[074d3d]: / mne / preprocessing / tests / test_ssp.py

Download this file

277 lines (252 with data), 9.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_array_almost_equal
from mne import pick_types
from mne._fiff.proj import activate_proj, make_projector
from mne.datasets import testing
from mne.io import read_raw_ctf, read_raw_fif
from mne.preprocessing.ssp import compute_proj_ecg, compute_proj_eog
from mne.utils import _record_warnings
data_path = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = data_path / "test_raw.fif"
dur_use = 5.0
eog_times = np.array([0.5, 2.3, 3.6, 14.5])
ctf_fname = testing.data_path(download=False) / "CTF" / "testdata_ctf.ds"
@pytest.fixture()
def short_raw():
"""Create a short, picked raw instance."""
raw = read_raw_fif(raw_fname).crop(0, 7).pick(["meg", "eeg", "eog"])
raw.pick(raw.ch_names[:306:10] + raw.ch_names[306:]).load_data()
raw.info.normalize_proj()
return raw
@pytest.mark.parametrize("average", (True, False))
def test_compute_proj_ecg(short_raw, average):
"""Test computation of ECG SSP projectors."""
raw = short_raw
# For speed, let's not filter here (must also not reject then)
with pytest.warns(RuntimeWarning, match="Attenuation"):
projs, events = compute_proj_ecg(
raw,
n_mag=2,
n_grad=2,
n_eeg=2,
ch_name="MEG 1531",
bads=["MEG 2443"],
average=average,
avg_ref=True,
no_proj=True,
l_freq=None,
h_freq=None,
reject=None,
tmax=dur_use,
qrs_threshold=0.5,
filter_length=1000,
)
assert len(projs) == 7
# heart rate at least 0.5 Hz, but less than 3 Hz
assert events.shape[0] > 0.5 * dur_use and events.shape[0] < 3 * dur_use
ssp_ecg = [proj for proj in projs if proj["desc"].startswith("ECG")]
# check that the first principal component have a certain minimum
ssp_ecg = [proj for proj in ssp_ecg if "PCA-01" in proj["desc"]]
thresh_eeg, thresh_axial, thresh_planar = 0.9, 0.3, 0.1
for proj in ssp_ecg:
if "planar" in proj["desc"]:
assert proj["explained_var"] > thresh_planar
elif "axial" in proj["desc"]:
assert proj["explained_var"] > thresh_axial
elif "eeg" in proj["desc"]:
assert proj["explained_var"] > thresh_eeg
# XXX: better tests
# without setting a bad channel, this should throw a warning
# (first with a call that makes sure we copy the mutable default "reject")
with pytest.warns(RuntimeWarning, match="longer than the signal"):
compute_proj_ecg(raw.copy().pick("mag"), l_freq=None, h_freq=None)
with _record_warnings(), pytest.warns(RuntimeWarning, match="No good epochs found"):
projs, events, drop_log = compute_proj_ecg(
raw,
n_mag=2,
n_grad=2,
n_eeg=2,
ch_name="MEG 1531",
bads=[],
average=average,
avg_ref=True,
no_proj=True,
l_freq=None,
h_freq=None,
tmax=dur_use,
return_drop_log=True,
# XXX can be removed once
# XXX https://github.com/mne-tools/mne-python/issues/9273
# XXX has been resolved:
qrs_threshold=1e-15,
)
assert projs == []
assert len(events) == len(drop_log)
@pytest.mark.parametrize("average", [True, False])
def test_compute_proj_eog(average, short_raw):
"""Test computation of EOG SSP projectors."""
raw = short_raw
n_projs_init = len(raw.info["projs"])
with pytest.warns(RuntimeWarning, match="Attenuation"):
projs, events = compute_proj_eog(
raw,
n_mag=2,
n_grad=2,
n_eeg=2,
bads=["MEG 2443"],
average=average,
avg_ref=True,
no_proj=False,
l_freq=None,
h_freq=None,
reject=None,
tmax=dur_use,
filter_length=1000,
)
assert len(projs) == (7 + n_projs_init)
assert np.abs(events.shape[0] - np.sum(np.less(eog_times, dur_use))) <= 1
ssp_eog = [proj for proj in projs if proj["desc"].startswith("EOG")]
# check that the first principal component have a certain minimum
ssp_eog = [proj for proj in ssp_eog if "PCA-01" in proj["desc"]]
thresh_eeg, thresh_axial, thresh_planar = 0.9, 0.3, 0.1
for proj in ssp_eog:
if "planar" in proj["desc"]:
assert proj["explained_var"] > thresh_planar
elif "axial" in proj["desc"]:
assert proj["explained_var"] > thresh_axial
elif "eeg" in proj["desc"]:
assert proj["explained_var"] > thresh_eeg
# XXX: better tests
with _record_warnings(), pytest.warns(RuntimeWarning, match="longer"):
projs, events = compute_proj_eog(
raw,
n_mag=2,
n_grad=2,
n_eeg=2,
average=average,
bads=[],
avg_ref=True,
no_proj=False,
l_freq=None,
h_freq=None,
tmax=dur_use,
)
assert projs == []
raw._data[raw.ch_names.index("EOG 061"), :] = 1.0
with (
_record_warnings(),
pytest.warns(RuntimeWarning, match="filter.*longer than the signal"),
):
projs, events = compute_proj_eog(raw=raw, tmax=dur_use, ch_name="EOG 061")
@pytest.mark.slowtest # can be slow on OSX
def test_compute_proj_parallel(short_raw):
"""Test computation of ExG projectors using parallelization."""
