False)
# surf['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
# surfs = mne.bem._surfaces_to_bem(
# [surf], ids=[FIFF.FIFFV_MNE_SURF_MEG_HELMET], sigmas=[1.],
# incomplete='ignore')
# del surfs[0]['sigma']
# bem_fname = op.join(op.dirname(mne.__file__), 'data', 'helmets',
# 'kernel.fif.gz')
# mne.write_bem_surfaces(bem_fname, surfs, overwrite=True)
@verbose
def get_meg_helmet_surf(info, trans=None, *, upsampling=1, verbose=None):
"""Load the MEG helmet associated with the MEG sensors.
Parameters
----------
%(info_not_none)s
trans : dict
The head<->MRI transformation, usually obtained using
read_trans(). Can be None, in which case the surface will
be in head coordinates instead of MRI coordinates.
%(helmet_upsampling)s
%(verbose)s
Returns
-------
surf : dict
The MEG helmet as a surface.
Notes
-----
A built-in helmet is loaded if possible. If not, a helmet surface
will be approximated based on the sensor locations.
"""
from .bem import _fit_sphere, read_bem_surfaces
from .channels.channels import _get_meg_system
_validate_type(upsampling, "int", "upsampling")
system, have_helmet = _get_meg_system(info)
incomplete = False
if have_helmet:
logger.info(f"Getting helmet for system {system}")
fname = _helmet_path / f"{system}.fif.gz"
surf = read_bem_surfaces(
fname, False, FIFF.FIFFV_MNE_SURF_MEG_HELMET, verbose=False
)
surf = _scale_helmet_to_sensors(system, surf, info)
else:
rr = np.array(
[
info["chs"][pick]["loc"][:3]
for pick in pick_types(info, meg=True, ref_meg=False, exclude=())
]
)
logger.info(
"Getting helmet for system %s (derived from %d MEG channel locations)",
system,
len(rr),
)
hull = ConvexHull(rr)
rr = rr[np.unique(hull.simplices)]
R, center = _fit_sphere(rr)
sph = _cart_to_sph(rr - center)[:, 1:]
# add a point at the front of the helmet (where the face should be):
# 90 deg az and maximal el (down from Z/up axis)
front_sph = [[np.pi / 2.0, sph[:, 1].max()]]
sph = np.concatenate((sph, front_sph))
xy = _pol_to_cart(sph[:, ::-1])
tris = Delaunay(xy).simplices
# remove the frontal point we added from the simplices
tris = tris[(tris != len(sph) - 1).all(-1)]
tris = _reorder_ccw(rr, tris)
surf = dict(rr=rr, tris=tris)
incomplete = True
if upsampling > 1:
# Use VTK (could also use Butterfly but Loop is smoother)
pv = _soft_import("pyvista", "upsample a mesh")
factor = 4 ** (upsampling - 1)
rr, tris = surf["rr"], surf["tris"]
logger.info(
f"Upsampling from {len(rr)} to {len(rr) * factor} vertices ({upsampling=})"
)
tris = np.c_[np.full(len(tris), 3), tris]
mesh = pv.PolyData(rr, tris)
mesh = mesh.subdivide(upsampling - 1, subfilter="linear")
rr, tris = mesh.points, mesh.faces.reshape(-1, 4)[:, 1:]
tris = _reorder_ccw(rr, tris)
surf = dict(rr=rr, tris=tris)
incomplete = True
if incomplete:
complete_surface_info(surf, copy=False, verbose=False)
# Ignore what the file says, it's in device coords and we want MRI coords
surf["coord_frame"] = FIFF.FIFFV_COORD_DEVICE
dev_head_t = info["dev_head_t"]
if dev_head_t is None:
dev_head_t = Transform("meg", "head")
transform_surface_to(surf, "head", dev_head_t)
if trans is not None:
transform_surface_to(surf, "mri", trans)
return surf
def _scale_helmet_to_sensors(system, surf, info):
fname = _helmet_path / f"{system}_ch_pos.txt"
if not fname.is_file():
return surf
with open(fname) as fid:
ch_pos_from = json.load(fid)
# find correspondence
fro, to = list(), list()
for key, f_ in ch_pos_from.items():
t_ = [ch["loc"][:3] for ch in info["chs"] if ch["ch_name"].startswith(key)]
if not len(t_):
continue
fro.append(f_)
to.append(np.mean(t_, axis=0))
if len(fro) < 4:
logger.info(
"Using untransformed helmet, not enough sensors found to deform to match "
f"acquisition based on sensor positions (got {len(fro)}, need at least 4)"
)
return surf
fro = np.array(fro, float)
to = np.array(to, float)
delta = np.ptp(surf["rr"], axis=0) * 0.1 # 10% beyond bounds
extrema = np.array([surf["rr"].min(0) - delta, surf["rr"].max(0) + delta])
interp = _MatchedDisplacementFieldInterpolator(fro, to, extrema=extrema)
new_rr = interp(surf["rr"])
try:
quat, sc = _fit_matched_points(surf["rr"], new_rr)
except np.linalg.LinAlgError as exc:
logger.info(
f"Using untransformed helmet, deformation using {len(fro)} points "
f"failed ({exc})"
)
return surf
rot = np.rad2deg(_angle_between_quats(quat[:3]))
tr = 1000 * np.linalg.norm(quat[3:])
logger.info(
f" Deforming CAD helmet to match {len(fro)} acquisition sensor positions:"
)
logger.info(f" 1. Affine: {rot:0.1f}°, {tr:0.1f} mm, {sc:0.2f}× scale")
deltas = interp._last_deltas * 1000
mu, mx = np.mean(deltas), np.max(deltas)
logger.info(f" 2. Nonlinear displacement: mean={mu:0.1f}, max={mx:0.1f} mm")
surf["rr"] = new_rr
complete_surface_info(surf, copy=False, verbose=False)
return surf
def _reorder_ccw(rrs, tris):
"""Reorder tris of a convex hull to be wound counter-clockwise."""
# This ensures that rendering with front-/back-face culling works properly
com = np.mean(rrs, axis=0)
rr_tris = rrs[tris]
dirs = np.sign(
(
np.cross(rr_tris[:, 1] - rr_tris[:, 0], rr_tris[:, 2] - rr_tris[:, 0])
* (rr_tris[:, 0] - com)
).sum(-1)
).astype(int)
return np.array([t[::d] for d, t in zip(dirs, tris)])
###############################################################################
# EFFICIENCY UTILITIES
def fast_cross_3d(x, y):
"""Compute cross product between list of 3D vectors.
Much faster than np.cross() when the number of cross products
becomes large (>= 500). This is because np.cross() methods become
less memory efficient at this stage.
Parameters
----------
x : array
Input array 1, shape (..., 3).
y : array
Input array 2, shape (..., 3).
Returns
-------
z : array, shape (..., 3)
Cross product of x and y along the last dimension.
Notes
-----
x and y must broadcast against each other.
"""
assert x.ndim >= 1
assert y.ndim >= 1
assert x.shape[-1] == 3
assert y.shape[-1] == 3
if max(x.size, y.size) >= 500:
out = np.empty(np.broadcast(x, y).shape)
_jit_cross(out, x, y)
return out
else:
return np.cross(x, y)
@jit()
def _jit_cross(out, x, y):
out[..., 0] = x[..., 1] * y[..., 2]
out[..., 0] -= x[..., 2] * y[..., 1]
out[..., 1] = x[..., 2] * y[..., 0]
out[..., 1] -= x[..., 0] * y[..., 2]
out[..., 2] = x[..., 0] * y[..., 1]
out[..., 2] -= x[..., 1] * y[..., 0]
@jit()
def _fast_cross_nd_sum(a, b, c):
"""Fast cross and sum."""
return (
(a[..., 1] * b[..., 2] - a[..., 2] * b[..., 1]) * c[..., 0]
+ (a[..., 2] * b[..., 0] - a[..., 0] * b[..., 2]) * c[..., 1]
+ (a[..., 0] * b[..., 1] - a[..., 1] * b[..., 0]) * c[..., 2]
)
@jit()
def _accumulate_normals(tris, tri_nn, npts):
"""Efficiently accumulate triangle normals."""
# this code replaces the following, but is faster (vectorized):
#
# this['nn'] = np.zeros((this['np'], 3))
# for p in xrange(this['ntri']):
# verts = this['tris'][p]
# this['nn'][verts, :] += this['tri_nn'][p, :]
#
nn = np.zeros((npts, 3))
for vi in range(3):
verts = tris[:, vi]
for idx in range(3): # x, y, z
nn[:, idx] += bincount(verts, weights=tri_nn[:, idx], minlength=npts)
return nn
def _triangle_neighbors(tris, npts):
"""Efficiently compute vertex neighboring triangles."""
