[074d3d]: / mne / simulation / tests / test_source.py

Download this file

480 lines (399 with data), 15.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal, assert_array_equal, assert_equal
from mne import (
convert_forward_solution,
pick_types_forward,
read_forward_solution,
read_label,
)
from mne.datasets import testing
from mne.label import Label
from mne.simulation import SourceSimulator, simulate_sparse_stc, simulate_stc
data_path = testing.data_path(download=False)
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-6-fwd.fif"
label_names = ["Aud-lh", "Aud-rh", "Vis-rh"]
subjects_dir = data_path / "subjects"
@pytest.fixture(scope="module", params=[testing._pytest_param()])
def _get_fwd_labels():
fwd = read_forward_solution(fname_fwd)
fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
fwd = pick_types_forward(fwd, meg=True, eeg=False)
labels = [
read_label(data_path / "MEG" / "sample" / "labels" / f"{label}.label")
for label in label_names
]
return fwd, labels
def _get_idx_label_stc(label, stc):
hemi_idx_mapping = dict(lh=0, rh=1)
hemi_idx = hemi_idx_mapping[label.hemi]
idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
idx = np.searchsorted(stc.vertices[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc.vertices[0])
return idx
def test_simulate_stc(_get_fwd_labels):
"""Test generation of source estimate."""
fwd, labels = _get_fwd_labels
mylabels = []
for i, label in enumerate(labels):
new_label = Label(
vertices=label.vertices,
pos=label.pos,
values=2 * i * np.ones(len(label.values)),
hemi=label.hemi,
comment=label.comment,
)
mylabels.append(new_label)
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = np.ones((len(labels), n_times))
stc = simulate_stc(fwd["src"], mylabels, stc_data, tmin, tstep)
assert_equal(stc.subject, "sample")
for label in labels:
idx = _get_idx_label_stc(label, stc)
assert np.all(stc.data[idx] == 1.0)
assert stc.data[idx].shape[1] == n_times
# test with function
def fun(x):
return x**2
stc = simulate_stc(fwd["src"], mylabels, stc_data, tmin, tstep, fun)
# the first label has value 0, the second value 2, the third value 6
for i, label in enumerate(labels):
idx = _get_idx_label_stc(label, stc)
res = ((2.0 * i) ** 2.0) * np.ones((len(idx), n_times))
assert_array_almost_equal(stc.data[idx], res)
# degenerate conditions
label_subset = mylabels[:2]
data_subset = stc_data[:2]
stc = simulate_stc(fwd["src"], label_subset, data_subset, tmin, tstep, fun)
pytest.raises(
ValueError,
simulate_stc,
fwd["src"],
label_subset,
data_subset[:-1],
tmin,
tstep,
fun,
)
pytest.raises(
RuntimeError,
simulate_stc,
fwd["src"],
label_subset * 2,
np.concatenate([data_subset] * 2, axis=0),
tmin,
tstep,
fun,
)
i = np.where(fwd["src"][0]["inuse"] == 0)[0][0]
label_single_vert = Label(
vertices=[i], pos=fwd["src"][0]["rr"][i : i + 1, :], hemi="lh"
)
stc = simulate_stc(fwd["src"], [label_single_vert], stc_data[:1], tmin, tstep)
assert_equal(len(stc.lh_vertno), 1)
def test_simulate_sparse_stc(_get_fwd_labels):
"""Test generation of sparse source estimate."""
pytest.importorskip("nibabel")
fwd, labels = _get_fwd_labels
n_times = 10
tmin = 0
tstep = 1e-3
times = np.arange(n_times, dtype=np.float64) * tstep + tmin
pytest.raises(
ValueError,
simulate_sparse_stc,
fwd["src"],
len(labels),
times,
labels=labels,
location="center",
subject="sample",
subjects_dir=subjects_dir,
) # no non-zero values
mylabels = []
for label in labels:
this_label = label.copy()
this_label.values.fill(1.0)
mylabels.append(this_label)
for location in ("random", "center"):
random_state = 0 if location == "random" else None
stc_1 = simulate_sparse_stc(
fwd["src"],
len(mylabels),
times,
labels=mylabels,
random_state=random_state,
location=location,
subjects_dir=subjects_dir,
)
assert_equal(stc_1.subject, "sample")
assert stc_1.data.shape[0] == len(mylabels)
assert stc_1.data.shape[1] == n_times
# make sure we get the same result when using the same seed
stc_2 = simulate_sparse_stc(
fwd["src"],
len(mylabels),
times,
labels=mylabels,
random_state=random_state,
location=location,
subjects_dir=subjects_dir,
)
assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)
# Degenerate cases
pytest.raises(
ValueError,
simulate_sparse_stc,
fwd["src"],
len(mylabels),
times,
labels=mylabels,
location="center",
subject="foo",
subjects_dir=subjects_dir,
) # wrong subject
del fwd["src"][0]["subject_his_id"] # remove subject
pytest.raises(
ValueError,
simulate_sparse_stc,
fwd["src"],
len(mylabels),
times,
labels=mylabels,
location="center",
subjects_dir=subjects_dir,
) # no subject
fwd["src"][0]["subject_his_id"] = "sample" # put back subject
pytest.raises(
ValueError,
simulate_sparse_stc,
fwd["src"],
len(mylabels),
times,
labels=mylabels,
location="foo",
) # bad location
err_str = "Number of labels"
with pytest.raises(ValueError, match=err_str):
simulate_sparse_stc(
fwd["src"],
len(mylabels) + 1,
times,
labels=mylabels,
random_state=random_state,
location=location,
subjects_dir=subjects_dir,
)
def test_generate_stc_single_hemi(_get_fwd_labels):
"""Test generation of source estimate, single hemi."""
