[074d3d]: / mne / preprocessing / tests / test_infomax.py

Download this file

199 lines (159 with data), 6.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# Parts of this code are taken from scikit-learn
import numpy as np
import pytest
from numpy.testing import assert_almost_equal
from scipy import stats
from mne.preprocessing.infomax_ import infomax
from mne.utils import pinv
pytest.importorskip("sklearn")
def center_and_norm(x, axis=-1):
"""Center and norm x in place.
Parameters
----------
x: ndarray
Array with an axis of observations (statistical units) measured on
random variables.
axis: int, optional
Axis along which the mean and variance are calculated.
"""
x = np.rollaxis(x, axis)
x -= x.mean(axis=0)
x /= x.std(axis=0)
def test_infomax_blowup():
"""Test the infomax algorithm blowup condition."""
# scipy.stats uses the global RNG:
np.random.seed(0)
n_samples = 100
# Generate two sources:
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
s2 = stats.t.rvs(1, size=n_samples)
s = np.c_[s1, s2].T
center_and_norm(s)
s1, s2 = s
# Mixing angle
phi = 0.6
mixing = np.array(
[[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]] # noqa: E241
)
m = np.dot(mixing, s)
center_and_norm(m)
X = _get_pca().fit_transform(m.T)
k_ = infomax(X, extended=True, l_rate=0.1)
s_ = np.dot(k_, X.T)
center_and_norm(s_)
s1_, s2_ = s_
# Check to see if the sources have been estimated
# in the wrong order
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
s2_, s1_ = s_
s1_ *= np.sign(np.dot(s1_, s1))
s2_ *= np.sign(np.dot(s2_, s2))
# Check that we have estimated the original sources
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)
def test_infomax_simple():
"""Test the infomax algorithm on very simple data."""
rng = np.random.RandomState(0)
# scipy.stats uses the global RNG:
np.random.seed(0)
n_samples = 500
# Generate two sources:
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
s2 = stats.t.rvs(1, size=n_samples)
s = np.c_[s1, s2].T
center_and_norm(s)
s1, s2 = s
# Mixing angle
phi = 0.6
mixing = np.array(
[[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]] # noqa: E241
)
for add_noise in (False, True):
m = np.dot(mixing, s)
if add_noise:
m += 0.1 * rng.randn(2, n_samples)
center_and_norm(m)
algos = [True, False]
for algo in algos:
X = _get_pca().fit_transform(m.T)
k_ = infomax(X, extended=algo)
s_ = np.dot(k_, X.T)
center_and_norm(s_)
s1_, s2_ = s_
# Check to see if the sources have been estimated
# in the wrong order
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
s2_, s1_ = s_
s1_ *= np.sign(np.dot(s1_, s1))
s2_ *= np.sign(np.dot(s2_, s2))
# Check that we have estimated the original sources
if not add_noise:
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)
else:
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1)
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1)
def test_infomax_weights_ini():
"""Test the infomax algorithm w/initial weights matrix."""
X = np.random.random((3, 100))
weights = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64)
w1 = infomax(X, max_iter=0, weights=weights, extended=True)
w2 = infomax(X, max_iter=0, weights=weights, extended=False)
assert_almost_equal(w1, weights)
assert_almost_equal(w2, weights)
def test_non_square_infomax():
"""Test non-square infomax."""
rng = np.random.RandomState(0)
n_samples = 200
# Generate two sources:
t = np.linspace(0, 100, n_samples)
s1 = np.sin(t)
s2 = np.ceil(np.sin(np.pi * t))
s = np.c_[s1, s2].T
center_and_norm(s)
s1, s2 = s
# Mixing matrix
n_observed = 6
mixing = rng.randn(n_observed, 2)
for add_noise in (False, True):
m = np.dot(mixing, s)
if add_noise:
m += 0.1 * rng.randn(n_observed, n_samples)
center_and_norm(m)
m = m.T
m = _get_pca(rng).fit_transform(m)
# we need extended since input signals are sub-gaussian
unmixing_ = infomax(m, random_state=rng, extended=True)
s_ = np.dot(unmixing_, m.T)
# Check that the mixing model described in the docstring holds:
mixing_ = pinv(unmixing_.T)
assert_almost_equal(m, s_.T.dot(mixing_))
center_and_norm(s_)
s1_, s2_ = s_
# Check to see if the sources have been estimated
# in the wrong order
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
s2_, s1_ = s_
s1_ *= np.sign(np.dot(s1_, s1))
s2_ *= np.sign(np.dot(s2_, s2))
# Check that we have estimated the original sources
if not add_noise:
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)
@pytest.mark.parametrize("return_n_iter", [True, False])
def test_infomax_n_iter(return_n_iter):
"""Test the return_n_iter kwarg."""
X = np.random.random((3, 100))
max_iter = 1
r = infomax(X, max_iter=max_iter, extended=True, return_n_iter=return_n_iter)
if return_n_iter:
assert isinstance(r, tuple)
assert r[1] == max_iter
else:
assert isinstance(r, np.ndarray)
def _get_pca(rng=None):
from sklearn.decomposition import PCA
return PCA(n_components=2, whiten=True, svd_solver="randomized", random_state=rng)