# this code replaces the following, but is faster (vectorized):
# neighbor_tri = [list() for _ in range(npts)]
# for ti, tri in enumerate(tris):
# for t in tri:
# neighbor_tri[t].append(ti)
rows = tris.ravel()
cols = np.repeat(np.arange(len(tris)), 3)
data = np.ones(len(cols))
csr = coo_array((data, (rows, cols)), shape=(npts, len(tris))).tocsr()
neighbor_tri = [
csr.indices[start:stop] for start, stop in zip(csr.indptr[:-1], csr.indptr[1:])
]
assert len(neighbor_tri) == npts
return neighbor_tri
@jit()
def _triangle_coords(r, best, r1, nn, r12, r13, a, b, c): # pragma: no cover
"""Get coordinates of a vertex projected to a triangle."""
r1 = r1[best]
tri_nn = nn[best]
r12 = r12[best]
r13 = r13[best]
a = a[best]
b = b[best]
c = c[best]
rr = r - r1
z = np.sum(rr * tri_nn)
v1 = np.sum(rr * r12)
v2 = np.sum(rr * r13)
det = a * b - c * c
x = (b * v1 - c * v2) / det
y = (a * v2 - c * v1) / det
return x, y, z
def _project_onto_surface(
rrs, surf, project_rrs=False, return_nn=False, method="accurate"
):
"""Project points onto (scalp) surface."""
if method == "accurate":
surf_geom = _get_tri_supp_geom(surf)
pt_tris = np.empty((0,), int)
pt_lens = np.zeros(len(rrs) + 1, int)
out = _find_nearest_tri_pts(rrs, pt_tris, pt_lens, reproject=True, **surf_geom)
if project_rrs: #
out += (np.einsum("ij,ijk->ik", out[0], surf["rr"][surf["tris"][out[1]]]),)
if return_nn:
out += (surf_geom["nn"][out[1]],)
else: # nearest neighbor
assert project_rrs
idx = _compute_nearest(surf["rr"], rrs)
out = (None, None, surf["rr"][idx])
if return_nn:
surf_geom = _get_tri_supp_geom(surf)
nn = _accumulate_normals(
surf["tris"].astype(int), surf_geom["nn"], len(surf["rr"])
)
nn = nn[idx]
_normalize_vectors(nn)
out += (nn,)
return out
def _normal_orth(nn):
"""Compute orthogonal basis given a normal."""
assert nn.shape[-1:] == (3,)
prod = np.einsum("...i,...j->...ij", nn, nn)
_, u = np.linalg.eigh(np.eye(3) - prod)
u = u[..., ::-1]
# Make sure that ez is in the direction of nn
signs = np.sign(np.matmul(nn[..., np.newaxis, :], u[..., -1:]))
signs[signs == 0] = 1
u *= signs
return u.swapaxes(-1, -2)
@verbose
def complete_surface_info(
surf, do_neighbor_vert=False, copy=True, do_neighbor_tri=True, *, verbose=None
):
"""Complete surface information.
Parameters
----------
surf : dict
The surface.
do_neighbor_vert : bool
If True (default False), add neighbor vertex information.
copy : bool
If True (default), make a copy. If False, operate in-place.
do_neighbor_tri : bool
If True (default), compute triangle neighbors.
%(verbose)s
Returns
-------
surf : dict
The transformed surface.
"""
if copy:
surf = deepcopy(surf)
# based on mne_source_space_add_geometry_info() in mne_add_geometry_info.c
# Main triangulation [mne_add_triangle_data()]
surf["ntri"] = surf.get("ntri", len(surf["tris"]))
surf["np"] = surf.get("np", len(surf["rr"]))
surf["tri_area"] = np.zeros(surf["ntri"])
r1 = surf["rr"][surf["tris"][:, 0], :]
r2 = surf["rr"][surf["tris"][:, 1], :]
r3 = surf["rr"][surf["tris"][:, 2], :]
surf["tri_cent"] = (r1 + r2 + r3) / 3.0
surf["tri_nn"] = fast_cross_3d((r2 - r1), (r3 - r1))
# Triangle normals and areas
surf["tri_area"] = _normalize_vectors(surf["tri_nn"]) / 2.0
zidx = np.where(surf["tri_area"] == 0)[0]
if len(zidx) > 0:
logger.info(f" Warning: zero size triangles: {zidx}")
# Find neighboring triangles, accumulate vertex normals, normalize
logger.info(" Triangle neighbors and vertex normals...")
surf["nn"] = _accumulate_normals(
surf["tris"].astype(int), surf["tri_nn"], surf["np"]
)
_normalize_vectors(surf["nn"])
# Check for topological defects
if do_neighbor_tri:
surf["neighbor_tri"] = _triangle_neighbors(surf["tris"], surf["np"])
zero, fewer = list(), list()
for ni, n in enumerate(surf["neighbor_tri"]):
if len(n) < 3:
if len(n) == 0:
zero.append(ni)
else:
fewer.append(ni)
surf["neighbor_tri"][ni] = np.array([], int)
if len(zero) > 0:
logger.info(
" Vertices do not have any neighboring triangles: "
f"[{', '.join(str(z) for z in zero)}]"
)
if len(fewer) > 0:
fewer = ", ".join(str(f) for f in fewer)
logger.info(
" Vertices have fewer than three neighboring triangles, removing "
f"neighbors: [{fewer}]"
)
# Determine the neighboring vertices and fix errors
if do_neighbor_vert is True:
logger.info(" Vertex neighbors...")
surf["neighbor_vert"] = [
_get_surf_neighbors(surf, k) for k in range(surf["np"])
]
return surf
def _get_surf_neighbors(surf, k):
"""Calculate the surface neighbors based on triangulation."""
verts = set()
for v in surf["tris"][surf["neighbor_tri"][k]].flat:
verts.add(v)
verts.remove(k)
verts = np.array(sorted(verts))
assert np.all(verts < surf["np"])
nneighbors = len(verts)
nneigh_max = len(surf["neighbor_tri"][k])
if nneighbors > nneigh_max:
raise RuntimeError(f"Too many neighbors for vertex {k}.")
elif nneighbors != nneigh_max:
logger.info(
" Incorrect number of distinct neighbors for vertex"
" %d (%d instead of %d) [fixed].",
k,
nneighbors,
nneigh_max,
)
return verts
def _normalize_vectors(rr):
"""Normalize surface vertices."""
size = np.linalg.norm(rr, axis=1)
mask = size > 0
rr[mask] /= size[mask, np.newaxis] # operate in-place
return size
class _CDist:
"""Wrapper for cdist that uses a Tree-like pattern."""
def __init__(self, xhs):
self._xhs = xhs
def query(self, rr):
nearest = list()
dists = list()
for r in rr:
d = cdist(r[np.newaxis, :], self._xhs)
idx = np.argmin(d)
nearest.append(idx)
dists.append(d[0, idx])
return np.array(dists), np.array(nearest)
def _compute_nearest(xhs, rr, method="BallTree", return_dists=False):
"""Find nearest neighbors.
Parameters
----------
xhs : array, shape=(n_samples, n_dim)
Points of data set.
rr : array, shape=(n_query, n_dim)
Points to find nearest neighbors for.
method : str
The query method. If scikit-learn and scipy<1.0 are installed,
it will fall back to the slow brute-force search.
return_dists : bool
If True, return associated distances.
Returns
-------
nearest : array, shape=(n_query,)
Index of nearest neighbor in xhs for every point in rr.
distances : array, shape=(n_query,)
The distances. Only returned if return_dists is True.
"""
if xhs.size == 0 or rr.size == 0:
if return_dists:
return np.array([], int), np.array([])
return np.array([], int)
tree = _DistanceQuery(xhs, method=method)
out = tree.query(rr)
return out[::-1] if return_dists else out[1]
def _safe_query(rr, func, reduce=False, **kwargs):
if len(rr) == 0:
return np.array([]), np.array([], int)
out = func(rr)
out = [out[0][:, 0], out[1][:, 0]] if reduce else out
return out
class _DistanceQuery:
"""Wrapper for fast distance queries."""
def __init__(self, xhs, method="BallTree"):
assert method in ("BallTree", "KDTree", "cdist")
# Fastest for our problems: balltree
if method == "BallTree":
try:
from sklearn.neighbors import BallTree
except ImportError:
logger.info(
"Nearest-neighbor searches will be significantly "
"faster if scikit-learn is installed."
