[074d3d]: / mne / simulation / tests / test_raw.py

Download this file

585 lines (532 with data), 22.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from copy import deepcopy
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from mne import (
Epochs,
SourceEstimate,
VolSourceEstimate,
convert_forward_solution,
create_info,
find_events,
fit_dipole,
make_ad_hoc_cov,
make_bem_solution,
make_forward_solution,
make_sphere_model,
pick_types,
read_bem_solution,
read_cov,
read_source_spaces,
read_trans,
setup_source_space,
setup_volume_source_space,
transform_surface_to,
)
from mne._fiff.constants import FIFF
from mne.bem import _surfaces_to_bem
from mne.chpi import (
compute_chpi_amplitudes,
compute_chpi_locs,
compute_head_pos,
get_chpi_info,
read_head_pos,
)
from mne.datasets import testing
from mne.io import RawArray, read_raw_fif
from mne.label import Label
from mne.simulation import (
add_chpi,
add_ecg,
add_eog,
add_noise,
simulate_raw,
simulate_sparse_stc,
)
from mne.simulation.source import SourceSimulator
from mne.source_space._source_space import _compare_source_spaces
from mne.surface import _get_ico_surface
from mne.tests.test_chpi import _assert_quats
from mne.utils import catch_logging
raw_fname_short = Path(__file__).parents[2] / "io" / "tests" / "data" / "test_raw.fif"
data_path = testing.data_path(download=False)
raw_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
cov_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-cov.fif"
trans_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
subjects_dir = data_path / "subjects"
bem_path = subjects_dir / "sample" / "bem"
src_fname = bem_path / "sample-oct-2-src.fif"
bem_fname = bem_path / "sample-320-320-320-bem-sol.fif"
bem_1_fname = bem_path / "sample-320-bem-sol.fif"
raw_chpi_fname = data_path / "SSS" / "test_move_anon_raw.fif"
pos_fname = data_path / "SSS" / "test_move_anon_raw_subsampled.pos"
def _assert_iter_sim(raw_sim, raw_new, new_event_id):
events = find_events(raw_sim, initial_event=True)
events_tuple = find_events(raw_new, initial_event=True)
assert_array_equal(events_tuple[:, :2], events[:, :2])
assert_array_equal(events_tuple[:, 2], new_event_id)
data_sim = raw_sim[:-1][0]
data_new = raw_new[:-1][0]
assert_array_equal(data_new, data_sim)
@pytest.mark.slowtest
def test_iterable():
"""Test iterable support for simulate_raw."""
raw = read_raw_fif(raw_fname_short).load_data()
raw.pick(raw.ch_names[:10] + ["STI 014"])
src = setup_volume_source_space(
pos=dict(rr=[[-0.05, 0, 0], [0.1, 0, 0]], nn=[[0, 1.0, 0], [0, 1.0, 0]])
)
assert src.kind == "discrete"
trans = None
sphere = make_sphere_model(head_radius=None, info=raw.info)
tstep = 1.0 / raw.info["sfreq"]
rng = np.random.RandomState(0)
vertices = [np.array([1])]
data = rng.randn(1, 2)
stc = VolSourceEstimate(data, vertices, 0, tstep)
assert isinstance(stc.vertices[0], np.ndarray)
with pytest.raises(ValueError, match="at least three time points"):
simulate_raw(raw.info, stc, trans, src, sphere, None)
data = rng.randn(1, 1000)
n_events = (len(raw.times) - 1) // 1000 + 1
stc = VolSourceEstimate(data, vertices, 0, tstep)
assert isinstance(stc.vertices[0], np.ndarray)
raw_sim = simulate_raw(
raw.info, [stc] * 15, trans, src, sphere, None, first_samp=raw.first_samp
)
raw_sim.crop(0, raw.times[-1])
assert_allclose(raw.times, raw_sim.times)
events = find_events(raw_sim, initial_event=True)
assert len(events) == n_events
assert_array_equal(events[:, 2], 1)
# Degenerate STCs
with pytest.raises(RuntimeError, match=r"Iterable did not provide stc\[0\]"):
simulate_raw(raw.info, [], trans, src, sphere, None)
# tuple with ndarray
event_data = np.zeros(len(stc.times), int)
