[074d3d]: / mne / preprocessing / tests / test_ica.py

Download this file

1722 lines (1511 with data), 62.2 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
import shutil
from contextlib import nullcontext
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
from scipy import linalg, stats
from scipy.io import loadmat, savemat
from mne import (
Annotations,
Epochs,
EpochsArray,
EvokedArray,
Info,
create_info,
make_ad_hoc_cov,
pick_channels_regexp,
pick_types,
read_events,
)
from mne._fiff.pick import _DATA_CH_TYPES_SPLIT, get_channel_type_constants
from mne.cov import read_cov
from mne.datasets import testing
from mne.event import make_fixed_length_events
from mne.io import RawArray, read_raw_ctf, read_raw_eeglab, read_raw_fif
from mne.io.eeglab.eeglab import _check_load_mat
from mne.preprocessing import (
ICA as _ICA,
)
from mne.preprocessing import (
ica_find_ecg_events,
ica_find_eog_events,
read_ica,
)
from mne.preprocessing.ica import (
_ica_explained_variance,
_sort_components,
corrmap,
get_score_funcs,
read_ica_eeglab,
)
from mne.rank import _compute_rank_int
from mne.utils import _record_warnings, catch_logging, check_version
data_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = data_dir / "test_raw.fif"
event_name = data_dir / "test-eve.fif"
test_cov_name = data_dir / "test-cov.fif"
test_base_dir = testing.data_path(download=False)
ctf_fname = test_base_dir / "CTF" / "testdata_ctf.ds"
fif_fname = test_base_dir / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
eeglab_fname = test_base_dir / "EEGLAB" / "test_raw.set"
eeglab_montage = test_base_dir / "EEGLAB" / "test_chans.locs"
ctf_fname2 = test_base_dir / "CTF" / "catch-alp-good-f.ds"
event_id, tmin, tmax = 1, -0.2, 0.2
# if stop is too small pca may fail in some cases, but we're okay on this file
start, stop = 0, 6
score_funcs_unsuited = ["pointbiserialr", "ansari"]
pymatreader_mark = pytest.mark.skipif(
not check_version("pymatreader"), reason="Requires pymatreader"
)
pytest.importorskip("sklearn")
_baseline_corrected = pytest.warns(RuntimeWarning, match="were baseline-corrected")
def ICA(*args, **kwargs):
"""Fix the random state in tests."""
if "random_state" not in kwargs:
kwargs["random_state"] = 0
return _ICA(*args, **kwargs)
def _skip_check_picard(method):
if method == "picard":
pytest.importorskip("picard")
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_full_data_recovery(method):
"""Test recovery of full data when no source is rejected."""
# Most basic recovery
_skip_check_picard(method)
raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
with raw.info._unlock():
raw.info["projs"] = []
events = read_events(event_name)
picks = pick_types(
raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
)[:10]
epochs = Epochs(
raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, preload=True
)
evoked = epochs.average()
n_channels = 5
data = raw._data[:n_channels].copy()
data_epochs = epochs.get_data(copy=True)
data_evoked = evoked.data
raw.set_annotations(Annotations([0.5], [0.5], ["BAD"]))
methods = [method]
for method in methods:
stuff = [(2, n_channels, True), (2, n_channels // 2, False)]
for n_components, n_pca_components, ok in stuff:
ica = ICA(
n_components=n_components, random_state=0, method=method, max_iter=1
)
kwargs = dict(exclude=[], n_pca_components=n_pca_components)
picks = list(range(n_channels))
with pytest.warns(UserWarning, match=None): # sometimes warns
ica.fit(raw, picks=picks)
_assert_ica_attributes(ica, raw.get_data(picks))
raw2 = ica.apply(raw.copy(), **kwargs)
if ok:
assert_allclose(
data[:n_channels], raw2._data[:n_channels], rtol=1e-10, atol=1e-15
)
else:
diff = np.abs(data[:n_channels] - raw2._data[:n_channels])
assert np.max(diff) > 1e-14
ica = ICA(n_components=n_components, method=method, random_state=0)
with _record_warnings(): # sometimes warns
ica.fit(epochs, picks=picks)
_assert_ica_attributes(ica, epochs.get_data(picks))
epochs2 = ica.apply(epochs.copy(), **kwargs)
data2 = epochs2.get_data(picks=slice(0, n_channels))
if ok:
assert_allclose(
data_epochs[:, :n_channels], data2, rtol=1e-10, atol=1e-15
)
else:
diff = np.abs(data_epochs[:, :n_channels] - data2)
assert np.max(diff) > 1e-14
evoked2 = ica.apply(evoked.copy(), **kwargs)
data2 = evoked2.data[:n_channels]
if ok:
assert_allclose(data_evoked[:n_channels], data2, rtol=1e-10, atol=1e-15)
else:
diff = np.abs(evoked.data[:n_channels] - data2)
assert np.max(diff) > 1e-14
with pytest.raises(ValueError, match="Invalid value"):
ICA(method="pizza-decomposision")
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_simple(method):
"""Test that ICA recovers the unmixing matrix in a simple case."""
