[074d3d]: / mne / source_space / tests / test_source_space.py

Download this file

1096 lines (972 with data), 40.2 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
from shutil import copytree
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_equal,
assert_array_less,
assert_equal,
)
import mne
from mne import (
SourceEstimate,
add_source_space_distances,
compute_source_morph,
get_volume_labels_from_src,
make_sphere_model,
morph_source_spaces,
pick_types,
read_bem_solution,
read_bem_surfaces,
read_freesurfer_lut,
read_source_spaces,
read_trans,
setup_source_space,
setup_volume_source_space,
write_source_spaces,
)
from mne._fiff.constants import FIFF
from mne._fiff.pick import _picks_to_idx
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.source_estimate import _get_src_type
from mne.source_space import (
compute_distance_to_sensors,
get_decimated_surfaces,
)
from mne.source_space._source_space import _compare_source_spaces
from mne.surface import _accumulate_normals, _triangle_neighbors
from mne.utils import _record_warnings, requires_mne, run_subprocess
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname_mri = data_path / "subjects" / "sample" / "mri" / "T1.mgz"
aseg_fname = data_path / "subjects" / "sample" / "mri" / "aseg.mgz"
fname = subjects_dir / "sample" / "bem" / "sample-oct-6-src.fif"
fname_vol = subjects_dir / "sample" / "bem" / "sample-volume-7mm-src.fif"
fname_bem = data_path / "subjects" / "sample" / "bem" / "sample-1280-bem.fif"
fname_bem_sol = data_path / "subjects" / "sample" / "bem" / "sample-1280-bem-sol.fif"
fname_bem_3 = (
data_path / "subjects" / "sample" / "bem" / "sample-1280-1280-1280-bem.fif"
)
fname_bem_3_sol = (
data_path / "subjects" / "sample" / "bem" / "sample-1280-1280-1280-bem-sol.fif"
)
fname_fs = subjects_dir / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
fname_morph = subjects_dir / "sample" / "bem" / "sample-fsaverage-ico-5-src.fif"
fname_src = data_path / "subjects" / "sample" / "bem" / "sample-oct-4-src.fif"
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-fwd.fif"
trans_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
fname_small = base_dir / "small-src.fif.gz"
fname_ave = base_dir / "test-ave.fif"
rng = np.random.RandomState(0)
@testing.requires_testing_data
@pytest.mark.parametrize(
"picks, limits",
[
("meg", (0.02, 0.250)),
(None, (0.01, 0.250)), # should be same as EEG
("eeg", (0.01, 0.250)),
],
)
def test_compute_distance_to_sensors(picks, limits):
"""Test computation of distances between vertices and sensors."""
src = read_source_spaces(fname_src)
fwd = mne.read_forward_solution(fname_fwd)
info = fwd["info"]
trans = read_trans(trans_fname)
# trans = fwd['info']['mri_head_t']
if isinstance(picks, str):
kwargs = dict()
kwargs[picks] = True
if picks == "eeg":
info["dev_head_t"] = None # should not break anything
use_picks = pick_types(info, **kwargs, exclude=())
else:
use_picks = picks
n_picks = len(_picks_to_idx(info, use_picks, "data", exclude=()))
# Make sure same vertices are used in src and fwd
src[0]["inuse"] = fwd["src"][0]["inuse"]
src[1]["inuse"] = fwd["src"][1]["inuse"]
src[0]["nuse"] = fwd["src"][0]["nuse"]
src[1]["nuse"] = fwd["src"][1]["nuse"]
n_verts = src[0]["nuse"] + src[1]["nuse"]
# minimum distances between vertices and sensors
depths = compute_distance_to_sensors(src, info=info, picks=use_picks, trans=trans)
assert depths.shape == (n_verts, n_picks)
assert limits[0] * 5 > depths.min() # meaningful choice of limits
assert_array_less(limits[0], depths)
assert_array_less(depths, limits[1])
# If source space from Forward Solution and trans=None (i.e. identity) then
# depths2 should be the same as depth.
depths2 = compute_distance_to_sensors(
src=fwd["src"], info=info, picks=use_picks, trans=None
)
assert_allclose(depths, depths2, rtol=1e-5)
if picks != "eeg":
# this should break things
info["dev_head_t"] = None
with pytest.raises(ValueError, match="Transform between meg<->head"):
compute_distance_to_sensors(src, info, use_picks, trans)
def _read_small_src(remove=True):
src = read_source_spaces(fname_small)
if remove:
for s in src:
s["nearest"] = None
s["nearest_dist"] = None
s["pinfo"] = None
return src
def test_add_patch_info(monkeypatch):
"""Test adding patch info to source space."""