event_data[0] = 3
raw_new = simulate_raw(
raw.info,
[(stc, event_data)] * 15,
trans,
src,
sphere,
None,
first_samp=raw.first_samp,
)
assert raw_new.n_times == 15000
raw_new.crop(0, raw.times[-1])
_assert_iter_sim(raw_sim, raw_new, 3)
with pytest.raises(ValueError, match="event data had shape .* but need"):
simulate_raw(raw.info, [(stc, event_data[:-1])], trans, src, sphere, None)
with pytest.raises(ValueError, match="stim_data in a stc tuple .* int"):
simulate_raw(raw.info, [(stc, event_data * 1.0)], trans, src, sphere, None)
# iterable
def stc_iter():
stim_data = np.zeros(len(stc.times), int)
stim_data[0] = 4
ii = 0
while ii < 15:
ii += 1
yield (stc, stim_data)
raw_new = simulate_raw(
raw.info, stc_iter(), trans, src, sphere, None, first_samp=raw.first_samp
)
raw_new.crop(0, raw.times[-1])
_assert_iter_sim(raw_sim, raw_new, 4)
def stc_iter_bad():
ii = 0
while ii < 100:
ii += 1
yield (stc, 4, 3)
with pytest.raises(ValueError, match="stc, if tuple, must be length"):
simulate_raw(raw.info, stc_iter_bad(), trans, src, sphere, None)
_assert_iter_sim(raw_sim, raw_new, 4)
def stc_iter_bad():
ii = 0
while ii < 100:
ii += 1
stc_new = stc.copy()
stc_new.vertices[0] = np.array([ii % 2])
yield stc_new
with pytest.raises(RuntimeError, match=r"Vertex mismatch for stc\[1\]"):
simulate_raw(raw.info, stc_iter_bad(), trans, src, sphere, None)
# Forward omission
vertices = [np.array([0, 1])]
data = rng.randn(2, 1000)
stc = VolSourceEstimate(data, vertices, 0, tstep)
assert isinstance(stc.vertices[0], np.ndarray)
# XXX eventually we should support filtering based on sphere radius, too,
# by refactoring the code in source_space.py that does it!
surf = _get_ico_surface(3)
surf["rr"] *= 60 # mm
model = _surfaces_to_bem([surf], [FIFF.FIFFV_BEM_SURF_ID_BRAIN], [0.3])
bem = make_bem_solution(model)
with pytest.warns(RuntimeWarning, match="1 of 2 SourceEstimate vertices"):
simulate_raw(raw.info, stc, trans, src, bem, None)
def _make_stc(raw, src):
"""Make a STC."""
seed = 42
sfreq = raw.info["sfreq"] # Hz
tstep = 1.0 / sfreq
n_samples = len(raw.times) // 10
times = np.arange(0, n_samples) * tstep
stc = simulate_sparse_stc(src, 10, times, random_state=seed)
return stc
@pytest.fixture(scope="function", params=[testing._pytest_param()])
def raw_data():
"""Get some starting data."""
# raw with ECG channel
raw = read_raw_fif(raw_fname).crop(0.0, 5.0).load_data()
data_picks = pick_types(raw.info, meg=True, eeg=True)
other_picks = pick_types(raw.info, meg=False, stim=True, eog=True)
picks = np.sort(np.concatenate((data_picks[::16], other_picks)))
raw = raw.pick([raw.ch_names[p] for p in picks])
raw.info.normalize_proj()
ecg = RawArray(
np.zeros((1, len(raw.times))),
create_info(["ECG 063"], raw.info["sfreq"], "ecg"),
)
with ecg.info._unlock():
for key in ("dev_head_t", "highpass", "lowpass", "dig"):
ecg.info[key] = raw.info[key]
raw.add_channels([ecg])
src = read_source_spaces(src_fname)
trans = read_trans(trans_fname)
# Use fixed values from old sphere fit to reduce lines changed with fixed algorithm
sphere = make_sphere_model(
[-0.00413508, 0.01598787, 0.05175598],
0.09100286249131773,
)
stc = _make_stc(raw, src)
return raw, src, stc, trans, sphere
def _get_head_pos_sim(raw):
head_pos_sim = dict()
# these will be at 1., 2., ... s
shifts = [[0.001, 0.0, -0.001], [-0.001, 0.001, 0.0]]
for time_key, shift in enumerate(shifts):
# Create 4x4 matrix transform and normalize
temp_trans = deepcopy(raw.info["dev_head_t"])
temp_trans["trans"][:3, 3] += shift
head_pos_sim[time_key + 1.0] = temp_trans["trans"]
return head_pos_sim
def test_simulate_raw_sphere(raw_data, tmp_path):
"""Test simulation of raw data with sphere model."""