_skip_check_picard(method)
n_components = 3
n_samples = 1000
rng = np.random.RandomState(0)
S = rng.laplace(size=(n_components, n_samples))
A = rng.randn(n_components, n_components)
data = np.dot(A, S)
info = create_info(data.shape[-2], 1000.0, "eeg")
cov = make_ad_hoc_cov(info)
ica = ICA(n_components=n_components, method=method, random_state=0, noise_cov=cov)
with (
pytest.warns(RuntimeWarning, match="high-pass filtered"),
pytest.warns(RuntimeWarning, match="No average EEG.*"),
):
ica.fit(RawArray(data, info))
transform = ica.unmixing_matrix_ @ ica.pca_components_ @ A
amari_distance = np.mean(
np.sum(np.abs(transform), axis=1) / np.max(np.abs(transform), axis=1) - 1.0
)
assert amari_distance < 0.1
def test_warnings():
"""Test that ICA warns on certain input data conditions."""
raw = read_raw_fif(raw_fname).crop(0, 5).load_data()
events = read_events(event_name)
epochs = Epochs(raw, events=events, baseline=None, preload=True)
ica = ICA(n_components=2, max_iter=1, method="infomax", random_state=0)
# not high-passed
with epochs.info._unlock():
epochs.info["highpass"] = 0.0
with pytest.warns(RuntimeWarning, match="should be high-pass filtered"):
ica.fit(epochs)
# baselined
with epochs.info._unlock():
epochs.info["highpass"] = 1.0
epochs.baseline = (epochs.tmin, 0)
with pytest.warns(RuntimeWarning, match="epochs.*were baseline-corrected"):
ica.fit(epochs)
# cleaning baseline-corrected data
with epochs.info._unlock():
epochs.info["highpass"] = 1.0
epochs.baseline = None
ica.fit(epochs)
epochs.baseline = (epochs.tmin, 0)
with pytest.warns(RuntimeWarning, match="consider baseline-correcting.*again"):
ica.apply(epochs)
@pytest.mark.parametrize("n_components", (None, 0.9999, 8, 9, 10))
@pytest.mark.parametrize("n_pca_components", [8, 9, 0.9999, 10])
@pytest.mark.filterwarnings("ignore:FastICA did not converge.*:UserWarning")
def test_ica_noop(n_components, n_pca_components, tmp_path):
"""Test that our ICA is stable even with a bad max_pca_components."""