)
method = "KDTree"
else:
self.query = partial(
_safe_query,
func=BallTree(xhs).query,
reduce=True,
return_distance=True,
)
# Then KDTree
if method == "KDTree":
from scipy.spatial import KDTree
self.query = KDTree(xhs).query
# Then the worst: cdist
if method == "cdist":
self.query = _CDist(xhs).query
self.data = xhs
@verbose
def _points_outside_surface(rr, surf, n_jobs=None, verbose=None):
"""Check whether points are outside a surface.
Parameters
----------
rr : ndarray
Nx3 array of points to check.
surf : dict
Surface with entries "rr" and "tris".
Returns
-------
outside : ndarray
1D logical array of size N for which points are outside the surface.
"""
rr = np.atleast_2d(rr)
assert rr.shape[1] == 3
parallel, p_fun, n_jobs = parallel_func(_get_solids, n_jobs)
tot_angles = parallel(
p_fun(surf["rr"][tris], rr) for tris in np.array_split(surf["tris"], n_jobs)
)
return np.abs(np.sum(tot_angles, axis=0) / (2 * np.pi) - 1.0) > 1e-5
def _surface_to_polydata(surf):
import pyvista as pv
vertices = np.array(surf["rr"])
if "tris" not in surf:
return pv.PolyData(vertices)
else:
triangles = np.array(surf["tris"])
triangles = np.c_[np.full(len(triangles), 3), triangles]
return pv.PolyData(vertices, triangles)
def _polydata_to_surface(pd, normals=True):
from pyvista import PolyData
if not isinstance(pd, PolyData):
pd = PolyData(pd)
out = dict(rr=pd.points, tris=pd.faces.reshape(-1, 4)[:, 1:])
if normals:
out["nn"] = pd.point_normals
return out
class _CheckInside:
"""Efficiently check if points are inside a surface."""
@verbose
def __init__(self, surf, *, mode="old", verbose=None):
assert mode in ("pyvista", "old")
self.mode = mode
t0 = time.time()
self.surf = surf
if self.mode == "pyvista":
self._init_pyvista()
else:
self._init_old()
logger.debug(
f"Setting up {mode} interior check for {len(self.surf['rr'])} "
f"points took {(time.time() - t0) * 1000:0.1f} ms"
)
def _init_old(self):
self.inner_r = None
self.cm = self.surf["rr"].mean(0)
# We could use Delaunay or ConvexHull here, Delaunay is slightly slower
# to construct but faster to evaluate
# See https://stackoverflow.com/questions/16750618/whats-an-efficient-way-to-find-if-a-point-lies-in-the-convex-hull-of-a-point-cl # noqa
self.del_tri = Delaunay(self.surf["rr"])
if self.del_tri.find_simplex(self.cm) >= 0:
# Immediately cull some points from the checks
dists = np.linalg.norm(self.surf["rr"] - self.cm, axis=-1)
self.inner_r = dists.min()
self.outer_r = dists.max()
def _init_pyvista(self):
if not isinstance(self.surf, dict):
self.pdata = self.surf
self.surf = _polydata_to_surface(self.pdata)
else:
self.pdata = _surface_to_polydata(self.surf).clean()
@verbose
def __call__(self, rr, n_jobs=None, verbose=None):
n_orig = len(rr)
logger.info(
f"Checking surface interior status for {n_orig} point{_pl(n_orig, ' ')}..."
)
t0 = time.time()
if self.mode == "pyvista":
inside = self._call_pyvista(rr)
else:
inside = self._call_old(rr, n_jobs)
n = inside.sum()
logger.info(f" Total {n}/{n_orig} point{_pl(n, ' ')} inside the surface")
logger.info(f"Interior check completed in {(time.time() - t0) * 1000:0.1f} ms")
return inside
def _call_pyvista(self, rr):
pdata = _surface_to_polydata(dict(rr=rr))
out = pdata.select_enclosed_points(self.pdata, check_surface=False)
return out["SelectedPoints"].astype(bool)
def _call_old(self, rr, n_jobs):
n_orig = len(rr)
prec = int(np.ceil(np.log10(max(n_orig, 10))))
inside = np.ones(n_orig, bool) # innocent until proven guilty
idx = np.arange(n_orig)
# Limit to indices that can plausibly be outside the surf
# but are not definitely outside it
if self.inner_r is not None:
dists = np.linalg.norm(rr - self.cm, axis=-1)
in_mask = dists < self.inner_r
n = (in_mask).sum()
n_pad = str(n).rjust(prec)
logger.info(
f" Found {n_pad}/{n_orig} point{_pl(n, ' ')} "
f"inside an interior sphere of radius "
f"{1000 * self.inner_r:6.1f} mm"
)
out_mask = dists > self.outer_r
inside[out_mask] = False
n = (out_mask).sum()
n_pad = str(n).rjust(prec)
logger.info(
f" Found {n_pad}/{n_orig} point{_pl(n, ' ')} "
f"outside an exterior sphere of radius "
f"{1000 * self.outer_r:6.1f} mm"
)
mask = (~in_mask) & (~out_mask) # not definitely inside or outside
idx = idx[mask]
rr = rr[mask]
# Use qhull as our first pass (*much* faster than our check)
del_outside = self.del_tri.find_simplex(rr) < 0
n = sum(del_outside)
inside[idx[del_outside]] = False
idx = idx[~del_outside]
rr = rr[~del_outside]
n_pad = str(n).rjust(prec)
check_pad = str(len(del_outside)).rjust(prec)
logger.info(
f" Found {n_pad}/{check_pad} point{_pl(n, ' ')} outside using "
"surface Qhull"
)
# use our more accurate check
solid_outside = _points_outside_surface(rr, self.surf, n_jobs)
n = np.sum(solid_outside)
n_pad = str(n).rjust(prec)
check_pad = str(len(solid_outside)).rjust(prec)
logger.info(
f" Found {n_pad}/{check_pad} point{_pl(n, ' ')} outside using "
"solid angles"
)
inside[idx[solid_outside]] = False
return inside
###############################################################################
# Handle freesurfer
def _fread3(fobj):
"""Read 3 bytes and adjust."""
b1, b2, b3 = np.fromfile(fobj, ">u1", 3).astype(np.int64)
return (b1 << 16) + (b2 << 8) + b3
def read_curvature(filepath, binary=True):
"""Load in curvature values from the ?h.curv file.
Parameters
----------
filepath : path-like
Input path to the ``.curv`` file.
binary : bool
Specify if the output array is to hold binary values. Defaults to True.
Returns
-------
curv : array of shape (n_vertices,)
The curvature values loaded from the user given file.
"""
with open(filepath, "rb") as fobj:
magic = _fread3(fobj)
if magic == 16777215:
vnum = np.fromfile(fobj, ">i4", 3)[0]
curv = np.fromfile(fobj, ">f4", vnum)
else:
vnum = magic
_fread3(fobj)
curv = np.fromfile(fobj, ">i2", vnum) / 100
if binary:
return 1 - np.array(curv != 0, np.int64)
else:
return curv
@verbose
def read_surface(
fname, read_metadata=False, return_dict=False, file_format="auto", verbose=None
):
"""Load a Freesurfer surface mesh in triangular format.
Parameters
----------
fname : path-like
The name of the file containing the surface.
read_metadata : bool
Read metadata as key-value pairs. Only works when reading a FreeSurfer
surface file. For .obj files this dictionary will be empty.
Valid keys:
* 'head' : array of int
* 'valid' : str
* 'filename' : str
* 'volume' : array of int, shape (3,)
* 'voxelsize' : array of float, shape (3,)
* 'xras' : array of float, shape (3,)
* 'yras' : array of float, shape (3,)
* 'zras' : array of float, shape (3,)
* 'cras' : array of float, shape (3,)
.. versionadded:: 0.13.0
return_dict : bool
If True, a dictionary with surface parameters is returned.
file_format : 'auto' | 'freesurfer' | 'obj'
File format to use. Can be 'freesurfer' to read a FreeSurfer surface
file, or 'obj' to read a Wavefront .obj file (common format for
importing in other software), or 'auto' to attempt to infer from the
file name. Defaults to 'auto'.
.. versionadded:: 0.21.0
%(verbose)s
Returns
-------
rr : array, shape=(n_vertices, 3)
Coordinate points.
tris : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
volume_info : dict-like
If read_metadata is true, key-value pairs found in the geometry file.
surf : dict
The surface parameters. Only returned if ``return_dict`` is True.