pytest.importorskip("nibabel")
seed = 42
raw, src, stc, trans, sphere = raw_data
assert len(pick_types(raw.info, meg=False, ecg=True)) == 1
# head pos
head_pos_sim = _get_head_pos_sim(raw)
#
# Test raw simulation with basic parameters
#
raw.info.normalize_proj()
cov = read_cov(cov_fname)
cov["projs"] = raw.info["projs"]
raw.info["bads"] = raw.ch_names[:1]
sphere_norad = make_sphere_model("auto", None, raw.info)
raw_meg = raw.copy().pick("meg")
raw_sim = simulate_raw(
raw_meg.info, stc, trans, src, sphere_norad, head_pos=head_pos_sim
)
# Test IO on processed data
test_outname = tmp_path / "sim_test_raw.fif"
raw_sim.save(test_outname)
raw_sim_loaded = read_raw_fif(test_outname, preload=True)
assert_allclose(raw_sim_loaded[:][0], raw_sim[:][0], rtol=1e-6, atol=1e-20)
del raw_sim
# make sure it works with EEG-only and MEG-only
raw_sim_meg = simulate_raw(raw.copy().pick("meg").info, stc, trans, src, sphere)
raw_sim_eeg = simulate_raw(raw.copy().pick("eeg").info, stc, trans, src, sphere)
raw_sim_meeg = simulate_raw(
raw.copy().pick(["meg", "eeg"]).info, stc, trans, src, sphere
)
for this_raw in (raw_sim_meg, raw_sim_eeg, raw_sim_meeg):
add_eog(this_raw, random_state=seed)
for this_raw in (raw_sim_meg, raw_sim_meeg):
add_ecg(this_raw, random_state=seed)
with pytest.raises(RuntimeError, match="only add ECG artifacts if MEG"):
add_ecg(raw_sim_eeg)
assert_allclose(
np.concatenate((raw_sim_meg[:][0], raw_sim_eeg[:][0])),
raw_sim_meeg[:][0],
rtol=1e-7,
atol=1e-20,
)
del raw_sim_meg, raw_sim_eeg, raw_sim_meeg
# check that raw-as-info is supported
n_samp = len(stc.times)
raw_crop = raw.copy().crop(0.0, (n_samp - 1.0) / raw.info["sfreq"])
assert len(raw_crop.times) == len(stc.times)
raw_sim = simulate_raw(raw_crop.info, stc, trans, src, sphere)
with catch_logging() as log:
raw_sim_2 = simulate_raw(raw_crop.info, stc, trans, src, sphere, verbose=True)
log = log.getvalue()
assert "1 STC iteration provided" in log
assert len(raw_sim_2.times) == n_samp
assert_allclose(
raw_sim[:, :n_samp][0], raw_sim_2[:, :n_samp][0], rtol=1e-5, atol=1e-30
)
del raw_sim, raw_sim_2
# check that different interpolations are similar given small movements
raw_sim = simulate_raw(
raw.info, stc, trans, src, sphere, head_pos=head_pos_sim, interp="linear"
)
raw_sim_hann = simulate_raw(
raw.info, stc, trans, src, sphere, head_pos=head_pos_sim, interp="hann"
)
assert_allclose(raw_sim[:][0], raw_sim_hann[:][0], rtol=1e-1, atol=1e-14)
del raw_sim_hann
def test_degenerate(raw_data):
"""Test degenerate conditions."""