# let's setup a small source space
src = _read_small_src(remove=False)
src_new = _read_small_src()
# test that no patch info is added for small dist_limit
add_source_space_distances(src_new, dist_limit=0.00001)
assert all(s["nearest"] is None for s in src_new)
assert all(s["nearest_dist"] is None for s in src_new)
assert all(s["pinfo"] is None for s in src_new)
# now let's use one that works (and test our warning-throwing)
with monkeypatch.context() as m:
m.setattr(mne.source_space._source_space, "_DIST_WARN_LIMIT", 1)
with pytest.warns(RuntimeWarning, match="Computing distances for 258"):
add_source_space_distances(src_new)
_compare_source_spaces(src, src_new, "approx")
src_nodist = src.copy()
for s in src_nodist:
for key in ("dist", "dist_limit"):
s[key] = None
add_source_space_distances(src_new, dist_limit=0)
_compare_source_spaces(src, src_new, "approx")
# We could test "src_py" here, but we can rely on our existing tests to
# make sure the pinfo/patch_inds/nearest match
@testing.requires_testing_data
@pytest.mark.parametrize("src_kind", ["fwd", "src"])
def test_surface_source_space_doc(src_kind):
"""Test surface source space docstring."""
# make sure we're correct about this stuff for both kinds!
if src_kind == "fwd":
src = mne.read_source_spaces(fname_fwd)
else:
assert src_kind == "src"
src = mne.read_source_spaces(fname_src)
for s in src:
if src_kind == "src": # original
assert len(s["pinfo"]) == s["nuse"]
assert_array_equal(s["patch_inds"], np.arange(s["nuse"]))
else: # pts removed
assert len(s["pinfo"]) > s["nuse"]
all_pinfo = np.concatenate(s["pinfo"])
assert_array_equal(np.sort(all_pinfo), np.arange(s["np"]))
assert len(s["patch_inds"]) == s["nuse"]
assert len(s["vertno"]) == s["nuse"]
assert len(s["patch_inds"]) == s["nuse"]
for idx in (0, 42, 173):
this_dense_vertex = s["vertno"][idx]
# 'pinfo'
this_vertex_represents = s["pinfo"][s["patch_inds"][idx]]
assert len(this_vertex_represents) > 1
# 'nearest'
for other in this_vertex_represents:
assert s["nearest"][other] == this_dense_vertex
@testing.requires_testing_data
def test_add_source_space_distances_limited(tmp_path):
"""Test adding distances to source space with a dist_limit."""
src = read_source_spaces(fname)
src_new = read_source_spaces(fname)
del src_new[0]["dist"]
del src_new[1]["dist"]
n_do = 200 # limit this for speed
src_new[0]["vertno"] = src_new[0]["vertno"][:n_do].copy()
src_new[1]["vertno"] = src_new[1]["vertno"][:n_do].copy()
out_name = tmp_path / "temp-src.fif"
add_source_space_distances(src_new, dist_limit=0.007)
write_source_spaces(out_name, src_new)
src_new = read_source_spaces(out_name)
for so, sn in zip(src, src_new):
assert_array_equal(so["dist_limit"], np.array([-0.007], np.float32))
assert_array_equal(sn["dist_limit"], np.array([0.007], np.float32))
do = so["dist"]
dn = sn["dist"]
# clean out distances > 0.007 in C code
do.data[do.data > 0.007] = 0
do.eliminate_zeros()
# make sure we have some comparable distances
assert np.sum(do.data < 0.007) > 400
# do comparison over the region computed
d = (do - dn)[: sn["vertno"][n_do - 1]][:, : sn["vertno"][n_do - 1]]
assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-6)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_add_source_space_distances(tmp_path):
"""Test adding distances to source space."""
src = read_source_spaces(fname)
src_new = read_source_spaces(fname)
del src_new[0]["dist"]
del src_new[1]["dist"]
n_do = 19 # limit this for speed
src_new[0]["vertno"] = src_new[0]["vertno"][:n_do].copy()
src_new[1]["vertno"] = src_new[1]["vertno"][:n_do].copy()
out_name = tmp_path / "temp-src.fif"
n_jobs = 2
assert n_do % n_jobs != 0
with pytest.raises(ValueError, match="non-negative"):
add_source_space_distances(src_new, dist_limit=-1)
add_source_space_distances(src_new, n_jobs=n_jobs)
write_source_spaces(out_name, src_new)
src_new = read_source_spaces(out_name)
# iterate over both hemispheres
for so, sn in zip(src, src_new):
v = so["vertno"][:n_do]
assert_array_equal(so["dist_limit"], np.array([-0.007], np.float32))
assert_array_equal(sn["dist_limit"], np.array([np.inf], np.float32))
do = so["dist"]
dn = sn["dist"]
# clean out distances > 0.007 in C code (some residual), and Python
ds = list()
for d in [do, dn]:
d.data[d.data > 0.007] = 0
d = d[v][:, v]
d.eliminate_zeros()
ds.append(d)
# make sure we actually calculated some comparable distances
assert np.sum(ds[0].data < 0.007) > 10
# do comparison
d = ds[0] - ds[1]
assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-9)
@testing.requires_testing_data
@requires_mne
def test_discrete_source_space(tmp_path):
"""Test setting up (and reading/writing) discrete source spaces."""
