# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from ..fixes import rng_uniform
from ..label import Label
from ..source_estimate import SourceEstimate, VolSourceEstimate
from ..source_space._source_space import _ensure_src
from ..surface import _compute_nearest
from ..utils import (
_check_option,
_ensure_events,
_ensure_int,
_validate_type,
check_random_state,
fill_doc,
warn,
)
@fill_doc
def select_source_in_label(
src,
label,
random_state=None,
location="random",
subject=None,
subjects_dir=None,
surf="sphere",
):
"""Select source positions using a label.
Parameters
----------
src : list of dict
The source space.
label : Label
The label.
%(random_state)s
location : str
The label location to choose. Can be 'random' (default) or 'center'
to use :func:`mne.Label.center_of_mass` (restricting to vertices
both in the label and in the source space). Note that for 'center'
mode the label values are used as weights.
.. versionadded:: 0.13
subject : str | None
The subject the label is defined for.
Only used with ``location='center'``.
.. versionadded:: 0.13
%(subjects_dir)s
.. versionadded:: 0.13
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
.. versionadded:: 0.13
Returns
-------
lh_vertno : list
Selected source coefficients on the left hemisphere.
rh_vertno : list
Selected source coefficients on the right hemisphere.
"""
lh_vertno = list()
rh_vertno = list()
_check_option("location", location, ["random", "center"])
rng = check_random_state(random_state)
if label.hemi == "lh":
vertno = lh_vertno
hemi_idx = 0
else:
vertno = rh_vertno
hemi_idx = 1
src_sel = np.intersect1d(src[hemi_idx]["vertno"], label.vertices)
if location == "random":
idx = src_sel[rng_uniform(rng)(0, len(src_sel), 1)[0]]
else: # 'center'
idx = label.center_of_mass(
subject, restrict_vertices=src_sel, subjects_dir=subjects_dir, surf=surf
)
vertno.append(idx)
return lh_vertno, rh_vertno
@fill_doc
def simulate_sparse_stc(
src,
n_dipoles,
times,
data_fun=lambda t: 1e-7 * np.sin(20 * np.pi * t),
labels=None,
random_state=None,
location="random",
subject=None,
subjects_dir=None,
surf="sphere",
):
"""Generate sparse (n_dipoles) sources time courses from data_fun.
This function randomly selects ``n_dipoles`` vertices in the whole
cortex or one single vertex (randomly in or in the center of) each
label if ``labels is not None``. It uses ``data_fun`` to generate
waveforms for each vertex.
Parameters
----------
src : instance of SourceSpaces
The source space.
n_dipoles : int
Number of dipoles to simulate.
times : array
Time array.
data_fun : callable
Function to generate the waveforms. The default is a 100 nAm, 10 Hz
sinusoid as ``1e-7 * np.sin(20 * pi * t)``. The function should take
as input the array of time samples in seconds and return an array of
the same length containing the time courses.
labels : None | list of Label
The labels. The default is None, otherwise its size must be n_dipoles.
%(random_state)s
location : str
The label location to choose. Can be ``'random'`` (default) or
``'center'`` to use :func:`mne.Label.center_of_mass`. Note that for
``'center'`` mode the label values are used as weights.
.. versionadded:: 0.13
subject : str | None
The subject the label is defined for.
Only used with ``location='center'``.
.. versionadded:: 0.13
%(subjects_dir)s
.. versionadded:: 0.13
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
.. versionadded:: 0.13
Returns
-------
stc : SourceEstimate
The generated source time courses.
See Also
--------
simulate_raw
simulate_evoked
simulate_stc
Notes
-----
.. versionadded:: 0.10.0
"""
rng = check_random_state(random_state)
src = _ensure_src(src, verbose=False)
subject_src = src._subject
if subject is None:
subject = subject_src
elif subject_src is not None and subject != subject_src:
raise ValueError(
f"subject argument ({subject}) did not match the source "
f"space subject_his_id ({subject_src})"
)
data = np.zeros((n_dipoles, len(times)))
for i_dip in range(n_dipoles):
data[i_dip, :] = data_fun(times)
if labels is None:
# can be vol or surface source space
offsets = np.linspace(0, n_dipoles, len(src) + 1).astype(int)
n_dipoles_ss = np.diff(offsets)
# don't use .choice b/c not on old numpy
vs = [
s["vertno"][np.sort(rng.permutation(np.arange(s["nuse"]))[:n])]
for n, s in zip(n_dipoles_ss, src)
]
datas = data
elif n_dipoles > len(labels):
raise ValueError(
f"Number of labels ({len(labels)}) smaller than n_dipoles ({n_dipoles:d}) "
"is not allowed."