See Also
--------
write_surface
read_tri
"""
fname = _check_fname(fname, "read", True)
_check_option("file_format", file_format, ["auto", "freesurfer", "obj"])
if file_format == "auto":
if fname.suffix.lower() == ".obj":
file_format = "obj"
else:
file_format = "freesurfer"
if file_format == "freesurfer":
_import_nibabel("read surface geometry")
from nibabel.freesurfer import read_geometry
ret = read_geometry(fname, read_metadata=read_metadata)
elif file_format == "obj":
ret = _read_wavefront_obj(fname)
if read_metadata:
ret += (dict(),)
if return_dict:
ret += (_rr_tris_dict(ret[0], ret[1]),)
return ret
def _rr_tris_dict(rr, tris):
return dict(rr=rr, tris=tris, ntri=len(tris), use_tris=tris, np=len(rr))
def _read_mri_surface(fname):
surf = read_surface(fname, return_dict=True)[2]
surf["rr"] /= 1000.0
surf.update(coord_frame=FIFF.FIFFV_COORD_MRI)
return surf
def _read_wavefront_obj(fname):
"""Read a surface form a Wavefront .obj file.
Parameters
----------
fname : str
Name of the .obj file to read.
Returns
-------
coords : ndarray, shape (n_points, 3)
The XYZ coordinates of each vertex.
faces : ndarray, shape (n_faces, 3)
For each face of the mesh, the integer indices of the vertices that
make up the face.
"""
coords = []
faces = []
with open(fname) as f:
for line in f:
line = line.strip()
if len(line) == 0 or line[0] == "#":
continue
split = line.split()
if split[0] == "v": # vertex
coords.append([float(item) for item in split[1:]])
elif split[0] == "f": # face
dat = [int(item.split("/")[0]) for item in split[1:]]
if len(dat) != 3:
raise RuntimeError("Only triangle faces allowed.")
# In .obj files, indexing starts at 1
faces.append([d - 1 for d in dat])
return np.array(coords), np.array(faces)
def _read_patch(fname):
"""Load a FreeSurfer binary patch file.
Parameters
----------
fname : str
The filename.
Returns
-------
rrs : ndarray, shape (n_vertices, 3)
The points.
tris : ndarray, shape (n_tris, 3)
The patches. Not all vertices will be present.
"""
# This is adapted from PySurfer PR #269, Bruce Fischl's read_patch.m,
# and PyCortex (BSD)
patch = dict()
with open(fname) as fid:
ver = np.fromfile(fid, dtype=">i4", count=1).item()
if ver != -1:
raise RuntimeError(f"incorrect version # {ver} (not -1) found")
npts = np.fromfile(fid, dtype=">i4", count=1).item()
dtype = np.dtype([("vertno", ">i4"), ("x", ">f"), ("y", ">f"), ("z", ">f")])
recs = np.fromfile(fid, dtype=dtype, count=npts)
# numpy to dict
patch = {key: recs[key] for key in dtype.fields.keys()}
patch["vertno"] -= 1
# read surrogate surface
rrs, tris = read_surface(
op.join(op.dirname(fname), op.basename(fname)[:3] + "sphere")
)
orig_tris = tris
is_vert = patch["vertno"] > 0 # negative are edges, ignored for now
verts = patch["vertno"][is_vert]
# eliminate invalid tris and zero out unused rrs
mask = np.zeros((len(rrs),), dtype=bool)
mask[verts] = True
rrs[~mask] = 0.0
tris = tris[mask[tris].all(1)]
for ii, key in enumerate(["x", "y", "z"]):
rrs[verts, ii] = patch[key][is_vert]
return rrs, tris, orig_tris
##############################################################################
# SURFACE CREATION
def _get_ico_surface(grade, patch_stats=False):
"""Return an icosahedral surface of the desired grade."""
# always use verbose=False since users don't need to know we're pulling
# these from a file
from .bem import read_bem_surfaces
ico_file_name = op.join(op.dirname(__file__), "data", "icos.fif.gz")
ico = read_bem_surfaces(
ico_file_name, patch_stats, s_id=9000 + grade, verbose=False
)
return ico
def _tessellate_sphere_surf(level, rad=1.0):
"""Return a surface structure instead of the details."""
rr, tris = _tessellate_sphere(level)
npt = len(rr) # called "npt" instead of "np" because of numpy...
ntri = len(tris)
nn = rr.copy()
rr *= rad
s = dict(
rr=rr,
np=npt,
tris=tris,
use_tris=tris,
ntri=ntri,
nuse=npt,
nn=nn,
inuse=np.ones(npt, int),
)
return s
def _norm_midpt(ai, bi, rr):
"""Get normalized midpoint."""
c = rr[ai]
c += rr[bi]
_normalize_vectors(c)
return c
def _tessellate_sphere(mylevel):
"""Create a tessellation of a unit sphere."""
# Vertices of a unit octahedron
rr = np.array(
[
[1, 0, 0],
[-1, 0, 0], # xplus, xminus
[0, 1, 0],
[0, -1, 0], # yplus, yminus
[0, 0, 1],
[0, 0, -1],
],
float,
) # zplus, zminus
tris = np.array(
[
[0, 4, 2],
[2, 4, 1],
[1, 4, 3],
[3, 4, 0],
[0, 2, 5],
[2, 1, 5],
[1, 3, 5],
[3, 0, 5],
],
int,
)
# A unit octahedron
if mylevel < 1:
raise ValueError("oct subdivision must be >= 1")
# Reverse order of points in each triangle
# for counter-clockwise ordering
tris = tris[:, [2, 1, 0]]
# Subdivide each starting triangle (mylevel - 1) times
for _ in range(1, mylevel):
r"""
Subdivide each triangle in the old approximation and normalize
the new points thus generated to lie on the surface of the unit
sphere.
Each input triangle with vertices labelled [0,1,2] as shown
below will be turned into four new triangles:
Make new points
a = (0+2)/2
b = (0+1)/2
c = (1+2)/2
1
/\ Normalize a, b, c
/ \
b/____\c Construct new triangles
/\ /\ [0,b,a]
/ \ / \ [b,1,c]
/____\/____\ [a,b,c]
0 a 2 [a,c,2]
"""
# use new method: first make new points (rr)
a = _norm_midpt(tris[:, 0], tris[:, 2], rr)
b = _norm_midpt(tris[:, 0], tris[:, 1], rr)
c = _norm_midpt(tris[:, 1], tris[:, 2], rr)
lims = np.cumsum([len(rr), len(a), len(b), len(c)])
aidx = np.arange(lims[0], lims[1])
bidx = np.arange(lims[1], lims[2])
cidx = np.arange(lims[2], lims[3])
rr = np.concatenate((rr, a, b, c))
# now that we have our points, make new triangle definitions
tris = np.array(
(
np.c_[tris[:, 0], bidx, aidx],
np.c_[bidx, tris[:, 1], cidx],
np.c_[aidx, bidx, cidx],
np.c_[aidx, cidx, tris[:, 2]],
),
int,
).swapaxes(0, 1)
tris = np.reshape(tris, (np.prod(tris.shape[:2]), 3))
# Copy the resulting approximation into standard table
rr_orig = rr
rr = np.empty_like(rr)
nnode = 0
for k, tri in enumerate(tris):
for j in range(3):
coord = rr_orig[tri[j]]
# this is faster than cdist (no need for sqrt)
similarity = np.dot(rr[:nnode], coord)
idx = np.where(similarity > 0.99999)[0]
if len(idx) > 0:
tris[k, j] = idx[0]
else:
rr[nnode] = coord
tris[k, j] = nnode
nnode += 1
rr = rr[:nnode].copy()
return rr, tris
def _create_surf_spacing(surf, hemi, subject, stype, ico_surf, subjects_dir):
"""Load a surf and use the subdivided icosahedron to get points."""
# Based on load_source_space_surf_spacing() in load_source_space.c
surf = read_surface(surf, return_dict=True)[-1]
do_neighbor_vert = stype == "spacing"
complete_surface_info(surf, do_neighbor_vert, copy=False)
if stype == "all":
surf["inuse"] = np.ones(surf["np"], int)
surf["use_tris"] = None
elif stype == "spacing":
_decimate_surface_spacing(surf, ico_surf)
surf["use_tris"] = None
del surf["neighbor_vert"]
else: # ico or oct
# ## from mne_ico_downsample.c ## #
surf_name = subjects_dir / subject / "surf" / f"{hemi}.sphere"
logger.info(f"Loading geometry from {surf_name}...")
from_surf = read_surface(surf_name, return_dict=True)[-1]
_normalize_vectors(from_surf["rr"])
if from_surf["np"] != surf["np"]:
raise RuntimeError(
"Mismatch between number of surface vertices, "
"possible parcellation error?"