data = np.random.RandomState(0).randn(10, 1000)
info = create_info(10, 1000.0, "eeg")
raw = RawArray(data, info)
raw.set_eeg_reference()
with raw.info._unlock():
raw.info["highpass"] = 1.0 # fake high-pass filtering
assert np.linalg.matrix_rank(raw.get_data()) == 9
kwargs = dict(n_components=n_components, verbose=True)
if (
isinstance(n_components, int)
and isinstance(n_pca_components, int)
and n_components > n_pca_components
):
return
ica = ICA(**kwargs)
ica.n_pca_components = n_pca_components # backward compat
if n_components == 10 and n_pca_components == 0.9999:
with pytest.raises(RuntimeError, match=".*requires.*PCA.*"):
ica.fit(raw)
return
if n_components == 10 and n_pca_components == 10:
ctx = pytest.warns(RuntimeWarning, match=".*unstable.*integer <= 9")
bad = True # pinv will fail
elif n_components == 0.9999 and n_pca_components == 8:
ctx = pytest.raises(RuntimeError, match="requires 9 PCA values.*but")
bad = "exit"
else:
bad = False # pinv will not fail
ctx = nullcontext()
with ctx:
ica.fit(raw)
assert ica._max_pca_components is None
if bad == "exit":
return
raw_new = ica.apply(raw.copy())
# 8 components is not a no-op; "bad" means our pinv has failed
if n_pca_components == 8 or bad:
assert ica.n_pca_components == n_pca_components
assert not np.allclose(raw.get_data(), raw_new.get_data(), atol=0)
return
assert_allclose(raw.get_data(), raw_new.get_data(), err_msg="Id failure")
_assert_ica_attributes(ica, data)
# and with I/O
fname = tmp_path / "temp-ica.fif"
ica.save(fname)
ica_new = read_ica(fname)
raw_new = ica_new.apply(raw.copy())
assert_allclose(raw.get_data(), raw_new.get_data(), err_msg="I/O failure")
_assert_ica_attributes(ica_new)
assert ica.reject_ == ica_new.reject_
@pytest.mark.parametrize(
"method, max_iter_default", [("fastica", 1000), ("infomax", 500), ("picard", 500)]
)
def test_ica_max_iter_(method, max_iter_default):
"""Test that ICA.max_iter is set to the right defaults."""
_skip_check_picard(method)
# check that new defaults come out for 'auto'
ica = ICA(n_components=3, method=method, max_iter="auto")
assert ica.max_iter == max_iter_default
# check that user input comes out unchanged
ica = ICA(n_components=3, method=method, max_iter=2000)
assert ica.max_iter == 2000
with pytest.raises(ValueError, match="Invalid"):
ICA(max_iter="foo")
with pytest.raises(TypeError, match="must be an instance"):
ICA(max_iter=1.0)
@pytest.mark.parametrize("method", ["infomax", "fastica", "picard"])
def test_ica_n_iter_(method, tmp_path):
"""Test that ICA.n_iter_ is set after fitting."""
_skip_check_picard(method)
raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
n_components = 3
max_iter = 1
ica = ICA(
n_components=n_components, max_iter=max_iter, method=method, random_state=0
)
if method == "infomax":
ica.fit(raw)
else:
with pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw)
assert ica.method == method
assert_equal(ica.n_iter_, max_iter)
# Test I/O roundtrip.
output_fname = tmp_path / "test_ica-ica.fif"
_assert_ica_attributes(ica, raw.get_data("data"), limits=(5, 110))
ica.save(output_fname)
ica = read_ica(output_fname)
assert ica.method == method
_assert_ica_attributes(ica)
assert_equal(ica.n_iter_, max_iter)
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_rank_reduction(method):
"""Test recovery ICA rank reduction."""
_skip_check_picard(method)
# Most basic recovery
raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
picks = pick_types(
raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
)[:10]
n_components = 5
for n_pca_components in [6, 10]:
with pytest.warns(UserWarning, match="did not converge"):
ica = ICA(n_components=n_components, method=method, max_iter=1).fit(
raw, picks=picks
)
rank_before = _compute_rank_int(raw.copy().pick(picks), proj=False)
assert_equal(rank_before, len(picks))
raw_clean = ica.apply(raw.copy(), n_pca_components=n_pca_components)
rank_after = _compute_rank_int(raw_clean.copy().pick(picks), proj=False)
# interaction between ICA rejection and PCA components difficult
# to preduct. Rank_after often seems to be 1 higher then
# n_pca_components
assert n_components < n_pca_components <= rank_after <= rank_before
# This is a lot of parameters but they interact so they matter. Also they in
# total take < 2 s on a workstation.
@pytest.mark.parametrize("n_pca_components", (None, 0.999999))
@pytest.mark.parametrize("proj", (True, False))
@pytest.mark.parametrize("cov", (False, True))
@pytest.mark.parametrize(
"picks",
(
[],
["mag"],
["meg"],
["eeg"],
["eeg", "mag"],
["eeg", "meg"],
),
)
def test_ica_projs(n_pca_components, proj, cov, picks):
"""Test that ICA handles projections properly."""