)
else:
if n_dipoles != len(labels):
warn(
"The number of labels is different from the number of "
f"dipoles. {min(n_dipoles, len(labels))} dipole(s) will be generated."
)
labels = labels[:n_dipoles] if n_dipoles < len(labels) else labels
vertno = [[], []]
lh_data = [np.empty((0, data.shape[1]))]
rh_data = [np.empty((0, data.shape[1]))]
for i, label in enumerate(labels):
lh_vertno, rh_vertno = select_source_in_label(
src, label, rng, location, subject, subjects_dir, surf
)
vertno[0] += lh_vertno
vertno[1] += rh_vertno
if len(lh_vertno) != 0:
lh_data.append(data[i][np.newaxis])
elif len(rh_vertno) != 0:
rh_data.append(data[i][np.newaxis])
else:
raise ValueError("No vertno found.")
vs = [np.array(v) for v in vertno]
datas = [np.concatenate(d) for d in [lh_data, rh_data]]
# need to sort each hemi by vertex number
for ii in range(2):
order = np.argsort(vs[ii])
vs[ii] = vs[ii][order]
if len(order) > 0: # fix for old numpy
datas[ii] = datas[ii][order]
datas = np.concatenate(datas)
tmin, tstep = times[0], np.diff(times[:2])[0]
assert datas.shape == data.shape
cls = SourceEstimate if len(vs) == 2 else VolSourceEstimate
stc = cls(datas, vertices=vs, tmin=tmin, tstep=tstep, subject=subject)
return stc
def simulate_stc(
src, labels, stc_data, tmin, tstep, value_fun=None, allow_overlap=False
):
"""Simulate sources time courses from waveforms and labels.
This function generates a source estimate with extended sources by
filling the labels with the waveforms given in stc_data.
Parameters
----------
src : instance of SourceSpaces
The source space.
labels : list of Label
The labels.
stc_data : array, shape (n_labels, n_times)
The waveforms.
tmin : float
The beginning of the timeseries.
tstep : float
The time step (1 / sampling frequency).
value_fun : callable | None
Function to apply to the label values to obtain the waveform
scaling for each vertex in the label. If None (default), uniform
scaling is used.
allow_overlap : bool
Allow overlapping labels or not. Default value is False.
.. versionadded:: 0.18
Returns
-------
stc : SourceEstimate
The generated source time courses.
See Also
--------
simulate_raw
simulate_evoked
simulate_sparse_stc
"""
if len(labels) != len(stc_data):
raise ValueError("labels and stc_data must have the same length")
vertno = [[], []]
stc_data_extended = [[], []]
hemi_to_ind = {"lh": 0, "rh": 1}
for i, label in enumerate(labels):
hemi_ind = hemi_to_ind[label.hemi]
src_sel = np.intersect1d(src[hemi_ind]["vertno"], label.vertices)
if len(src_sel) == 0:
idx = src[hemi_ind]["inuse"].astype("bool")
xhs = src[hemi_ind]["rr"][idx]
rr = src[hemi_ind]["rr"][label.vertices]
closest_src = _compute_nearest(xhs, rr)
src_sel = src[hemi_ind]["vertno"][np.unique(closest_src)]
if value_fun is not None:
idx_sel = np.searchsorted(label.vertices, src_sel)
values_sel = np.array([value_fun(v) for v in label.values[idx_sel]])
data = np.outer(values_sel, stc_data[i])
else:
data = np.tile(stc_data[i], (len(src_sel), 1))
# If overlaps are allowed, deal with them
if allow_overlap:
# Search for duplicate vertex indices
# in the existing vertex matrix vertex.
duplicates = []
for src_ind, vertex_ind in enumerate(src_sel):
ind = np.where(vertex_ind == vertno[hemi_ind])[0]
if len(ind) > 0:
assert len(ind) == 1
# Add the new data to the existing one
stc_data_extended[hemi_ind][ind[0]] += data[src_ind]
duplicates.append(src_ind)
# Remove the duplicates from both data and selected vertices
data = np.delete(data, duplicates, axis=0)
src_sel = list(np.delete(np.array(src_sel), duplicates))
# Extend the existing list instead of appending it so that we can
# index its elements
vertno[hemi_ind].extend(src_sel)
stc_data_extended[hemi_ind].extend(np.atleast_2d(data))
vertno = [np.array(v) for v in vertno]
if not allow_overlap:
for v, hemi in zip(vertno, ("left", "right")):
d = len(v) - len(np.unique(v))
if d > 0:
raise RuntimeError(
f"Labels had {d} overlaps in the {hemi} "
"hemisphere, they must be non-overlapping"
)
# the data is in the order left, right
data = list()
for i in range(2):
if len(stc_data_extended[i]) != 0:
stc_data_extended[i] = np.vstack(stc_data_extended[i])
# Order the indices of each hemisphere
idx = np.argsort(vertno[i])
data.append(stc_data_extended[i][idx])
vertno[i] = vertno[i][idx]
stc = SourceEstimate(
np.concatenate(data),
vertices=vertno,
tmin=tmin,
tstep=tstep,
subject=src._subject,
)
return stc
class SourceSimulator:
"""Class to generate simulated Source Estimates.
Parameters
----------
src : instance of SourceSpaces
Source space.
tstep : float
Time step between successive samples in data. Default is 0.001 s.
duration : float | None
Time interval during which the simulation takes place in seconds.
If None, it is computed using existing events and waveform lengths.
first_samp : int
First sample from which the simulation takes place, as an integer.
Comparable to the :term:`first_samp` property of `~mne.io.Raw` objects.
Default is 0.
Attributes
----------
duration : float
The duration of the simulation in seconds.
n_times : int
The number of time samples of the simulation.
"""
def __init__(self, src, tstep=1e-3, duration=None, first_samp=0):
if duration is not None and duration < tstep:
raise ValueError("duration must be None or >= tstep.")
self.first_samp = _ensure_int(first_samp, "first_samp")
self._src = src
self._tstep = tstep
self._labels = []
self._waveforms = []
self._events = np.empty((0, 3), dtype=int)
self._duration = duration # if not None, sets # samples
self._last_samples = []
self._chk_duration = 1000
@property
def duration(self):
"""Duration of the simulation in same units as tstep."""
if self._duration is not None:
return self._duration
return self.n_times * self._tstep
@property
def n_times(self):
"""Number of time samples in the simulation."""
if self._duration is not None:
return int(self._duration / self._tstep)
ls = self.first_samp
if len(self._last_samples) > 0:
ls = np.max(self._last_samples)
return ls - self.first_samp + 1 # >= 1
@property
def last_samp(self):
return self.first_samp + self.n_times - 1
def add_data(self, label, waveform, events):
"""Add data to the simulation.
Data should be added in the form of a triplet of
Label (Where) - Waveform(s) (What) - Event(s) (When)
Parameters
----------
label : instance of Label
The label (as created for example by mne.read_label). If the label
does not match any sources in the SourceEstimate, a ValueError is
raised.
waveform : array, shape (n_times,) or (n_events, n_times) | list
The waveform(s) describing the activity on the label vertices.
If list, it must have the same length as events.
events : array of int, shape (n_events, 3)
Events associated to the waveform(s) to specify when the activity
should occur.
"""
_validate_type(label, Label, "label")
# If it is not a list then make it one
if not isinstance(waveform, list) and np.ndim(waveform) == 2:
waveform = list(waveform)
if not isinstance(waveform, list) and np.ndim(waveform) == 1:
waveform = [waveform]
if len(waveform) == 1:
waveform = waveform * len(events)
# The length is either equal to the length of events, or 1
if len(waveform) != len(events):
raise ValueError(
"Number of waveforms and events should match or "
f"there should be a single waveform ({len(waveform)} != {len(events)})."
)
events = _ensure_events(events).astype(np.int64)
# Update the last sample possible based on events + waveforms
self._labels.extend([label] * len(events))
self._waveforms.extend(waveform)
self._events = np.concatenate([self._events, events])
assert self._events.dtype == np.int64
# First sample per waveform is the first column of events
# Last is computed below
self._last_samples = np.array(
[self._events[i, 0] + len(w) - 1 for i, w in enumerate(self._waveforms)]
)
def get_stim_channel(self, start_sample=0, stop_sample=None):
"""Get the stim channel from the provided data.