)
_normalize_vectors(ico_surf["rr"])
# Make the maps
mmap = _compute_nearest(from_surf["rr"], ico_surf["rr"])
nmap = len(mmap)
surf["inuse"] = np.zeros(surf["np"], int)
for k in range(nmap):
if surf["inuse"][mmap[k]]:
# Try the nearest neighbors
neigh = _get_surf_neighbors(surf, mmap[k])
was = mmap[k]
inds = np.where(np.logical_not(surf["inuse"][neigh]))[0]
if len(inds) == 0:
raise RuntimeError(
f"Could not find neighbor for vertex {k} / {nmap}."
)
else:
mmap[k] = neigh[inds[-1]]
logger.info(
" Source space vertex moved from %d to %d "
"because of double occupation",
was,
mmap[k],
)
elif mmap[k] < 0 or mmap[k] > surf["np"]:
raise RuntimeError(
f"Map number out of range ({mmap[k]}), this is probably due to "
"inconsistent surfaces. Parts of the FreeSurfer reconstruction "
"need to be redone."
)
surf["inuse"][mmap[k]] = True
logger.info("Setting up the triangulation for the decimated surface...")
surf["use_tris"] = np.array([mmap[ist] for ist in ico_surf["tris"]], np.int32)
if surf["use_tris"] is not None:
surf["nuse_tri"] = len(surf["use_tris"])
else:
surf["nuse_tri"] = 0
surf["nuse"] = np.sum(surf["inuse"])
surf["vertno"] = np.where(surf["inuse"])[0]
# set some final params
sizes = _normalize_vectors(surf["nn"])
surf["inuse"][sizes <= 0] = False
surf["nuse"] = np.sum(surf["inuse"])
surf["subject_his_id"] = subject
return surf
def _decimate_surface_spacing(surf, spacing):
assert isinstance(spacing, int)
assert spacing > 0
logger.info(" Decimating...")
d = np.full(surf["np"], 10000, int)
# A mysterious algorithm follows
for k in range(surf["np"]):
neigh = surf["neighbor_vert"][k]
d[k] = min(np.min(d[neigh]) + 1, d[k])
if d[k] >= spacing:
d[k] = 0
d[neigh] = np.minimum(d[neigh], d[k] + 1)
if spacing == 2.0:
for k in range(surf["np"] - 1, -1, -1):
for n in surf["neighbor_vert"][k]:
d[k] = min(d[k], d[n] + 1)
d[n] = min(d[n], d[k] + 1)
for k in range(surf["np"]):
if d[k] > 0:
neigh = surf["neighbor_vert"][k]
n = np.sum(d[neigh] == 0)
if n <= 2:
d[k] = 0
d[neigh] = np.minimum(d[neigh], d[k] + 1)
surf["inuse"] = np.zeros(surf["np"], int)
surf["inuse"][d == 0] = 1
return surf
@verbose
def write_surface(
fname,
coords,
faces,
create_stamp="",
volume_info=None,
file_format="auto",
overwrite=False,
*,
verbose=None,
):
"""Write a triangular Freesurfer surface mesh.
Accepts the same data format as is returned by read_surface().
Parameters
----------
fname : path-like
File to write.
coords : array, shape=(n_vertices, 3)
Coordinate points.
faces : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
create_stamp : str
Comment that is written to the beginning of the file. Can not contain
line breaks.
volume_info : dict-like or None
Key-value pairs to encode at the end of the file.
Valid keys:
* 'head' : array of int
* 'valid' : str
* 'filename' : str
* 'volume' : array of int, shape (3,)
* 'voxelsize' : array of float, shape (3,)
* 'xras' : array of float, shape (3,)
* 'yras' : array of float, shape (3,)
* 'zras' : array of float, shape (3,)
* 'cras' : array of float, shape (3,)
.. versionadded:: 0.13.0
file_format : 'auto' | 'freesurfer' | 'obj'
File format to use. Can be 'freesurfer' to write a FreeSurfer surface
file, or 'obj' to write a Wavefront .obj file (common format for
importing in other software), or 'auto' to attempt to infer from the
file name. Defaults to 'auto'.
.. versionadded:: 0.21.0
%(overwrite)s
%(verbose)s
See Also
--------
read_surface
read_tri
"""
fname = _check_fname(fname, overwrite=overwrite)
_check_option("file_format", file_format, ["auto", "freesurfer", "obj"])
if file_format == "auto":
if fname.suffix.lower() == ".obj":
file_format = "obj"
else:
file_format = "freesurfer"
if file_format == "freesurfer":
_import_nibabel("write surface geometry")
from nibabel.freesurfer import write_geometry
write_geometry(
fname, coords, faces, create_stamp=create_stamp, volume_info=volume_info
)
else:
assert file_format == "obj"
with open(fname, "w") as fid:
for line in create_stamp.splitlines():
fid.write(f"# {line}\n")
for v in coords:
fid.write(f"v {v[0]} {v[1]} {v[2]}\n")
for f in faces:
fid.write(f"f {f[0] + 1} {f[1] + 1} {f[2] + 1}\n")
###############################################################################
# Decimation
def _decimate_surface_vtk(points, triangles, n_triangles):
"""Aux function."""
try:
from vtkmodules.util.numpy_support import numpy_to_vtk, numpy_to_vtkIdTypeArray
from vtkmodules.vtkCommonCore import vtkPoints
from vtkmodules.vtkCommonDataModel import vtkCellArray, vtkPolyData
from vtkmodules.vtkFiltersCore import vtkQuadricDecimation
except ImportError:
raise ValueError("This function requires the VTK package to be installed")
if triangles.max() > len(points) - 1:
raise ValueError(
"The triangles refer to undefined points. Please check your mesh."
)
src = vtkPolyData()
vtkpoints = vtkPoints()
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
vtkpoints.SetData(numpy_to_vtk(points.astype(np.float64)))
src.SetPoints(vtkpoints)
vtkcells = vtkCellArray()
triangles_ = np.pad(triangles, ((0, 0), (1, 0)), "constant", constant_values=3)
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
idarr = numpy_to_vtkIdTypeArray(triangles_.ravel().astype(np.int64))
vtkcells.SetCells(triangles.shape[0], idarr)
src.SetPolys(vtkcells)
# vtkDecimatePro was not very good, even with SplittingOff and
# PreserveTopologyOn
decimate = vtkQuadricDecimation()
decimate.VolumePreservationOn()
decimate.SetInputData(src)
reduction = 1 - (float(n_triangles) / len(triangles))
decimate.SetTargetReduction(reduction)
decimate.Update()
out = _polydata_to_surface(decimate.GetOutput(), normals=False)
return out["rr"], out["tris"]
def _decimate_surface_sphere(rr, tris, n_triangles):
_check_freesurfer_home()
map_ = {}
ico_levels = [20, 80, 320, 1280, 5120, 20480]
map_.update({n_tri: ("ico", ii) for ii, n_tri in enumerate(ico_levels)})
oct_levels = 2 ** (2 * np.arange(7) + 3)
map_.update({n_tri: ("oct", ii) for ii, n_tri in enumerate(oct_levels, 1)})
_check_option(
"n_triangles", n_triangles, sorted(map_), extra=' when method="sphere"'
)
func_map = dict(ico=_get_ico_surface, oct=_tessellate_sphere_surf)
kind, level = map_[n_triangles]
logger.info(f"Decimating using Freesurfer spherical {kind}{level} downsampling")
ico_surf = func_map[kind](level)
assert len(ico_surf["tris"]) == n_triangles
tempdir = _TempDir()
orig = op.join(tempdir, "lh.temp")
write_surface(orig, rr, tris)
logger.info(" Extracting main mesh component ...")
run_subprocess(["mris_extract_main_component", orig, orig], verbose="error")
logger.info(" Smoothing ...")
smooth = orig + ".smooth"
run_subprocess(["mris_smooth", "-nw", orig, smooth], verbose="error")
logger.info(" Inflating ...")
inflated = orig + ".inflated"
run_subprocess(["mris_inflate", "-no-save-sulc", smooth, inflated], verbose="error")
logger.info(" Sphere ...")
qsphere = orig + ".qsphere"
run_subprocess(["mris_sphere", "-q", inflated, qsphere], verbose="error")
sphere_rr, _ = read_surface(qsphere)
norms = np.linalg.norm(sphere_rr, axis=1, keepdims=True)
sphere_rr /= norms
idx = _compute_nearest(sphere_rr, ico_surf["rr"], method="KDTree")
n_dup = len(idx) - len(np.unique(idx))
if n_dup:
raise RuntimeError(
f"Could not reduce to {n_triangles} triangles using ico, "
f"{n_dup}/{len(idx)} vertices were duplicates."