fwd, labels = _get_fwd_labels
labels_single_hemi = labels[1:] # keep only labels in one hemisphere
mylabels = []
for i, label in enumerate(labels_single_hemi):
new_label = Label(
vertices=label.vertices,
pos=label.pos,
values=2 * i * np.ones(len(label.values)),
hemi=label.hemi,
comment=label.comment,
)
mylabels.append(new_label)
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = np.ones((len(labels_single_hemi), n_times))
stc = simulate_stc(fwd["src"], mylabels, stc_data, tmin, tstep)
for label in labels_single_hemi:
idx = _get_idx_label_stc(label, stc)
assert np.all(stc.data[idx] == 1.0)
assert stc.data[idx].shape[1] == n_times
# test with function
def fun(x):
return x**2
stc = simulate_stc(fwd["src"], mylabels, stc_data, tmin, tstep, fun)
# the first label has value 0, the second value 2, the third value 6
for i, label in enumerate(labels_single_hemi):
if label.hemi == "lh":
hemi_idx = 0
else:
hemi_idx = 1
idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
idx = np.searchsorted(stc.vertices[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc.vertices[0])
res = ((2.0 * i) ** 2.0) * np.ones((len(idx), n_times))
assert_array_almost_equal(stc.data[idx], res)
def test_simulate_sparse_stc_single_hemi(_get_fwd_labels):
"""Test generation of sparse source estimate."""
fwd, labels = _get_fwd_labels
labels_single_hemi = labels[1:] # keep only labels in one hemisphere
n_times = 10
tmin = 0
tstep = 1e-3
times = np.arange(n_times, dtype=np.float64) * tstep + tmin
stc_1 = simulate_sparse_stc(
fwd["src"],
len(labels_single_hemi),
times,
labels=labels_single_hemi,
random_state=0,
)
assert stc_1.data.shape[0] == len(labels_single_hemi)
assert stc_1.data.shape[1] == n_times
# make sure we get the same result when using the same seed
stc_2 = simulate_sparse_stc(
fwd["src"],
len(labels_single_hemi),
times,
labels=labels_single_hemi,
random_state=0,
)
assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)
@testing.requires_testing_data
def test_simulate_stc_labels_overlap(_get_fwd_labels):
"""Test generation of source estimate, overlapping labels."""
fwd, labels = _get_fwd_labels
mylabels = []
for i, label in enumerate(labels):
new_label = Label(
vertices=label.vertices,
pos=label.pos,
values=2 * i * np.ones(len(label.values)),
hemi=label.hemi,
comment=label.comment,
)
mylabels.append(new_label)
# Adding the last label twice
mylabels.append(new_label)
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = np.ones((len(mylabels), n_times))
# Test false
with pytest.raises(RuntimeError, match="must be non-overlapping"):
simulate_stc(fwd["src"], mylabels, stc_data, tmin, tstep, allow_overlap=False)
# test True
stc = simulate_stc(fwd["src"], mylabels, stc_data, tmin, tstep, allow_overlap=True)
assert_equal(stc.subject, "sample")
assert stc.data.shape[1] == n_times
# Some of the elements should be equal to 2 since we have duplicate labels
assert 2 in stc.data
def test_source_simulator(_get_fwd_labels):
"""Test Source Simulator."""