raw, src, stc, trans, sphere = raw_data
info = raw.info
# Make impossible transform (translate up into helmet) and ensure failure
hp_err = _get_head_pos_sim(raw)
hp_err[1.0][2, 3] -= 0.1 # z trans upward 10cm
with pytest.raises(RuntimeError, match="collided with inner skull"):
simulate_raw(info, stc, trans, src, sphere, head_pos=hp_err)
# other degenerate conditions
with pytest.raises(TypeError, match="info must be an instance of"):
simulate_raw("foo", stc, trans, src, sphere)
with pytest.raises(TypeError, match="stc must be an instance of"):
simulate_raw(info, "foo", trans, src, sphere)
with pytest.raises(ValueError, match="stc must have at least three time"):
simulate_raw(info, stc.copy().crop(0, 0), trans, src, sphere)
with pytest.raises(TypeError, match="must be an instance of Info"):
simulate_raw(0, stc, trans, src, sphere)
stc_bad = stc.copy()
stc_bad.tstep += 0.1
with pytest.raises(ValueError, match="same sample rate"):
simulate_raw(info, stc_bad, trans, src, sphere)
with pytest.raises(ValueError, match="interp must be one of"):
simulate_raw(info, stc, trans, src, sphere, interp="foo")
with pytest.raises(TypeError, match="unknown head_pos type"):
simulate_raw(info, stc, trans, src, sphere, head_pos=1.0)
head_pos_sim_err = _get_head_pos_sim(raw)
head_pos_sim_err[-1.0] = head_pos_sim_err[1.0] # negative time
with pytest.raises(RuntimeError, match="All position times"):
simulate_raw(info, stc, trans, src, sphere, head_pos=head_pos_sim_err)
raw_bad = raw.copy()
with raw_bad.info._unlock():
raw_bad.info["dig"] = None
with pytest.raises(RuntimeError, match="Cannot fit headshape"):
add_eog(raw_bad)
@pytest.mark.slowtest
def test_simulate_raw_bem(raw_data):
"""Test simulation of raw data with BEM."""
pytest.importorskip("nibabel")
raw, src_ss, stc, trans, sphere = raw_data
src = setup_source_space("sample", "oct1", subjects_dir=subjects_dir)
for s in src:
s["nuse"] = 3
s["vertno"] = src[1]["vertno"][:3]
s["inuse"].fill(0)
s["inuse"][s["vertno"]] = 1
# use different / more complete STC here
vertices = [s["vertno"] for s in src]
stc = SourceEstimate(
np.eye(sum(len(v) for v in vertices)), vertices, 0, 1.0 / raw.info["sfreq"]
)
stcs = [stc] * 15
raw_sim_sph = simulate_raw(raw.info, stcs, trans, src, sphere)
raw_sim_bem = simulate_raw(raw.info, stcs, trans, src, bem_fname)
# some components (especially radial) might not match that well,
# so just make sure that most components have high correlation
assert_array_equal(raw_sim_sph.ch_names, raw_sim_bem.ch_names)
picks = pick_types(raw.info, meg=True, eeg=True)
n_ch = len(picks)
corr = np.corrcoef(raw_sim_sph[picks][0], raw_sim_bem[picks][0])
assert_array_equal(corr.shape, (2 * n_ch, 2 * n_ch))
med_corr = np.median(np.diag(corr[:n_ch, -n_ch:]))
assert med_corr > 0.65
# do some round-trip localization
for s in src:
transform_surface_to(s, "head", trans)
locs = np.concatenate([s["rr"][s["vertno"]] for s in src])
tmax = (len(locs) - 1) / raw.info["sfreq"]
cov = make_ad_hoc_cov(raw.info)
# The tolerance for the BEM is surprisingly high but I get the same
# result when using MNE-C and Xfit, even when using a proper 5120 BEM :(
for use_raw, bem, tol in ((raw_sim_sph, sphere, 4), (raw_sim_bem, bem_fname, 31)):
events = find_events(use_raw, "STI 014")
assert len(locs) == 6
evoked = Epochs(use_raw, events, 1, 0, tmax, baseline=None).average()
assert len(evoked.times) == len(locs)
fits = fit_dipole(evoked, cov, bem, trans, min_dist=1.0)[0].pos
diffs = np.sqrt(np.sum((locs - fits) ** 2, axis=-1)) * 1000
med_diff = np.median(diffs)
assert med_diff < tol, f"{bem}: {med_diff}"