)
logger.info("[done]")
return rr[idx], ico_surf["tris"]
@verbose
def decimate_surface(points, triangles, n_triangles, method="quadric", *, verbose=None):
"""Decimate surface data.
Parameters
----------
points : ndarray
The surface to be decimated, a 3 x number of points array.
triangles : ndarray
The surface to be decimated, a 3 x number of triangles array.
n_triangles : int
The desired number of triangles.
method : str
Can be "quadric" or "sphere". "sphere" will inflate the surface to a
sphere using Freesurfer and downsample to an icosahedral or
octahedral mesh.
.. versionadded:: 0.20
%(verbose)s
Returns
-------
points : ndarray
The decimated points.
triangles : ndarray
The decimated triangles.
Notes
-----
**"quadric" mode**
This requires VTK. If an odd target number was requested,
the ``'decimation'`` algorithm used results in the
next even number of triangles. For example a reduction request
to 30001 triangles may result in 30000 triangles.
**"sphere" mode**
This requires Freesurfer to be installed and available in the
environment. The destination number of triangles must be one of
``[20, 80, 320, 1280, 5120, 20480]`` for ico (0-5) downsampling or one of
``[8, 32, 128, 512, 2048, 8192, 32768]`` for oct (1-7) downsampling.
This mode is slower, but could be more suitable for decimating meshes for
BEM creation (recommended ``n_triangles=5120``) due to better topological
property preservation.
"""
n_triangles = _ensure_int(n_triangles)
method_map = dict(quadric=_decimate_surface_vtk, sphere=_decimate_surface_sphere)
_check_option("method", method, sorted(method_map))
if n_triangles > len(triangles):
raise ValueError(
f"Requested n_triangles ({n_triangles}) exceeds number of "
f"original triangles ({len(triangles)})"
)
return method_map[method](points, triangles, n_triangles)
###############################################################################
# Geometry
@jit()
def _get_tri_dist(p, q, p0, q0, a, b, c, dist): # pragma: no cover
"""Get the distance to a triangle edge."""
p1 = p - p0
q1 = q - q0
out = p1 * p1 * a
out += q1 * q1 * b
out += p1 * q1 * c
out += dist * dist
return np.sqrt(out)
def _get_tri_supp_geom(surf):
"""Create supplementary geometry information using tris and rrs."""
r1 = surf["rr"][surf["tris"][:, 0], :]
r12 = surf["rr"][surf["tris"][:, 1], :] - r1
r13 = surf["rr"][surf["tris"][:, 2], :] - r1
r1213 = np.ascontiguousarray(np.array([r12, r13]).swapaxes(0, 1))
a = np.einsum("ij,ij->i", r12, r12)
b = np.einsum("ij,ij->i", r13, r13)
c = np.einsum("ij,ij->i", r12, r13)
mat = np.ascontiguousarray(np.rollaxis(np.array([[b, -c], [-c, a]]), 2))
norm = a * b - c * c
norm[norm == 0] = 1.0 # avoid divide by zero
mat /= norm[:, np.newaxis, np.newaxis]
nn = fast_cross_3d(r12, r13)
_normalize_vectors(nn)
return dict(r1=r1, r12=r12, r13=r13, r1213=r1213, a=a, b=b, c=c, mat=mat, nn=nn)
@jit(parallel=True)
def _find_nearest_tri_pts(
rrs,
pt_triss,
pt_lens,
a,
b,
c,
nn,
r1,
r12,
r13,
r1213,
mat,
run_all=True,
reproject=False,
): # pragma: no cover
"""Find nearest point mapping to a set of triangles.
If run_all is False, if the point lies within a triangle, it stops.
If run_all is True, edges of other triangles are checked in case
those (somehow) are closer.
"""
# The following dense code is equivalent to the following:
# rr = r1[pt_tris] - to_pts[ii]
# v1s = np.sum(rr * r12[pt_tris], axis=1)
# v2s = np.sum(rr * r13[pt_tris], axis=1)
# aas = a[pt_tris]
# bbs = b[pt_tris]
# ccs = c[pt_tris]
# dets = aas * bbs - ccs * ccs
# pp = (bbs * v1s - ccs * v2s) / dets
# qq = (aas * v2s - ccs * v1s) / dets
# pqs = np.array(pp, qq)
weights = np.empty((len(rrs), 3))
tri_idx = np.empty(len(rrs), np.int64)
for ri in prange(len(rrs)):
rr = np.reshape(rrs[ri], (1, 3))
start, stop = pt_lens[ri : ri + 2]
if start == stop == 0: # use all
drs = rr - r1
tri_nn = nn
mats = mat
r1213s = r1213
reindex = False
else:
pt_tris = pt_triss[start:stop]
drs = rr - r1[pt_tris]
tri_nn = nn[pt_tris]
mats = mat[pt_tris]
r1213s = r1213[pt_tris]
reindex = True
use = np.ones(len(drs), np.int64)
pqs = np.empty((len(drs), 2))
dists = np.empty(len(drs))
dist = np.inf
# make life easier for numba var typing
p, q, pt = np.float64(0.0), np.float64(1.0), np.int64(0)
found = False
for ii in range(len(drs)):
pqs[ii] = np.dot(mats[ii], np.dot(r1213s[ii], drs[ii]))
dists[ii] = np.dot(drs[ii], tri_nn[ii])
pp, qq = pqs[ii]
if pp >= 0 and qq >= 0 and pp <= 1 and qq <= 1 and pp + qq < 1:
found = True
use[ii] = False
if np.abs(dists[ii]) < np.abs(dist):
p, q, pt, dist = pp, qq, ii, dists[ii]
# re-reference back to original numbers
if found and reindex:
pt = pt_tris[pt]
if not found or run_all:
# don't include ones that we might have found before
# these are the ones that we want to check the sides of
s = np.where(use)[0]
# Tough: must investigate the sides
if reindex:
use_pt_tris = pt_tris[s].astype(np.int64)
else:
use_pt_tris = s.astype(np.int64)
pp, qq, ptt, distt = _nearest_tri_edge(
use_pt_tris, pqs[s], dists[s], a, b, c
)
if np.abs(distt) < np.abs(dist):
p, q, pt, dist = pp, qq, ptt, distt
w = (1 - p - q, p, q)
if reproject:
# Calculate a linear interpolation between the vertex values to
# get coords of pt projected onto closest triangle
coords = _triangle_coords(rr[0], pt, r1, nn, r12, r13, a, b, c)
w = (1.0 - coords[0] - coords[1], coords[0], coords[1])
weights[ri] = w
tri_idx[ri] = pt
return weights, tri_idx
@jit()
def _nearest_tri_edge(pt_tris, pqs, dist, a, b, c): # pragma: no cover
"""Get nearest location from a point to the edge of a set of triangles."""
# We might do something intelligent here. However, for now
# it is ok to do it in the hard way
aa = a[pt_tris]
bb = b[pt_tris]
cc = c[pt_tris]
pp = pqs[:, 0]
qq = pqs[:, 1]
# Find the nearest point from a triangle:
# Side 1 -> 2
p0 = np.minimum(np.maximum(pp + 0.5 * (qq * cc) / aa, 0.0), 1.0)
q0 = np.zeros_like(p0)
# Side 2 -> 3
t1 = 0.5 * ((2.0 * aa - cc) * (1.0 - pp) + (2.0 * bb - cc) * qq) / (aa + bb - cc)
t1 = np.minimum(np.maximum(t1, 0.0), 1.0)
p1 = 1.0 - t1
q1 = t1
# Side 1 -> 3
q2 = np.minimum(np.maximum(qq + 0.5 * (pp * cc) / bb, 0.0), 1.0)
p2 = np.zeros_like(q2)
# figure out which one had the lowest distance
dist0 = _get_tri_dist(pp, qq, p0, q0, aa, bb, cc, dist)
dist1 = _get_tri_dist(pp, qq, p1, q1, aa, bb, cc, dist)
dist2 = _get_tri_dist(pp, qq, p2, q2, aa, bb, cc, dist)
pp = np.concatenate((p0, p1, p2))
qq = np.concatenate((q0, q1, q2))
dists = np.concatenate((dist0, dist1, dist2))
ii = np.argmin(np.abs(dists))
p, q, pt, dist = pp[ii], qq[ii], pt_tris[ii % len(pt_tris)], dists[ii]
return p, q, pt, dist
def mesh_edges(tris):
"""Return sparse matrix with edges as an adjacency matrix.
Parameters
----------
tris : array of shape [n_triangles x 3]
The triangles.
Returns
-------
edges : scipy.sparse.spmatrix
The adjacency matrix.