fwd, _ = _get_fwd_labels
src = fwd["src"]
hemi_to_ind = {"lh": 0, "rh": 1}
tstep = 1.0 / 6.0
label_vertices = [[], [], []]
label_vertices[0] = np.arange(1000)
label_vertices[1] = np.arange(500, 1500)
label_vertices[2] = np.arange(1000)
hemis = ["lh", "lh", "rh"]
mylabels = []
src_vertices = []
for i, vert in enumerate(label_vertices):
new_label = Label(vertices=vert, hemi=hemis[i])
mylabels.append(new_label)
src_vertices.append(
np.intersect1d(src[hemi_to_ind[hemis[i]]]["vertno"], new_label.vertices)
)
wfs = [[], [], []]
wfs[0] = np.array([0, 1.0, 0]) # 1d array
wfs[1] = [np.array([0, 1.0, 0]), np.array([0, 1.5, 0])] # list
wfs[2] = np.array([[1, 1, 1.0]]) # 2d array
events = [[], [], []]
events[0] = np.array([[0, 0, 1], [3, 0, 1]])
events[1] = np.array([[0, 0, 1], [3, 0, 1]])
events[2] = np.array([[0, 0, 1], [2, 0, 1]])
verts_lh = np.intersect1d(range(1500), src[0]["vertno"])
verts_rh = np.intersect1d(range(1000), src[1]["vertno"])
diff_01 = len(np.setdiff1d(src_vertices[0], src_vertices[1]))
diff_10 = len(np.setdiff1d(src_vertices[1], src_vertices[0]))
inter_10 = len(np.intersect1d(src_vertices[1], src_vertices[0]))
output_data_lh = np.zeros([len(verts_lh), 6])
tmp = np.array([0, 1.0, 0, 0, 1, 0])
output_data_lh[:diff_01, :] = np.tile(tmp, (diff_01, 1))
tmp = np.array([0, 2, 0, 0, 2.5, 0])
output_data_lh[diff_01 : diff_01 + inter_10, :] = np.tile(tmp, (inter_10, 1))
tmp = np.array([0, 1, 0, 0, 1.5, 0])
output_data_lh[diff_01 + inter_10 :, :] = np.tile(tmp, (diff_10, 1))
data_rh_wf = np.array([1.0, 1, 2, 1, 1, 0])
output_data_rh = np.tile(data_rh_wf, (len(src_vertices[2]), 1))
output_data = np.vstack([output_data_lh, output_data_rh])
ss = SourceSimulator(src, tstep)
for i in range(3):
ss.add_data(mylabels[i], wfs[i], events[i])
stc = ss.get_stc()
stim_channel = ss.get_stim_channel()
# Make some size checks.
assert ss.duration == 1.0
assert ss.n_times == 6
assert ss.last_samp == 5
assert len(stim_channel) == stc.data.shape[1]
assert np.all(stc.vertices[0] == verts_lh)
assert np.all(stc.vertices[1] == verts_rh)
assert_array_almost_equal(stc.lh_data, output_data_lh)
assert_array_almost_equal(stc.rh_data, output_data_rh)
assert_array_almost_equal(stc.data, output_data)
counter = 0
for stc, stim in ss:
assert stc.data.shape[1] == 6
counter += 1
assert counter == 1
# Check validity of setting duration and start/stop parameters.
half_ss = SourceSimulator(src, tstep, duration=0.5)
for i in range(3):
half_ss.add_data(mylabels[i], wfs[i], events[i])
with pytest.raises(TypeError, match="array of integers"):
half_ss.add_data(mylabels[0], wfs[0], events[0].astype(float))
half_stc = half_ss.get_stc()
assert_array_almost_equal(stc.data[:, :3], half_stc.data)
part_stc = ss.get_stc(start_sample=1, stop_sample=4)
assert part_stc.shape == (24, 4)
assert part_stc.times[0] == tstep
# Check validity of other arguments.
with pytest.raises(ValueError, match="start_sample must be"):
ss.get_stc(2, 0)
ss = SourceSimulator(src)
with pytest.raises(ValueError, match="No simulation parameters"):
ss.get_stc()
with pytest.raises(TypeError, match="must be an instance of Label"):
ss.add_data(1, wfs, events)
with pytest.raises(ValueError, match="Number of waveforms and events should match"):
ss.add_data(mylabels[0], wfs[:2], events)
with pytest.raises(ValueError, match="duration must be None or"):
ss = SourceSimulator(src, tstep, tstep / 2)
# Verify first_samp functionality.
ss = SourceSimulator(src, tstep)
offset = 50
for i in range(3): # events are offset, but first_samp = 0
events[i][:, 0] += offset
ss.add_data(mylabels[i], wfs[i], events[i])
offset_stc = ss.get_stc()
assert ss.n_times == 56
assert ss.first_samp == 0
assert offset_stc.data.shape == (stc.data.shape[0], stc.data.shape[1] + offset)
ss = SourceSimulator(src, tstep, first_samp=offset)
for i in range(3): # events still offset, but first_samp > 0
ss.add_data(mylabels[i], wfs[i], events[i])
offset_stc = ss.get_stc()
assert ss.n_times == 6
assert ss.first_samp == offset
assert ss.last_samp == offset + 5
assert offset_stc.data.shape == stc.data.shape
# Verify that the chunks have the correct length.
source_simulator = SourceSimulator(src, tstep=tstep, duration=10 * tstep)
source_simulator.add_data(mylabels[0], np.array([1, 1, 1]), [[0, 0, 0]])
source_simulator._chk_duration = 6 # Quick hack to get short chunks.
stcs = [stc for stc, _ in source_simulator]
assert len(stcs) == 2
assert stcs[0].data.shape[1] == 6
assert stcs[1].data.shape[1] == 4