# also test event timings with SourceSimulator
first_samp = raw.first_samp
events = find_events(raw, initial_event=True, verbose=False)
evt_times = events[:, 0]
assert len(events) == 3
labels_sim = [[], [], []] # random l+r hemisphere points
labels_sim[0] = Label([src_ss[0]["vertno"][1]], hemi="lh")
labels_sim[1] = Label([src_ss[0]["vertno"][4]], hemi="lh")
labels_sim[2] = Label([src_ss[1]["vertno"][2]], hemi="rh")
wf_sim = np.array([2, 1, 0])
for this_fs in (0, first_samp):
ss = SourceSimulator(src_ss, 1.0 / raw.info["sfreq"], first_samp=this_fs)
for i in range(3):
ss.add_data(labels_sim[i], wf_sim, events[np.newaxis, i])
assert ss.n_times == evt_times[-1] + len(wf_sim) - this_fs
raw_sim = simulate_raw(
raw.info, ss, src=src_ss, bem=bem_fname, first_samp=first_samp
)
data = raw_sim.get_data()
amp0 = data[:, evt_times - first_samp].max()
amp1 = data[:, evt_times + 1 - first_samp].max()
amp2 = data[:, evt_times + 2 - first_samp].max()
assert_allclose(amp0 / amp1, wf_sim[0] / wf_sim[1], rtol=1e-5)
assert amp2 == 0
assert raw_sim.n_times == ss.n_times
@pytest.mark.slowtest # slow on Windows Azure
def test_simulate_round_trip(raw_data):
"""Test simulate_raw round trip calculations."""
# Check a diagonal round-trip
raw, src, stc, trans, sphere = raw_data
raw.pick(["meg", "stim"])
bem = read_bem_solution(bem_1_fname)
old_bem = bem.copy()
old_src = src.copy()
old_trans = trans.copy()
fwd = make_forward_solution(raw.info, trans, src, bem)
# no omissions
assert (
sum(len(s["vertno"]) for s in src)
== sum(len(s["vertno"]) for s in fwd["src"])
== 36
)
# make sure things were not modified
assert old_bem["surfs"][0]["coord_frame"] == bem["surfs"][0]["coord_frame"]
assert trans == old_trans
_compare_source_spaces(src, old_src)
data = np.eye(fwd["nsource"])
raw.crop(0, len(data) / raw.info["sfreq"], include_tmax=False)
stc = SourceEstimate(
data, [s["vertno"] for s in fwd["src"]], 0, 1.0 / raw.info["sfreq"]
)
for use_fwd in (None, fwd):
if use_fwd is None:
use_trans, use_src, use_bem = trans, src, bem
else:
use_trans = use_src = use_bem = None
this_raw = simulate_raw(
raw.info, stc, use_trans, use_src, use_bem, forward=use_fwd
)
this_raw.pick(["meg", "eeg"])
assert old_bem["surfs"][0]["coord_frame"] == bem["surfs"][0]["coord_frame"]
assert trans == old_trans
_compare_source_spaces(src, old_src)
this_fwd = convert_forward_solution(fwd, force_fixed=True)
assert_allclose(this_raw[:][0], this_fwd["sol"]["data"], atol=1e-12, rtol=1e-6)
with pytest.raises(ValueError, match="If forward is not None then"):
simulate_raw(raw.info, stc, trans, src, bem, forward=fwd)
# Not iterable
with pytest.raises(TypeError, match="SourceEstimate, tuple, or iterable"):
simulate_raw(raw.info, 0.0, trans, src, bem, None)
# STC with a source that `src` does not have
assert 0 not in src[0]["vertno"]
vertices = [[0, fwd["src"][0]["vertno"][0]], []]
stc_bad = SourceEstimate(data[:2], vertices, 0, 1.0 / raw.info["sfreq"])
with pytest.warns(RuntimeWarning, match="1 of 2 SourceEstimate vertices"):
simulate_raw(raw.info, stc_bad, trans, src, bem)
assert 0 not in fwd["src"][0]["vertno"]
with pytest.warns(RuntimeWarning, match="1 of 2 SourceEstimate vertices"):
simulate_raw(raw.info, stc_bad, None, None, None, forward=fwd)
# dev_head_t mismatch
fwd["info"]["dev_head_t"]["trans"][0, 0] = 1.0
with pytest.raises(ValueError, match="dev_head_t.*does not match"):
simulate_raw(raw.info, stc, None, None, None, forward=fwd)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_simulate_raw_chpi():
"""Test simulation of raw data with cHPI."""