Returns the stim channel data according to the simulation parameters
which should be added through the add_data method. If both start_sample
and stop_sample are not specified, the entire duration is used.
Parameters
----------
start_sample : int
First sample in chunk. Default is the value of the ``first_samp``
attribute.
stop_sample : int | None
The final sample of the returned stc. If None, then all samples
from start_sample onward are returned.
Returns
-------
stim_data : ndarray of int, shape (n_samples,)
The stimulation channel data.
"""
if start_sample is None:
start_sample = self.first_samp
if stop_sample is None:
stop_sample = start_sample + self.n_times - 1
elif stop_sample < start_sample:
raise ValueError("Argument start_sample must be >= stop_sample.")
n_samples = stop_sample - start_sample + 1
# Initialize the stim data array
stim_data = np.zeros(n_samples, dtype=np.int64)
# Select only events in the time chunk
stim_ind = np.where(
np.logical_and(
self._events[:, 0] >= start_sample, self._events[:, 0] < stop_sample
)
)[0]
if len(stim_ind) > 0:
relative_ind = self._events[stim_ind, 0] - start_sample
stim_data[relative_ind] = self._events[stim_ind, 2]
return stim_data
def get_stc(self, start_sample=None, stop_sample=None):
"""Simulate a SourceEstimate from the provided data.
Returns a SourceEstimate object constructed according to the simulation
parameters which should be added through function add_data. If both
start_sample and stop_sample are not specified, the entire duration is
used.
Parameters
----------
start_sample : int | None
First sample in chunk. If ``None`` the value of the ``first_samp``
attribute is used. Defaults to ``None``.
stop_sample : int | None
The final sample of the returned STC. If ``None``, then all samples
past ``start_sample`` are returned.
Returns
-------
stc : SourceEstimate object
The generated source time courses.
"""
if len(self._labels) == 0:
raise ValueError(
"No simulation parameters were found. Please use "
"function add_data to add simulation parameters."
)
if start_sample is None:
start_sample = self.first_samp
if stop_sample is None:
stop_sample = start_sample + self.n_times - 1
elif stop_sample < start_sample:
raise ValueError("start_sample must be >= stop_sample.")
n_samples = stop_sample - start_sample + 1
# Initialize the stc_data array to span all possible samples
stc_data = np.zeros((len(self._labels), n_samples))
# Select only the events that fall within the span
ind = np.where(
np.logical_and(
self._last_samples >= start_sample, self._events[:, 0] <= stop_sample
)
)[0]
# Loop only over the items that are in the time span
subset_waveforms = [self._waveforms[i] for i in ind]
for i, (waveform, event) in enumerate(zip(subset_waveforms, self._events[ind])):
# We retrieve the first and last sample of each waveform
# According to the corresponding event
wf_start = event[0]
wf_stop = self._last_samples[ind[i]]
# Recover the indices of the event that should be in the chunk
waveform_ind = np.isin(
np.arange(wf_start, wf_stop + 1),
np.arange(start_sample, stop_sample + 1),
)
# Recover the indices that correspond to the overlap
stc_ind = np.isin(
np.arange(start_sample, stop_sample + 1),
np.arange(wf_start, wf_stop + 1),
)
# add the resulting waveform chunk to the corresponding label
stc_data[ind[i]][stc_ind] += waveform[waveform_ind]
start_sample -= self.first_samp # STC sample ref is 0
stc = simulate_stc(
self._src,
self._labels,
stc_data,
start_sample * self._tstep,
self._tstep,
allow_overlap=True,
)
return stc
def __iter__(self):
"""Iterate over 1 second STCs."""
# Arbitrary chunk size, can be modified later to something else.
# Loop over chunks of 1 second - or, maximum sample size.
# Can be modified to a different value.
last_sample = self.last_samp
for start_sample in range(self.first_samp, last_sample + 1, self._chk_duration):
stop_sample = min(start_sample + self._chk_duration - 1, last_sample)
yield (
self.get_stc(start_sample, stop_sample),
self.get_stim_channel(start_sample, stop_sample),
)