pytest.importorskip("nibabel")
src = read_source_spaces(fname)
v = src[0]["vertno"]
# let's make a discrete version with the C code, and with ours
temp_name = tmp_path / "temp-src.fif"
# save
temp_pos = tmp_path / "temp-pos.txt"
np.savetxt(str(temp_pos), np.c_[src[0]["rr"][v], src[0]["nn"][v]])
# let's try the spherical one (no bem or surf supplied)
run_subprocess(
["mne_volume_source_space", "--meters", "--pos", temp_pos, "--src", temp_name]
)
src_c = read_source_spaces(temp_name)
pos_dict = dict(rr=src[0]["rr"][v], nn=src[0]["nn"][v])
src_new = setup_volume_source_space(pos=pos_dict)
assert src_new.kind == "discrete"
_compare_source_spaces(src_c, src_new, mode="approx")
assert_allclose(src[0]["rr"][v], src_new[0]["rr"], rtol=1e-3, atol=1e-6)
assert_allclose(src[0]["nn"][v], src_new[0]["nn"], rtol=1e-3, atol=1e-6)
# now do writing
write_source_spaces(temp_name, src_c, overwrite=True)
src_c2 = read_source_spaces(temp_name)
_compare_source_spaces(src_c, src_c2)
# now do MRI
with pytest.raises(ValueError, match="Cannot create interpolation"):
setup_volume_source_space("sample", pos=pos_dict, mri=fname_mri)
assert repr(src_new).split("~")[0] == repr(src_c).split("~")[0]
assert " KiB" in repr(src_new)
assert src_new.kind == "discrete"
assert _get_src_type(src_new, None) == "discrete"
with pytest.raises(RuntimeError, match="finite"):
setup_volume_source_space(pos=dict(rr=[[0, 0, float("inf")]], nn=[[0, 1, 0]]))
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_space(tmp_path):
"""Test setting up volume source spaces."""
pytest.importorskip("nibabel")
src = read_source_spaces(fname_vol)
temp_name = tmp_path / "temp-src.fif"
surf = read_bem_surfaces(fname_bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN)
surf["rr"] *= 1e3 # convert to mm
bem_sol = read_bem_solution(fname_bem_3_sol)
bem = read_bem_solution(fname_bem_sol)
# The one in the testing dataset (uses bem as bounds)
for this_bem, this_surf in zip(
(bem, fname_bem, fname_bem_3, bem_sol, fname_bem_3_sol, None),
(None, None, None, None, None, surf),
):
src_new = setup_volume_source_space(
"sample",
pos=7.0,
bem=this_bem,
surface=this_surf,
subjects_dir=subjects_dir,
)
write_source_spaces(temp_name, src_new, overwrite=True)
src[0]["subject_his_id"] = "sample" # XXX: to make comparison pass
_compare_source_spaces(src, src_new, mode="approx")
del src_new
src_new = read_source_spaces(temp_name)
_compare_source_spaces(src, src_new, mode="approx")
with pytest.raises(OSError, match="surface file.*not exist"):
setup_volume_source_space(
"sample", surface="foo", mri=fname_mri, subjects_dir=subjects_dir
)
bem["surfs"][-1]["coord_frame"] = FIFF.FIFFV_COORD_HEAD
with pytest.raises(ValueError, match="BEM is not in MRI coord.* got head"):
setup_volume_source_space(
"sample", bem=bem, mri=fname_mri, subjects_dir=subjects_dir
)
bem["surfs"] = bem["surfs"][:-1] # no inner skull surf
with pytest.raises(ValueError, match="Could not get inner skul.*from BEM"):
setup_volume_source_space(
"sample", bem=bem, mri=fname_mri, subjects_dir=subjects_dir
)
del bem
assert repr(src) == repr(src_new)
assert " MiB" in repr(src)
assert src.kind == "volume"
# Spheres
sphere = make_sphere_model(
r0=(0.0, 0.0, 0.0),
head_radius=0.1,
relative_radii=(0.9, 1.0),
sigmas=(0.33, 1.0),
)
src = setup_volume_source_space(pos=10, sphere=(0.0, 0.0, 0.0, 0.09))
src_new = setup_volume_source_space(pos=10, sphere=sphere)
_compare_source_spaces(src, src_new, mode="exact")
with pytest.raises(ValueError, match="sphere, if str"):
setup_volume_source_space(sphere="foo")
# Need a radius
sphere = make_sphere_model(head_radius=None)
with pytest.raises(ValueError, match="be spherical with multiple layers"):
setup_volume_source_space(sphere=sphere)
@testing.requires_testing_data
@requires_mne
def test_other_volume_source_spaces(tmp_path):
"""Test setting up other volume source spaces."""