"""
tris = _hashable_ndarray(tris)
return _mesh_edges(tris=tris)
@lru_cache(maxsize=10)
def _mesh_edges(tris=None):
if np.max(tris) > len(np.unique(tris)):
raise ValueError("Cannot compute adjacency on a selection of triangles.")
npoints = np.max(tris) + 1
ones_ntris = np.ones(3 * len(tris))
a, b, c = tris.T
x = np.concatenate((a, b, c))
y = np.concatenate((b, c, a))
edges = coo_array((ones_ntris, (x, y)), shape=(npoints, npoints))
edges = edges.tocsr()
edges = edges + edges.T
return edges
def mesh_dist(tris, vert):
"""Compute adjacency matrix weighted by distances.
It generates an adjacency matrix where the entries are the distances
between neighboring vertices.
Parameters
----------
tris : array (n_tris x 3)
Mesh triangulation.
vert : array (n_vert x 3)
Vertex locations.
Returns
-------
dist_matrix : scipy.sparse.csr_array
Sparse matrix with distances between adjacent vertices.
"""
edges = mesh_edges(tris).tocoo()
# Euclidean distances between neighboring vertices
dist = np.linalg.norm(vert[edges.row, :] - vert[edges.col, :], axis=1)
dist_matrix = csr_array((dist, (edges.row, edges.col)), shape=edges.shape)
return dist_matrix
@verbose
def read_tri(fname_in, swap=False, verbose=None):
"""Read triangle definitions from an ascii file.
Parameters
----------
fname_in : path-like
Path to surface ASCII file (ending with ``'.tri'``).
swap : bool
Assume the ASCII file vertex ordering is clockwise instead of
counterclockwise.
%(verbose)s
Returns
-------
rr : array, shape=(n_vertices, 3)
Coordinate points.
tris : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
See Also
--------
read_surface
write_surface
Notes
-----
.. versionadded:: 0.13.0
"""
with open(fname_in) as fid:
lines = fid.readlines()
n_nodes = int(lines[0])
n_tris = int(lines[n_nodes + 1])
n_items = len(lines[1].split())
if n_items in [3, 6, 14, 17]:
inds = range(3)
elif n_items in [4, 7]:
inds = range(1, 4)
else:
raise OSError("Unrecognized format of data.")
rr = np.array(
[
np.array([float(v) for v in line.split()])[inds]
for line in lines[1 : n_nodes + 1]
]
)
tris = np.array(
[
np.array([int(v) for v in line.split()])[inds]
for line in lines[n_nodes + 2 : n_nodes + 2 + n_tris]
]
)
if swap:
tris[:, [2, 1]] = tris[:, [1, 2]]
tris -= 1
logger.info(
f"Loaded surface from {fname_in} with {n_nodes} nodes and {n_tris} triangles."
)
if n_items in [3, 4]:
logger.info("Node normals were not included in the source file.")
else:
warn("Node normals were not read.")
return (rr, tris)
@jit()
def _get_solids(tri_rrs, fros):
"""Compute _sum_solids_div total angle in chunks."""
# NOTE: This incorporates the division by 4PI that used to be separate
tot_angle = np.zeros(len(fros))
for ti in range(len(tri_rrs)):
tri_rr = tri_rrs[ti]
v1 = fros - tri_rr[0]
v2 = fros - tri_rr[1]
v3 = fros - tri_rr[2]
v4 = np.empty((v1.shape[0], 3))
_jit_cross(v4, v1, v2)
triple = np.sum(v4 * v3, axis=1)
l1 = np.sqrt(np.sum(v1 * v1, axis=1))
l2 = np.sqrt(np.sum(v2 * v2, axis=1))
l3 = np.sqrt(np.sum(v3 * v3, axis=1))
s = (
l1 * l2 * l3
+ np.sum(v1 * v2, axis=1) * l3
+ np.sum(v1 * v3, axis=1) * l2
+ np.sum(v2 * v3, axis=1) * l1
)
tot_angle -= np.arctan2(triple, s)
return tot_angle
def _complete_sphere_surf(sphere, idx, level, complete=True):
"""Convert sphere conductor model to surface."""
rad = sphere["layers"][idx]["rad"]
r0 = sphere["r0"]
surf = _tessellate_sphere_surf(level, rad=rad)
surf["rr"] += r0
if complete:
complete_surface_info(surf, copy=False)
surf["coord_frame"] = sphere["coord_frame"]
return surf
@verbose
def dig_mri_distances(
info,
trans,
subject,
subjects_dir=None,
dig_kinds="auto",
exclude_frontal=False,
on_defects="raise",
verbose=None,
):
"""Compute distances between head shape points and the scalp surface.
This function is useful to check that coregistration is correct.
Unless outliers are present in the head shape points,
one can assume an average distance around 2-3 mm.
Parameters
----------
%(info_not_none)s Must contain the head shape points in ``info['dig']``.
trans : str | instance of Transform
The head<->MRI transform. If str is passed it is the
path to file on disk.
subject : str
The name of the subject.
subjects_dir : str | None
Directory containing subjects data. If None use
the Freesurfer SUBJECTS_DIR environment variable.
%(dig_kinds)s
%(exclude_frontal)s
Default is False.
%(on_defects)s
.. versionadded:: 1.0
%(verbose)s
Returns
-------
dists : array, shape (n_points,)
The distances.
See Also
--------
mne.bem.get_fitting_dig
Notes
-----
.. versionadded:: 0.19
"""
from .bem import get_fitting_dig
pts = get_head_surf(
subject,
("head-dense", "head", "bem"),
subjects_dir=subjects_dir,
on_defects=on_defects,
)["rr"]
trans = _get_trans(trans, fro="mri", to="head")[0]
pts = apply_trans(trans, pts)
info_dig = get_fitting_dig(info, dig_kinds, exclude_frontal=exclude_frontal)
dists = _compute_nearest(pts, info_dig, return_dists=True)[1]
return dists
def _mesh_borders(tris, mask):
assert isinstance(mask, np.ndarray) and mask.ndim == 1
edges = mesh_edges(tris)
edges = edges.tocoo()
border_edges = mask[edges.row] != mask[edges.col]
return np.unique(edges.row[border_edges])
def _marching_cubes(image, level, smooth=0, fill_hole_size=None, use_flying_edges=True):
"""Compute marching cubes on a 3D image."""
# vtkDiscreteMarchingCubes would be another option, but it merges
# values at boundaries which is not what we want
# https://kitware.github.io/vtk-examples/site/Cxx/Medical/GenerateModelsFromLabels/ # noqa: E501
# Also vtkDiscreteFlyingEdges3D should be faster.
# If we ever want not-discrete (continuous/float) marching cubes,
# we should probably use vtkFlyingEdges3D rather than vtkMarchingCubes.
from vtkmodules.util.numpy_support import numpy_to_vtk, vtk_to_numpy
from vtkmodules.vtkCommonDataModel import vtkDataSetAttributes, vtkImageData
from vtkmodules.vtkFiltersCore import vtkThreshold
from vtkmodules.vtkFiltersGeneral import (
vtkDiscreteFlyingEdges3D,
vtkDiscreteMarchingCubes,
)
from vtkmodules.vtkFiltersGeometry import vtkGeometryFilter
if image.ndim != 3:
raise ValueError(f"3D data must be supplied, got {image.shape}")
level = np.array(level)
if level.ndim != 1 or level.size == 0 or level.dtype.kind not in "ui":
raise TypeError(
"level must be non-empty numeric or 1D array-like of int, "
f"got {level.ndim}D array-like of {level.dtype} with "
f"{level.size} elements"
)