if cov and not proj: # proj is always done with cov
return
if not len(picks): # no channels
return
raw = read_raw_fif(raw_fname).crop(0.5, stop).pick(picks)
raw.pick(np.arange(0, len(raw.ch_names), 5)) # just for speed
raw.info.normalize_proj()
assert 10 < len(raw.ch_names) < 75
if "eeg" in picks:
raw.set_eeg_reference(projection=True)
raw.load_data()
raw._data -= raw._data.mean(-1, keepdims=True)
raw_data = raw.get_data()
assert len(raw.info["projs"]) > 0
assert not raw.proj
raw_fit = raw.copy()
kwargs = dict(atol=1e-12 if "eeg" in picks else 1e-20, rtol=1e-8)
if proj:
raw_fit.apply_proj()
fit_data = raw_fit.get_data()
if proj:
assert not np.allclose(raw_fit.get_data(), raw_data, **kwargs)
else:
assert np.allclose(raw_fit.get_data(), raw_data, **kwargs)
assert raw_fit.proj == proj
if cov:
noise_cov = make_ad_hoc_cov(raw.info)
else:
noise_cov = None
# infomax here just so we don't require sklearn
ica = ICA(max_iter=1, noise_cov=noise_cov, method="infomax", n_components=10)
with _record_warnings(): # convergence
ica.fit(raw_fit)
if cov:
assert ica.pre_whitener_.shape == (len(raw.ch_names),) * 2
else:
assert ica.pre_whitener_.shape == (len(raw.ch_names), 1)
with catch_logging() as log:
raw_apply = ica.apply(
raw_fit.copy(), n_pca_components=n_pca_components, verbose=True
)
log = log.getvalue()
print(log) # very useful for debugging, might as well leave it in
if proj:
assert "Applying projection" in log
else:
assert "Applying projection" not in log
assert_allclose(raw_apply.get_data(), fit_data, **kwargs)
raw_apply = ica.apply(raw.copy())
apply_data = raw_apply.get_data()
assert_allclose(apply_data, fit_data, **kwargs)
if proj:
assert not np.allclose(apply_data, raw_data, **kwargs)
else:
assert_allclose(apply_data, raw_data, **kwargs)
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_reset(method):
"""Test ICA resetting."""
_skip_check_picard(method)
raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
picks = pick_types(
raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
)[:10]
run_time_attrs = (
"pre_whitener_",
"unmixing_matrix_",
"mixing_matrix_",
"n_components_",
"n_samples_",
"pca_components_",
"pca_explained_variance_",
"pca_mean_",
"n_iter_",
)
ica = ICA(n_components=3, method=method, max_iter=1)
assert ica.current_fit == "unfitted"
with pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw, picks=picks)
assert all(hasattr(ica, attr) for attr in run_time_attrs)
assert ica.labels_ is not None
assert ica.current_fit == "raw"
ica._reset()
assert not any(hasattr(ica, attr) for attr in run_time_attrs)
assert ica.labels_ is not None
assert ica.current_fit == "unfitted"
@pytest.mark.parametrize("method", ["fastica", "picard"])
@pytest.mark.parametrize("n_components", (2, 0.6))
@pytest.mark.parametrize("noise_cov", (False, True))
@pytest.mark.parametrize("n_pca_components", [20])
def test_ica_core(method, n_components, noise_cov, n_pca_components, browser_backend):
"""Test ICA on raw and epochs."""
_skip_check_picard(method)
raw = read_raw_fif(raw_fname).crop(0, stop).load_data()