# these are split off because they require the MNE tools, and
# Travis doesn't seem to like them
pytest.importorskip("nibabel")
# let's try the spherical one (no bem or surf supplied)
temp_name = tmp_path / "temp-src.fif"
run_subprocess(
[
"mne_volume_source_space",
"--grid",
"7.0",
"--src",
temp_name,
"--mri",
fname_mri,
]
)
src = read_source_spaces(temp_name)
sphere = (0.0, 0.0, 0.0, 0.09)
src_new = setup_volume_source_space(
None, pos=7.0, mri=fname_mri, subjects_dir=subjects_dir, sphere=sphere
)
# we use a more accurate elimination criteria, so let's fix the MNE-C
# source space
assert len(src_new[0]["vertno"]) == 7497
assert len(src) == 1
assert len(src_new) == 1
good_mask = np.isin(src[0]["vertno"], src_new[0]["vertno"])
src[0]["inuse"][src[0]["vertno"][~good_mask]] = 0
assert src[0]["inuse"].sum() == 7497
src[0]["vertno"] = src[0]["vertno"][good_mask]
assert len(src[0]["vertno"]) == 7497
src[0]["nuse"] = len(src[0]["vertno"])
assert src[0]["nuse"] == 7497
_compare_source_spaces(src_new, src, mode="approx")
assert "volume, shape" in repr(src)
del src
del src_new
pytest.raises(
ValueError,
setup_volume_source_space,
"sample",
pos=7.0,
sphere=[1.0, 1.0],
mri=fname_mri, # bad sphere
subjects_dir=subjects_dir,
)
# now without MRI argument, it should give an error when we try
# to read it
run_subprocess(["mne_volume_source_space", "--grid", "7.0", "--src", temp_name])
pytest.raises(ValueError, read_source_spaces, temp_name)
@pytest.mark.timeout(60) # can be slow on OSX Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_triangle_neighbors():
"""Test efficient vertex neighboring triangles for surfaces."""
this = read_source_spaces(fname)[0]
this["neighbor_tri"] = [list() for _ in range(this["np"])]
for p in range(this["ntri"]):
verts = this["tris"][p]
this["neighbor_tri"][verts[0]].append(p)
this["neighbor_tri"][verts[1]].append(p)
this["neighbor_tri"][verts[2]].append(p)
this["neighbor_tri"] = [np.array(nb, int) for nb in this["neighbor_tri"]]
neighbor_tri = _triangle_neighbors(this["tris"], this["np"])
assert all(
np.array_equal(nt1, nt2) for nt1, nt2 in zip(neighbor_tri, this["neighbor_tri"])
)
def test_accumulate_normals():
"""Test efficient normal accumulation for surfaces."""
# set up comparison
n_pts = int(1.6e5) # approx number in sample source space
n_tris = int(3.2e5)
# use all positive to make a worst-case for cumulative summation
# (real "nn" vectors will have both positive and negative values)
tris = (rng.rand(n_tris, 1) * (n_pts - 2)).astype(int)
tris = np.c_[tris, tris + 1, tris + 2]
tri_nn = rng.rand(n_tris, 3)
this = dict(tris=tris, np=n_pts, ntri=n_tris, tri_nn=tri_nn)
# cut-and-paste from original code in surface.py:
# Find neighboring triangles and accumulate vertex normals
this["nn"] = np.zeros((this["np"], 3))
for p in range(this["ntri"]):
# vertex normals
verts = this["tris"][p]
this["nn"][verts, :] += this["tri_nn"][p, :]
nn = _accumulate_normals(this["tris"], this["tri_nn"], this["np"])
# the moment of truth (or reckoning)
assert_allclose(nn, this["nn"], rtol=1e-7, atol=1e-7)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_setup_source_space(tmp_path):
"""Test setting up ico, oct, and all source spaces."""
pytest.importorskip("nibabel")
fname_ico = data_path / "subjects" / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
# first lets test some input params
for spacing in ("oct", "oct6e"):
with pytest.raises(ValueError, match="subdivision must be an integer"):
setup_source_space(
"sample", spacing=spacing, add_dist=False, subjects_dir=subjects_dir
)
for spacing in ("oct0", "oct-4"):
with pytest.raises(ValueError, match="oct subdivision must be >= 1"):
setup_source_space(
"sample", spacing=spacing, add_dist=False, subjects_dir=subjects_dir
)
with pytest.raises(ValueError, match="ico subdivision must be >= 0"):
setup_source_space(
"sample", spacing="ico-4", add_dist=False, subjects_dir=subjects_dir
)
with pytest.raises(ValueError, match="must be a string with values"):
setup_source_space(
"sample", spacing="7emm", add_dist=False, subjects_dir=subjects_dir
)
with pytest.raises(ValueError, match="must be a string with values"):
setup_source_space(
"sample", spacing="ally", add_dist=False, subjects_dir=subjects_dir
)
# ico 5 (fsaverage) - write to temp file
src = read_source_spaces(fname_ico)
with _record_warnings(): # sklearn equiv neighbors
src_new = setup_source_space(
"fsaverage", spacing="ico5", subjects_dir=subjects_dir, add_dist=False
)
_compare_source_spaces(src, src_new, mode="approx")
assert repr(src).split("~")[0] == repr(src_new).split("~")[0]
assert repr(src).count("surface (") == 2
assert_array_equal(src[0]["vertno"], np.arange(10242))
assert_array_equal(src[1]["vertno"], np.arange(10242))
# oct-6 (sample) - auto filename + IO
src = read_source_spaces(fname)
temp_name = tmp_path / "temp-src.fif"
with _record_warnings(): # sklearn equiv neighbors
src_new = setup_source_space(
"sample", spacing="oct6", subjects_dir=subjects_dir, add_dist=False
)
write_source_spaces(temp_name, src_new, overwrite=True)
assert_equal(src_new[0]["nuse"], 4098)
_compare_source_spaces(src, src_new, mode="approx", nearest=False)
src_new = read_source_spaces(temp_name)
_compare_source_spaces(src, src_new, mode="approx", nearest=False)
# all source points - no file writing
src_new = setup_source_space(
"sample", spacing="all", subjects_dir=subjects_dir, add_dist=False
)
assert src_new[0]["nuse"] == len(src_new[0]["rr"])
assert src_new[1]["nuse"] == len(src_new[1]["rr"])
# dense source space to hit surf['inuse'] lines of _create_surf_spacing
pytest.raises(
RuntimeError,
setup_source_space,
"sample",
spacing="ico6",
subjects_dir=subjects_dir,
add_dist=False,
)
@testing.requires_testing_data
@requires_mne
@pytest.mark.slowtest
@pytest.mark.timeout(60)
@pytest.mark.parametrize("spacing", [2, 7])
def test_setup_source_space_spacing(tmp_path, spacing, monkeypatch):
"""Test setting up surface source spaces using a given spacing."""