# vtkImageData indexes as slice, row, col (Z, Y, X):
# https://discourse.vtk.org/t/very-confused-about-imdata-matrix-index-order/6608/2
# We can accomplish this by raveling with order='F' later, so we might as
# well make a copy with Fortran order now.
# We also use double as passing integer types directly can be problematic!
image = np.array(image, dtype=float, order="F")
image_shape = image.shape
# fill holes
if fill_hole_size is not None:
for val in level:
bin_image = image == val
mask = image == 0 # don't go into other areas
bin_image = binary_dilation(bin_image, iterations=fill_hole_size, mask=mask)
image[bin_image] = val
data_vtk = numpy_to_vtk(image.ravel(order="F"), deep=False)
mc = vtkDiscreteFlyingEdges3D() if use_flying_edges else vtkDiscreteMarchingCubes()
# create image
imdata = vtkImageData()
imdata.SetDimensions(image_shape)
imdata.SetSpacing([1, 1, 1])
imdata.SetOrigin([0, 0, 0])
imdata.GetPointData().SetScalars(data_vtk)
# compute marching cubes on smoothed data
mc.SetNumberOfContours(len(level))
for li, lev in enumerate(level):
mc.SetValue(li, lev)
mc.SetInputData(imdata)
mc.Update()
mc = _vtk_smooth(mc.GetOutput(), smooth)
# get verts and triangles
selector = vtkThreshold()
selector.SetInputData(mc)
dsa = vtkDataSetAttributes()
selector.SetInputArrayToProcess(
0,
0,
0,
imdata.FIELD_ASSOCIATION_POINTS
if use_flying_edges
else imdata.FIELD_ASSOCIATION_CELLS,
dsa.SCALARS,
)
geometry = vtkGeometryFilter()
geometry.SetInputConnection(selector.GetOutputPort())
out = list()
for val in level:
try:
selector.SetLowerThreshold
except AttributeError:
selector.ThresholdBetween(val, val)
else:
# default SetThresholdFunction is between, so:
selector.SetLowerThreshold(val)
selector.SetUpperThreshold(val)
geometry.Update()
polydata = geometry.GetOutput()
rr = vtk_to_numpy(polydata.GetPoints().GetData())
tris = vtk_to_numpy(polydata.GetPolys().GetConnectivityArray()).reshape(-1, 3)
rr = np.ascontiguousarray(rr)
tris = np.ascontiguousarray(tris)
out.append((rr, tris))
return out
def _vtk_smooth(pd, smooth):
_validate_type(smooth, "numeric", smooth)
smooth = float(smooth)
if not 0 <= smooth < 1:
raise ValueError(
"smoothing factor must be between 0 (inclusive) and "
f"1 (exclusive), got {smooth}"
)
if smooth == 0:
return pd
from vtkmodules.vtkFiltersCore import vtkWindowedSincPolyDataFilter
logger.info(f" Smoothing by a factor of {smooth}")
return_ndarray = False
if isinstance(pd, dict):
pd = _surface_to_polydata(pd)
return_ndarray = True
smoother = vtkWindowedSincPolyDataFilter()
smoother.SetInputData(pd)
smoother.SetNumberOfIterations(100)
smoother.BoundarySmoothingOff()
smoother.FeatureEdgeSmoothingOff()
smoother.SetFeatureAngle(120.0)
smoother.SetPassBand(1 - smooth)
smoother.NonManifoldSmoothingOn()
smoother.NormalizeCoordinatesOff()
smoother.Update()
out = smoother.GetOutput()
if return_ndarray:
out = _polydata_to_surface(out, normals=False)
return out
_VOXELS_MAX = 1000 # define constant to avoid runtime issues
@fill_doc
def get_montage_volume_labels(montage, subject, subjects_dir=None, aseg="auto", dist=2):
"""Get regions of interest near channels from a Freesurfer parcellation.
.. note:: This is applicable for channels inside the brain
(intracranial electrodes).
Parameters
----------
%(montage)s
%(subject)s
%(subjects_dir)s
%(aseg)s
dist : float
The distance in mm to use for identifying regions of interest.
Returns
-------
labels : dict
The regions of interest labels within ``dist`` of each channel.
colors : dict
The Freesurfer lookup table colors for the labels.
"""
from ._freesurfer import _get_aseg, read_freesurfer_lut
from .channels import DigMontage
_validate_type(montage, DigMontage, "montage")
_validate_type(dist, (int, float), "dist")
if dist < 0 or dist > 10:
raise ValueError("`dist` must be between 0 and 10")
aseg, aseg_data = _get_aseg(aseg, subject, subjects_dir)
# read freesurfer lookup table
lut, fs_colors = read_freesurfer_lut()
label_lut = {v: k for k, v in lut.items()}
# assert that all the values in the aseg are in the labels
assert all([idx in label_lut for idx in np.unique(aseg_data)])
# get transform to surface RAS for distance units instead of voxels
vox2ras_tkr = aseg.header.get_vox2ras_tkr()
ch_dict = montage.get_positions()
if ch_dict["coord_frame"] != "mri":
raise RuntimeError(
"Coordinate frame not supported, expected "
'"mri", got ' + str(ch_dict["coord_frame"])
)
ch_coords = np.array(list(ch_dict["ch_pos"].values()))
# convert to freesurfer voxel space
ch_coords = apply_trans(
np.linalg.inv(aseg.header.get_vox2ras_tkr()), ch_coords * 1000
)
labels = OrderedDict()
for ch_name, ch_coord in zip(montage.ch_names, ch_coords):
if np.isnan(ch_coord).any():
labels[ch_name] = list()
else:
voxels = _voxel_neighbors(
ch_coord,
aseg_data,
dist=dist,
vox2ras_tkr=vox2ras_tkr,
voxels_max=_VOXELS_MAX,
)
label_idxs = set([aseg_data[tuple(voxel)].astype(int) for voxel in voxels])
labels[ch_name] = [label_lut[idx] for idx in label_idxs]
all_labels = set([label for val in labels.values() for label in val])
colors = {label: tuple(fs_colors[label][:3] / 255) + (1.0,) for label in all_labels}
return labels, colors
def _get_neighbors(loc, image, voxels, thresh, dist_params):
"""Find all the neighbors above a threshold near a voxel."""
neighbors = set()
for axis in range(len(loc)):
for i in (-1, 1):
next_loc = np.array(loc)
next_loc[axis] += i
if thresh is not None:
assert dist_params is None
# must be above thresh, monotonically decreasing from
# the peak and not already found
next_loc = tuple(next_loc)
if (
image[next_loc] > thresh
and image[next_loc] <= image[loc]
and next_loc not in voxels
):
neighbors.add(next_loc)
else:
assert thresh is None
dist, seed_fs_ras, vox2ras_tkr = dist_params
next_loc_fs_ras = apply_trans(vox2ras_tkr, next_loc + 0.5)
if np.linalg.norm(seed_fs_ras - next_loc_fs_ras) <= dist:
neighbors.add(tuple(next_loc))
return neighbors
def _voxel_neighbors(
seed,
image,
thresh=None,
max_peak_dist=1,
use_relative=True,
dist=None,
vox2ras_tkr=None,
voxels_max=100,
):
"""Find voxels above a threshold contiguous with a seed location.
Parameters
----------
seed : tuple | ndarray
The location in image coordinated to seed the algorithm.
image : ndarray
The image to search.
thresh : float
The threshold to use as a cutoff for what qualifies as a neighbor.
Will be relative to the peak if ``use_relative`` or absolute if not.
max_peak_dist : int
The maximum number of voxels to search for the peak near
the seed location.
use_relative : bool
If ``True``, the threshold will be relative to the peak, if
``False``, the threshold will be absolute.
dist : float
The distance in mm to include surrounding voxels.
vox2ras_tkr : ndarray
The voxel to surface RAS affine. Must not be None if ``dist``
if not None.
voxels_max : int
The maximum size of the output ``voxels``.
Returns
-------
voxels : set
The set of locations including the ``seed`` voxel and
surrounding that meet the criteria.
.. note:: Either ``dist`` or ``thesh`` may be used but not both.
When ``thresh`` is used, first a peak nearby the seed
location is found and then voxels are only included if they
decrease monotonically from the peak. When ``dist`` is used,
only voxels within ``dist`` mm of the seed are included.
"""
seed = np.array(seed).round().astype(int)
assert ((dist is not None) + (thresh is not None)) == 1
if thresh is not None:
dist_params = None
check_grid = image[
tuple([slice(idx - max_peak_dist, idx + max_peak_dist + 1) for idx in seed])
]
peak = (
np.array(np.unravel_index(np.argmax(check_grid), check_grid.shape))
- max_peak_dist
+ seed
)
voxels = neighbors = set([tuple(peak)])
if use_relative:
thresh *= image[tuple(peak)]
else:
assert vox2ras_tkr is not None
seed_fs_ras = apply_trans(vox2ras_tkr, seed + 0.5) # center of voxel
dist_params = (dist, seed_fs_ras, vox2ras_tkr)
voxels = neighbors = set([tuple(seed)])
while neighbors and len(voxels) <= voxels_max:
next_neighbors = set()
for next_loc in neighbors:
voxel_neighbors = _get_neighbors(
next_loc, image, voxels, thresh, dist_params
)
# prevent looping back to already visited voxels
voxel_neighbors = voxel_neighbors.difference(voxels)
# add voxels not already visited to search next
next_neighbors = next_neighbors.union(voxel_neighbors)
# add new voxels that match the criteria to the overall set
voxels = voxels.union(voxel_neighbors)
if len(voxels) > voxels_max:
break
neighbors = next_neighbors # start again checking all new neighbors
return voxels