# The None cases help reveal bugs but are time consuming.
if noise_cov:
noise_cov = read_cov(test_cov_name)
noise_cov["projs"] = [] # avoid warnings
else:
noise_cov = None
events = read_events(event_name)
picks = pick_types(
raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
)[::4]
raw.pick(picks[::4])
raw.del_proj()
del picks
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, baseline=None, preload=True)
# test essential core functionality
# Test ICA raw
ica = ICA(noise_cov=noise_cov, n_components=n_components, method=method, max_iter=1)
with pytest.raises(ValueError, match="Cannot check for channels of t"):
"meg" in ica
print(ica) # to test repr
repr_ = ica.__repr__()
repr_html_ = ica._repr_html_()
assert repr_ == f"<ICA | no decomposition, method: {method}>"
assert method in repr_html_
assert "max_iter=1" in repr_html_
# test fit checker
with pytest.raises(RuntimeError, match="No fit available"):
ica.get_sources(raw)
with pytest.raises(RuntimeError, match="No fit available"):
ica.get_sources(epochs)
# Test error upon empty epochs fitting
with pytest.raises(RuntimeError, match="none were found"):
ica.fit(epochs[0:0])
# test decomposition
with pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw)
repr(ica) # to test repr
repr_ = ica.__repr__()
repr_html_ = ica._repr_html_()
assert "raw data decomposition" in repr_
assert f"{ica.n_components_} ICA components" in repr_
assert "Available PCA components" in repr_html_
assert "mag" in ica # should now work without error
# test re-fit
unmixing1 = ica.unmixing_matrix_
with pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw)
assert_array_almost_equal(unmixing1, ica.unmixing_matrix_)
raw_sources = ica.get_sources(raw)
# test for #3804
assert_equal(raw_sources.filenames, (None,))
print(raw_sources)
# test for gh-6271 (scaling of ICA traces)
fig = raw_sources.plot(clipping=None)
assert len(fig.mne.traces) in (2, 6)
for line in fig.mne.traces:
y = line.get_ydata()
assert np.ptp(y) < 15
sources = raw_sources[:, :][0]
assert sources.shape[0] == ica.n_components_
# test preload filter
raw3 = raw.copy()
raw3.preload = False
with pytest.raises(RuntimeError, match="to be loaded"):
ica.apply(raw3)
#######################################################################
# test epochs decomposition
ica = ICA(noise_cov=noise_cov, n_components=n_components, method=method)
with _record_warnings(): # sometimes warns
ica.fit(epochs)
_assert_ica_attributes(ica, epochs.get_data(copy=False), limits=(0.2, 20))
data = epochs.get_data(picks=[0])[:, 0]
n_samples = np.prod(data.shape)
assert_equal(ica.n_samples_, n_samples)
print(ica) # to test repr
sources = ica.get_sources(epochs).get_data(copy=False)
assert sources.shape[1] == ica.n_components_
with pytest.raises(ValueError, match="target do not have the same nu"):
ica.score_sources(epochs, target=np.arange(1))
# test preload filter
epochs3 = epochs.copy()
epochs3.preload = False
with pytest.raises(RuntimeError, match="requires epochs data to be l"):
ica.apply(epochs3)
# test for bug with whitener updating
_pre_whitener = ica.pre_whitener_.copy()
epochs._data[:, 0, 10:15] *= 1e12
ica.apply(epochs.copy())
assert_array_equal(_pre_whitener, ica.pre_whitener_)
# test expl. var threshold leading to empty sel
ica.n_components = 0.1
with pytest.raises(RuntimeError, match="One PCA component captures most"):
ica.fit(epochs)
offender = (
1,
2,
3,
)
with pytest.raises(ValueError, match="Data input must be of Raw"):
ica.get_sources(offender)
with pytest.raises(TypeError, match="must be an instance of"):
ica.fit(offender)
with pytest.raises(TypeError, match="must be an instance of"):
ica.apply(offender)
# gh-7868
ica.n_pca_components = 3
ica.n_components = None
with pytest.raises(ValueError, match="pca_components.*is greater"):
ica.fit(epochs, picks=[0, 1])
ica.n_pca_components = None
ica.n_components = 3
with pytest.raises(ValueError, match="n_components.*cannot be greater"):
ica.fit(epochs, picks=[0, 1])
@pytest.fixture
def short_raw_epochs():
"""Get small data."""