pytest.importorskip("nibabel")
copytree(subjects_dir / "sample", tmp_path / "sample")
args = [] if spacing == 7 else ["--spacing", str(spacing)]
monkeypatch.setenv("SUBJECTS_DIR", str(tmp_path))
monkeypatch.setenv("SUBJECT", "sample")
run_subprocess(["mne_setup_source_space"] + args)
src = read_source_spaces(tmp_path / "sample" / "bem" / f"sample-{spacing}-src.fif")
# No need to pass subjects_dir here because we've setenv'ed it
src_new = setup_source_space("sample", spacing=spacing, add_dist=False)
_compare_source_spaces(src, src_new, mode="approx", nearest=True)
# Degenerate conditions
with pytest.raises(TypeError, match="spacing must be.*got.*float.*"):
setup_source_space("sample", 7.0)
with pytest.raises(ValueError, match="spacing must be >= 2, got 1"):
setup_source_space("sample", 1)
@testing.requires_testing_data
def test_read_source_spaces():
"""Test reading of source space meshes."""
src = read_source_spaces(fname, patch_stats=True)
# 3D source space
lh_points = src[0]["rr"]
lh_faces = src[0]["tris"]
lh_use_faces = src[0]["use_tris"]
rh_points = src[1]["rr"]
rh_faces = src[1]["tris"]
rh_use_faces = src[1]["use_tris"]
assert lh_faces.min() == 0
assert lh_faces.max() == lh_points.shape[0] - 1
assert lh_use_faces.min() >= 0
assert lh_use_faces.max() <= lh_points.shape[0] - 1
assert rh_faces.min() == 0
assert rh_faces.max() == rh_points.shape[0] - 1
assert rh_use_faces.min() >= 0
assert rh_use_faces.max() <= rh_points.shape[0] - 1
@pytest.mark.slowtest
@testing.requires_testing_data
def test_write_source_space(tmp_path):
"""Test reading and writing of source spaces."""
src0 = read_source_spaces(fname, patch_stats=False)
temp_fname = tmp_path / "tmp-src.fif"
write_source_spaces(temp_fname, src0)
src1 = read_source_spaces(temp_fname, patch_stats=False)
_compare_source_spaces(src0, src1)
# test warnings on bad filenames
src_badname = tmp_path / "test-bad-name.fif.gz"
with pytest.warns(RuntimeWarning, match="-src.fif"):
write_source_spaces(src_badname, src0)
with pytest.warns(RuntimeWarning, match="-src.fif"):
read_source_spaces(src_badname)
@testing.requires_testing_data
@pytest.mark.parametrize("pass_ids", (True, False))
def test_source_space_from_label(tmp_path, pass_ids):
"""Test generating a source space from volume label."""
pytest.importorskip("nibabel")
aseg_short = "aseg.mgz"
atlas_ids, _ = read_freesurfer_lut()
volume_label = "Left-Cerebellum-Cortex"
# Test pos as dict
pos = dict()
with pytest.raises(ValueError, match="mri must be None if pos is a dict"):
setup_volume_source_space(
"sample",
pos=pos,
volume_label=volume_label,
mri=aseg_short,
subjects_dir=subjects_dir,
)
# Test T1.mgz provided
with pytest.raises(RuntimeError, match=r"Must use a \*aseg.mgz file"):
setup_volume_source_space(
"sample", mri="T1.mgz", volume_label=volume_label, subjects_dir=subjects_dir
)
# Test invalid volume label
mri = aseg_short
with pytest.raises(ValueError, match="'Left-Cerebral' not found.*Did you"):
setup_volume_source_space(
"sample", volume_label="Left-Cerebral", mri=mri, subjects_dir=subjects_dir
)
# These should be equivalent
if pass_ids:
use_volume_label = {volume_label: atlas_ids[volume_label]}
else:
use_volume_label = volume_label
# ensure it works even when not provided (detect that it should be aseg)
src = setup_volume_source_space(
"sample",
volume_label=use_volume_label,
add_interpolator=False,
subjects_dir=subjects_dir,
)
assert_equal(volume_label, src[0]["seg_name"])
assert src[0]["nuse"] == 404 # for our given pos and label
# test reading and writing
out_name = tmp_path / "temp-src.fif"
write_source_spaces(out_name, src)
src_from_file = read_source_spaces(out_name)
_compare_source_spaces(src, src_from_file, mode="approx")
@pytest.mark.slowtest
@testing.requires_testing_data
def test_source_space_exclusive_complete(src_volume_labels):
"""Test that we produce exclusive and complete labels."""