short_raw = short_raw.copy().pick(("eeg", "eog")).resample(100)
raw = short_raw.copy()
with pytest.warns(RuntimeWarning, match="Attenuation"):
projs, _ = compute_proj_eog(
raw,
n_eeg=2,
bads=raw.ch_names[1:2],
average=False,
avg_ref=True,
no_proj=False,
n_jobs=None,
l_freq=None,
h_freq=None,
reject=None,
tmax=dur_use,
filter_length=100,
)
raw_2 = short_raw.copy()
with _record_warnings(), pytest.warns(RuntimeWarning, match="Attenuation"):
projs_2, _ = compute_proj_eog(
raw_2,
n_eeg=2,
bads=raw.ch_names[1:2],
average=False,
avg_ref=True,
no_proj=False,
n_jobs=2,
l_freq=None,
h_freq=None,
reject=None,
tmax=dur_use,
filter_length=100,
)
projs = activate_proj(projs)
projs_2 = activate_proj(projs_2)
projs, _, _ = make_projector(projs, raw_2.info["ch_names"], bads=["MEG 2443"])
projs_2, _, _ = make_projector(projs_2, raw_2.info["ch_names"], bads=["MEG 2443"])
assert_array_almost_equal(projs, projs_2, 10)
def _check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs):
assert projs is not None
for p in projs:
if "planar" in p["desc"]:
assert len(p["data"]["col_names"]) == n_grads
elif "axial" in p["desc"]:
assert len(p["data"]["col_names"]) == n_mags
elif "eeg" in p["desc"]:
assert len(p["data"]["col_names"]) == n_eegs
@pytest.mark.slowtest # can be slow on OSX
@testing.requires_testing_data
def test_compute_proj_ctf():
"""Test to show that projector code completes on CTF data."""
raw = read_raw_ctf(ctf_fname, preload=True)
# expected channels per projector type
mag_picks = pick_types(raw.info, meg="mag", ref_meg=False, exclude="bads")[::10]
n_mags = len(mag_picks)
grad_picks = pick_types(raw.info, meg="grad", ref_meg=False, exclude="bads")[::10]
n_grads = len(grad_picks)
eeg_picks = pick_types(
raw.info, meg=False, eeg=True, ref_meg=False, exclude="bads"
)[2::3]
n_eegs = len(eeg_picks)
ref_picks = pick_types(raw.info, meg=False, ref_meg=True)
raw.pick(np.sort(np.concatenate([mag_picks, grad_picks, eeg_picks, ref_picks])))
del mag_picks, grad_picks, eeg_picks, ref_picks
# Test with and without gradient compensation
raw.apply_gradient_compensation(0)
n_projs_init = len(raw.info["projs"])
with pytest.warns(RuntimeWarning, match="Attenuation"):
projs, _ = compute_proj_eog(
raw,
n_mag=2,
n_grad=2,
n_eeg=2,
average=True,
ch_name="EEG059",
avg_ref=True,
no_proj=False,
l_freq=None,
h_freq=None,
reject=None,
tmax=dur_use,
filter_length=1000,
)
_check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs)
assert len(projs) == (5 + n_projs_init)
raw.apply_gradient_compensation(1)
with pytest.warns(RuntimeWarning, match="Attenuation"):
projs, _ = compute_proj_ecg(
raw,
n_mag=1,
n_grad=1,
n_eeg=2,
average=True,
ch_name="EEG059",
avg_ref=True,
no_proj=False,
l_freq=None,
h_freq=None,
reject=None,
tmax=dur_use,
filter_length=1000,
)
_check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs)
assert len(projs) == (4 + n_projs_init)