raw = read_raw_fif(raw_fname).crop(0, 5).load_data()
# some gymnastics here because tests fail if the channels get out of order...
picks = raw.ch_names[::10] + ["EOG 061", "MEG 1531", "MEG 1441", "MEG 0121"]
raw.pick(list(filter(lambda ch: ch in picks, raw.ch_names)))
assert "eog" in raw
raw.del_proj() # avoid warnings
raw.set_annotations(Annotations([0.5], [0.5], ["BAD"]))
raw.resample(100)
# XXX This breaks the tests :(
# raw.info['bads'] = [raw.ch_names[1]]
# Create epochs that have different channels from raw
events = make_fixed_length_events(raw)
picks = pick_types(raw.info, meg=True, eeg=True, eog=False)[:-1]
epochs = Epochs(
raw,
events,
None,
tmin,
tmax,
picks=picks,
baseline=(None, 0),
preload=True,
proj=False,
)
assert len(epochs) == 3
epochs_eog = Epochs(
raw,
epochs.events,
event_id,
tmin,
tmax,
picks=("meg", "eog"),
baseline=(None, 0),
preload=True,
)
return raw, epochs, epochs_eog
@pytest.mark.slowtest
@pytest.mark.parametrize("method", ["picard", "fastica"])
def test_ica_additional(method, tmp_path, short_raw_epochs):
"""Test additional ICA functionality."""
_skip_check_picard(method)
raw, epochs, epochs_eog = short_raw_epochs
few_picks = np.arange(5)
# test if n_components=None works
ica = ICA(n_components=None, method=method, max_iter=1)
with _baseline_corrected, pytest.warns(UserWarning, match="did not converge"):
ica.fit(epochs)
_assert_ica_attributes(ica, epochs.get_data("data"), limits=(0.05, 20))
test_cov = read_cov(test_cov_name)
ica = ICA(noise_cov=test_cov, n_components=3, method=method)
assert ica.info is None
with pytest.warns(RuntimeWarning, match="normalize_proj"):
ica.fit(raw, picks=few_picks)
_assert_ica_attributes(ica, raw.get_data(np.arange(5)), limits=(1, 90))
assert isinstance(ica.info, Info)
assert ica.n_components_ < 5
ica = ICA(n_components=3, method=method, max_iter=1)
with pytest.raises(RuntimeError, match="No fit"):
ica.save("")
with pytest.warns(Warning, match="converge"):
ica.fit(raw, np.arange(1, 6))
_assert_ica_attributes(ica, raw.get_data(np.arange(1, 6)))
# check Kuiper index threshold
assert_allclose(ica._get_ctps_threshold(), 0.5)
with pytest.raises(TypeError, match="str or numeric"):
ica.find_bads_ecg(raw, threshold=None)
with pytest.warns(RuntimeWarning, match="is longer than the signal"):
ica.find_bads_ecg(raw, threshold=0.25)
# check invalid measure argument
with pytest.raises(ValueError, match="Invalid value"):
ica.find_bads_ecg(
raw, method="correlation", measure="unknown", threshold="auto"
)
# check passing a ch_name to find_bads_ecg
with pytest.warns(RuntimeWarning, match="longer"):
_, scores_1 = ica.find_bads_ecg(raw, threshold="auto")
with pytest.warns(RuntimeWarning, match="longer"):
_, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1], threshold="auto")
assert scores_1[0] != scores_2[0]
# test corrmap
ica2 = ica.copy()
ica3 = ica.copy()
corrmap(
[ica, ica2], (0, 0), threshold="auto", label="blinks", plot=True, ch_type="mag"
)
with pytest.raises(RuntimeError, match="No component detected"):
corrmap(
[ica, ica2],
(0, 0),
threshold=2,
plot=False,
show=False,
)
with catch_logging(True) as log:
corrmap([ica, ica2], (0, 0), threshold=0.5, plot=False, show=False)
log = log.getvalue()
assert "Median correlation with constructed map: 1.0" in log
assert ica.labels_["blinks"] == ica2.labels_["blinks"]
assert 0 in ica.labels_["blinks"]
# test retrieval of component maps as arrays
components = ica.get_components()
template = components[:, 0]
EvokedArray(components, ica.info, tmin=0.0).plot_topomap([0], time_unit="s")
corrmap(
[ica, ica3],
template,
threshold="auto",
label="blinks",
plot=True,
ch_type="mag",
)
assert ica2.labels_["blinks"] == ica3.labels_["blinks"]
plt.close("all")
# No match
bad_ica = ica2.copy()