# these two are neighbors and are quite large, so let's use them to
# ensure no overlaps
pytest.importorskip("nibabel")
src, volume_labels, _ = src_volume_labels
ii = volume_labels.index("Left-Cerebral-White-Matter")
jj = volume_labels.index("Left-Cerebral-Cortex")
assert src[ii]["nuse"] == 755 # 2034 with pos=5, was 2832
assert src[jj]["nuse"] == 616 # 1520 with pos=5, was 2623
src_full = read_source_spaces(fname_vol)
# This implicitly checks for overlap because np.sort would preserve
# duplicates, and it checks for completeness because the sets should match
assert_array_equal(
src_full[0]["vertno"], np.sort(np.concatenate([s["vertno"] for s in src]))
)
for si, s in enumerate(src):
assert_allclose(src_full[0]["rr"], s["rr"], atol=1e-6)
# also check single_volume=True -- should be the same result
with (
_record_warnings(),
pytest.warns(RuntimeWarning, match="Found no usable.*Left-vessel.*"),
):
src_single = setup_volume_source_space(
src[0]["subject_his_id"],
7.0,
"aseg.mgz",
bem=fname_bem,
volume_label=volume_labels,
single_volume=True,
add_interpolator=False,
subjects_dir=subjects_dir,
)
assert len(src_single) == 1
assert "Unknown+Left-Cerebral-White-Matter+Left-" in repr(src_single)
assert_array_equal(src_full[0]["vertno"], src_single[0]["vertno"])
@pytest.mark.timeout(60) # ~24 s on Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_read_volume_from_src():
"""Test reading volumes from a mixed source space."""
pytest.importorskip("nibabel")
labels_vol = ["Left-Amygdala", "Brain-Stem", "Right-Amygdala"]
src = read_source_spaces(fname)
# Setup a volume source space
vol_src = setup_volume_source_space(
"sample",
mri=aseg_fname,
pos=5.0,
bem=fname_bem,
volume_label=labels_vol,
subjects_dir=subjects_dir,
)
# Generate the mixed source space, testing some list methods
assert src.kind == "surface"
assert vol_src.kind == "volume"
src += vol_src
assert src.kind == "mixed"
assert vol_src.kind == "volume"
assert src[:2].kind == "surface"
assert src[2:].kind == "volume"
assert src[:].kind == "mixed"
with pytest.raises(RuntimeError, match="Invalid source space"):
src[::2]
volume_src = get_volume_labels_from_src(src, "sample", subjects_dir)
volume_label = volume_src[0].name
volume_label = "Left-" + volume_label.replace("-lh", "")
# Test
assert_equal(volume_label, src[2]["seg_name"])
assert_equal(src[2]["type"], "vol")
@testing.requires_testing_data
def test_combine_source_spaces(tmp_path):
"""Test combining source spaces."""
nib = pytest.importorskip("nibabel")
rng = np.random.RandomState(2)
volume_labels = ["Brain-Stem", "Right-Hippocampus"] # two fairly large
# create a sparse surface source space to ensure all get mapped
# when mri_resolution=False
srf = setup_source_space(
"sample", "oct3", add_dist=False, subjects_dir=subjects_dir
)
# setup 2 volume source spaces
vol = setup_volume_source_space(
"sample",
subjects_dir=subjects_dir,
volume_label=volume_labels[0],
mri=aseg_fname,
add_interpolator=False,
)
# setup a discrete source space
rr = rng.randint(0, 11, (20, 3)) * 5e-3
nn = np.zeros(rr.shape)
nn[:, -1] = 1
pos = {"rr": rr, "nn": nn}
disc = setup_volume_source_space(
"sample", subjects_dir=subjects_dir, pos=pos, verbose="error"
)
# combine source spaces
assert srf.kind == "surface"
assert vol.kind == "volume"
assert disc.kind == "discrete"
src = srf + vol + disc
assert src.kind == "mixed"
assert srf.kind == "surface"
assert vol.kind == "volume"
assert disc.kind == "discrete"
# test addition of source spaces
assert len(src) == 4
# test reading and writing
src_out_name = tmp_path / "temp-src.fif"
src.save(src_out_name)
src_from_file = read_source_spaces(src_out_name)
_compare_source_spaces(src, src_from_file, mode="approx")
assert repr(src).split("~")[0] == repr(src_from_file).split("~")[0]
assert_equal(src.kind, "mixed")