raw = read_raw_fif(raw_chpi_fname, allow_maxshield="yes")
drops = pick_types(raw.info, meg=True, eeg=True)[::4] # for speed
picks = np.setdiff1d(range(len(raw.ch_names)), drops)
raw.pick(picks).load_data()
raw.info.normalize_proj()
sphere = make_sphere_model("auto", "auto", raw.info)
# make sparse spherical source space
sphere_vol = tuple(sphere["r0"]) + (sphere.radius,)
src = setup_volume_source_space(sphere=sphere_vol, pos=70.0, sphere_units="m")
stcs = [_make_stc(raw, src)] * 15
# simulate data with cHPI on
raw_sim = simulate_raw(
raw.info,
stc=stcs,
trans=None,
src=src,
bem=sphere,
head_pos=pos_fname,
interp="zero",
first_samp=raw.first_samp,
)
# need to trim extra samples off this one
raw_chpi = add_chpi(raw_sim.copy(), head_pos=pos_fname, interp="zero")
# test cHPI indication
hpi_freqs, hpi_pick, hpi_ons = get_chpi_info(raw.info, on_missing="raise")
assert_allclose(raw_sim[hpi_pick][0], 0.0)
assert_allclose(raw_chpi[hpi_pick][0], hpi_ons.sum())
# test that the cHPI signals make some reasonable values
picks_meg = pick_types(raw.info, meg=True)[:3]
picks_eeg = pick_types(raw.info, eeg=True)[:3]
for picks in (picks_meg, picks_eeg):
psd_sim, freqs_sim = raw_sim.compute_psd(picks=picks).get_data(
return_freqs=True
)
psd_chpi, freqs_chpi = raw_chpi.compute_psd(picks=picks).get_data(
return_freqs=True
)
assert_array_equal(freqs_sim, freqs_chpi)
# bins closest to cHPI freqs should have very high energy in MEG chans
if picks is picks_meg:
freq_idx = np.argmin(np.abs(freqs_sim - hpi_freqs[:, np.newaxis]), axis=1)
assert (psd_chpi[:, freq_idx] > 100 * psd_sim[:, freq_idx]).all()
else:
assert_allclose(psd_sim, psd_chpi, atol=1e-20)
# test localization based on cHPI information
chpi_amplitudes = compute_chpi_amplitudes(raw, t_step_min=10.0)
coil_locs = compute_chpi_locs(raw.info, chpi_amplitudes)
quats_sim = compute_head_pos(raw_chpi.info, coil_locs)
quats = read_head_pos(pos_fname)
_assert_quats(
quats, quats_sim, dist_tol=5e-3, angle_tol=3.5, vel_atol=0.03
) # velicity huge because of t_step_min above
@testing.requires_testing_data
def test_simulation_cascade():
"""Test that cascading operations do not overwrite data."""
# Create 10 second raw dataset with zeros in the data matrix
raw_null = read_raw_fif(raw_chpi_fname, allow_maxshield="yes")
raw_null.crop(0, 1).pick("meg").load_data()
raw_null.apply_function(lambda x: np.zeros_like(x))
assert_array_equal(raw_null.get_data(), 0.0)
# Calculate independent signal additions
raw_eog = raw_null.copy()
add_eog(raw_eog, random_state=0)
raw_ecg = raw_null.copy()
add_ecg(raw_ecg, random_state=0)
raw_noise = raw_null.copy()
cov = make_ad_hoc_cov(raw_null.info)
add_noise(raw_noise, cov, random_state=0)
raw_chpi = raw_null.copy()
add_chpi(raw_chpi)
# Calculate Cascading signal additions
raw_cascade = raw_null.copy()
add_eog(raw_cascade, random_state=0)
add_ecg(raw_cascade, random_state=0)
add_chpi(raw_cascade)
add_noise(raw_cascade, cov, random_state=0)
cascade_data = raw_cascade.get_data()
serial_data = 0.0
for raw_other in (raw_eog, raw_ecg, raw_noise, raw_chpi):
serial_data += raw_other.get_data()
assert_allclose(cascade_data, serial_data, atol=1e-20)