# test that all source spaces are in MRI coordinates
coord_frames = np.array([s["coord_frame"] for s in src])
assert (coord_frames == FIFF.FIFFV_COORD_MRI).all()
# test errors for export_volume
image_fname = tmp_path / "temp-image.mgz"
# source spaces with no volume
with pytest.raises(ValueError, match="at least one volume"):
srf.export_volume(image_fname, verbose="error")
# unrecognized source type
disc2 = disc.copy()
disc2[0]["type"] = "kitty"
with pytest.raises(ValueError, match="Invalid value"):
src + disc2
del disc2
# unrecognized file type
bad_image_fname = tmp_path / "temp-image.png"
# vertices outside vol space warning
pytest.raises(ValueError, src.export_volume, bad_image_fname, verbose="error")
# mixed coordinate frames
disc3 = disc.copy()
disc3[0]["coord_frame"] = 10
src_mixed_coord = src + disc3
with pytest.raises(ValueError, match="must be in head coordinates"):
src_mixed_coord.export_volume(image_fname, verbose="error")
# now actually write it
fname_img = tmp_path / "img.nii"
for mri_resolution in (False, "sparse", True):
for src, up in ((vol, 705), (srf + vol, 27272), (disc + vol, 705)):
src.export_volume(
fname_img, use_lut=False, mri_resolution=mri_resolution, overwrite=True
)
img_data = _get_img_fdata(nib.load(str(fname_img)))
n_src = img_data.astype(bool).sum()
n_want = sum(s["nuse"] for s in src)
if mri_resolution is True:
n_want += up
assert n_src == n_want, src
# gh-8004
temp_aseg = tmp_path / "aseg.mgz"
aseg_img = nib.load(aseg_fname)
aseg_affine = aseg_img.affine
aseg_affine[:3, :3] *= 0.7
new_aseg = nib.MGHImage(aseg_img.dataobj, aseg_affine)
nib.save(new_aseg, str(temp_aseg))
lh_cereb = mne.setup_volume_source_space(
"sample",
mri=temp_aseg,
volume_label="Left-Cerebellum-Cortex",
add_interpolator=False,
subjects_dir=subjects_dir,
)
src = srf + lh_cereb
with pytest.warns(RuntimeWarning, match="2 surf vertices lay outside"):
src.export_volume(image_fname, mri_resolution="sparse", overwrite=True)
# gh-12495
image_fname = tmp_path / "temp-image.nii"
lh_cereb = mne.setup_volume_source_space(
"sample",
mri=aseg_fname,
volume_label="Left-Cerebellum-Cortex",
add_interpolator=False,
subjects_dir=subjects_dir,
)
lh_cereb.export_volume(image_fname, mri_resolution=True)
aseg = nib.load(str(aseg_fname))
out = nib.load(str(image_fname))
assert_allclose(out.affine, aseg.affine)
src_data = _get_img_fdata(out).astype(bool)
aseg_data = _get_img_fdata(aseg) == 8
n_src = src_data.sum()
n_aseg = aseg_data.sum()
assert n_aseg == n_src
n_overlap = (src_data & aseg_data).sum()
assert n_src == n_overlap
@testing.requires_testing_data
def test_morph_source_spaces():
"""Test morphing of source spaces."""
pytest.importorskip("nibabel")
src = read_source_spaces(fname_fs)
src_morph = read_source_spaces(fname_morph)
src_morph_py = morph_source_spaces(src, "sample", subjects_dir=subjects_dir)
_compare_source_spaces(src_morph, src_morph_py, mode="approx")
@pytest.mark.timeout(60) # can be slow on OSX Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_morphed_source_space_return():
"""Test returning a morphed source space to the original subject."""
# let's create some random data on fsaverage
pytest.importorskip("nibabel")
data = rng.randn(20484, 1)
tmin, tstep = 0, 1.0
src_fs = read_source_spaces(fname_fs)
stc_fs = SourceEstimate(
data, [s["vertno"] for s in src_fs], tmin, tstep, "fsaverage"
)
n_verts_fs = sum(len(s["vertno"]) for s in src_fs)
# Create our morph source space
src_morph = morph_source_spaces(src_fs, "sample", subjects_dir=subjects_dir)
n_verts_sample = sum(len(s["vertno"]) for s in src_morph)
assert n_verts_fs == n_verts_sample
# Morph the data over using standard methods
stc_morph = compute_source_morph(
src_fs,
"fsaverage",
"sample",
spacing=[s["vertno"] for s in src_morph],
smooth=1,
subjects_dir=subjects_dir,
warn=False,
).apply(stc_fs)
assert stc_morph.data.shape[0] == n_verts_sample
# We can now pretend like this was real data we got e.g. from an inverse.
# To be complete, let's remove some vertices
keeps = [
np.sort(rng.permutation(np.arange(len(v)))[: len(v) - 10])
for v in stc_morph.vertices
]
stc_morph = SourceEstimate(
np.concatenate([stc_morph.lh_data[keeps[0]], stc_morph.rh_data[keeps[1]]]),
[v[k] for v, k in zip(stc_morph.vertices, keeps)],
tmin,
tstep,
"sample",
)
# Return it to the original subject
stc_morph_return = stc_morph.to_original_src(src_fs, subjects_dir=subjects_dir)
# This should fail (has too many verts in SourceMorph)
with pytest.warns(RuntimeWarning, match="vertices not included"):
morph = compute_source_morph(
src_morph,
subject_from="sample",
spacing=stc_morph_return.vertices,
smooth=1,
subjects_dir=subjects_dir,
)
with pytest.raises(ValueError, match="vertices do not match"):
morph.apply(stc_morph)
# Compare to the original data
with pytest.warns(RuntimeWarning, match="vertices not included"):
stc_morph_morph = compute_source_morph(
src=stc_morph,
subject_from="sample",
spacing=stc_morph_return.vertices,
smooth=1,
subjects_dir=subjects_dir,
).apply(stc_morph)
assert_equal(stc_morph_return.subject, stc_morph_morph.subject)
for ii in range(2):
assert_array_equal(stc_morph_return.vertices[ii], stc_morph_morph.vertices[ii])
# These will not match perfectly because morphing pushes data around
corr = np.corrcoef(stc_morph_return.data[:, 0], stc_morph_morph.data[:, 0])[0, 1]
assert corr > 0.99, corr
# Explicitly test having two vertices map to the same target vertex. We
# simulate this by having two vertices be at the same position.
src_fs2 = src_fs.copy()
vert1, vert2 = src_fs2[0]["vertno"][:2]
src_fs2[0]["rr"][vert1] = src_fs2[0]["rr"][vert2]
stc_morph_return = stc_morph.to_original_src(src_fs2, subjects_dir=subjects_dir)
# test to_original_src method result equality
for ii in range(2):
assert_array_equal(stc_morph_return.vertices[ii], stc_morph_morph.vertices[ii])
# These will not match perfectly because morphing pushes data around
corr = np.corrcoef(stc_morph_return.data[:, 0], stc_morph_morph.data[:, 0])[0, 1]
assert corr > 0.99, corr
# Degenerate cases
stc_morph.subject = None # no .subject provided
pytest.raises(
ValueError,
stc_morph.to_original_src,
src_fs,
subject_orig="fsaverage",
subjects_dir=subjects_dir,
)
stc_morph.subject = "sample"
del src_fs[0]["subject_his_id"] # no name in src_fsaverage
pytest.raises(
ValueError, stc_morph.to_original_src, src_fs, subjects_dir=subjects_dir
)
src_fs[0]["subject_his_id"] = "fsaverage" # name mismatch
pytest.raises(
ValueError,
stc_morph.to_original_src,
src_fs,
subject_orig="foo",
subjects_dir=subjects_dir,
)
src_fs[0]["subject_his_id"] = "sample"
src = read_source_spaces(fname) # wrong source space
pytest.raises(
RuntimeError, stc_morph.to_original_src, src, subjects_dir=subjects_dir
)
@testing.requires_testing_data
@pytest.mark.parametrize(
"src, n, nv",
[
(fname_fs, 2, 10242),
(fname_src, 2, 258),
(fname_vol, 0, 0),
],
)
def test_get_decimated_surfaces(src, n, nv):
"""Test get_decimated_surfaces."""
surfaces = get_decimated_surfaces(src)
assert len(surfaces) == n
if n == 0:
return
for s in surfaces:
assert set(s) == {"rr", "tris"}
assert len(s["rr"]) == nv
assert_array_equal(np.unique(s["tris"]), np.arange(nv))
# The following code was used to generate small-src.fif.gz.
# Unfortunately the C code bombs when trying to add source space distances,
# possibly due to incomplete "faking" of a smaller surface on our part here.
"""
import os
import numpy as np
import mne
data_path = mne.datasets.sample.data_path()
src = mne.setup_source_space('sample', fname=None, spacing='oct5')
hemis = ['lh', 'rh']
fnames = [
str(data_path) + f'/subjects/sample/surf/{h}.decimated' for h in hemis]
vs = list()
for s, fname in zip(src, fnames):
coords = s['rr'][s['vertno']]
vs.append(s['vertno'])
idx = -1 * np.ones(len(s['rr']))
idx[s['vertno']] = np.arange(s['nuse'])
faces = s['use_tris']
faces = idx[faces]
mne.write_surface(fname, coords, faces)
# we need to move sphere surfaces
spheres = [
str(data_path) + f'/subjects/sample/surf/{h}.sphere' for h in hemis]
for s in spheres:
os.rename(s, s + '.bak')
try:
for s, v in zip(spheres, vs):
coords, faces = mne.read_surface(s + '.bak')
coords = coords[v]
mne.write_surface(s, coords, faces)
src = mne.setup_source_space('sample', fname=None, spacing='oct4',
surface='decimated')
finally:
for s in spheres:
os.rename(s + '.bak', s)
fname = 'small-src.fif'
fname_gz = fname + '.gz'
mne.write_source_spaces(fname, src)
mne.utils.run_subprocess(['mne_add_patch_info', '--src', fname,
'--srcp', fname])
mne.write_source_spaces(fname_gz, mne.read_source_spaces(fname))
"""