bad_ica.mixing_matrix_[:] = 0.0
with pytest.warns(RuntimeWarning, match="divide"):
with catch_logging() as log:
corrmap(
[ica, bad_ica],
(0, 0),
threshold=0.5,
plot=False,
show=False,
verbose=True,
)
log = log.getvalue()
assert "No maps selected" in log
# make sure a single threshold in a list works
corrmap(
[ica, ica3],
template,
threshold=[0.5],
label="blinks",
plot=False,
ch_type="mag",
)
ica_different_channels = ICA(n_components=2, max_iter=1)
with pytest.warns(Warning, match="converge"):
ica_different_channels.fit(raw, picks=[2, 3, 4, 5])
with pytest.raises(ValueError, match="Not all ICA instances have the"):
corrmap([ica_different_channels, ica], (0, 0))
# test warnings on bad filenames
ica_badname = tmp_path / "test-bad-name.fif.gz"
with pytest.warns(RuntimeWarning, match="-ica.fif"):
ica.save(ica_badname)
with pytest.warns(RuntimeWarning, match="-ica.fif"):
read_ica(ica_badname)
# test decim
ica = ICA(n_components=3, method=method, max_iter=1)
raw_ = raw.copy()
for _ in range(3):
raw_.append(raw_)
n_samples = raw_._data.shape[1]
with pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw, picks=few_picks)
_assert_ica_attributes(ica)
assert raw_._data.shape[1] == n_samples
# test expl var
with pytest.raises(ValueError, match=r".*1.0 \(exclusive\).*"):
ICA(n_components=1.0, method=method)
with pytest.raises(ValueError, match="Selecting one component"):
ICA(n_components=1, method=method)
ica = ICA(n_components=4, method=method, max_iter=1)
with pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw)
_assert_ica_attributes(ica)
assert ica.n_components_ == 4
ica_var = _ica_explained_variance(ica, raw, normalize=True)
assert np.all(ica_var[:-1] >= ica_var[1:])
# test ica sorting
ica.exclude = [0]
ica.labels_ = dict(blink=[0], think=[1])
ica_sorted = _sort_components(ica, [3, 2, 1, 0], copy=True)
assert_equal(ica_sorted.exclude, [3])
assert_equal(ica_sorted.labels_, dict(blink=[3], think=[2]))
# epochs extraction from raw fit
with pytest.raises(ValueError, match="not present in the info"):
ica.get_sources(epochs)
# test filtering
ica_raw = ica.get_sources(raw)
d1 = ica_raw._data[0].copy()
ica_raw.filter(4, 20, fir_design="firwin2")
assert_equal(ica_raw.info["lowpass"], 20.0)
assert_equal(ica_raw.info["highpass"], 4.0)
assert (d1 != ica_raw._data[0]).any()
d1 = ica_raw._data[0].copy()
ica_raw.notch_filter([10], trans_bandwidth=10, fir_design="firwin")
assert (d1 != ica_raw._data[0]).any()
test_ica_fname = tmp_path / "test-ica.fif"
ica.n_pca_components = 2
ica.method = "fake"
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert ica.n_pca_components == ica_read.n_pca_components
assert_equal(ica.method, ica_read.method)
assert_equal(ica.labels_, ica_read.labels_)
# check type consistency
attrs = (
"mixing_matrix_ unmixing_matrix_ pca_components_ "
"pca_explained_variance_ pre_whitener_"
)
def f(x, y):
return getattr(x, y).dtype
for attr in attrs.split():
assert_equal(f(ica_read, attr), f(ica, attr))
ica.n_pca_components = 4
ica_read.n_pca_components = 4
ica.exclude = []
ica.save(test_ica_fname, overwrite=True) # also testing overwrite
ica_read = read_ica(test_ica_fname)
for attr in [
"mixing_matrix_",
"unmixing_matrix_",
"pca_components_",
"pca_mean_",
"pca_explained_variance_",
"pre_whitener_",
]:
assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr))
assert ica.ch_names == ica_read.ch_names
assert isinstance(ica_read.info, Info)
sources = ica.get_sources(raw)[:, :][0]
sources2 = ica_read.get_sources(raw)[:, :][0]
assert_array_almost_equal(sources, sources2)
_raw1 = ica.apply(raw.copy(), exclude=[1])
_raw2 = ica_read.apply(raw.copy(), exclude=[1])
assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])
ica = ICA(n_components=2, method=method, max_iter=1)
with _record_warnings(): # ICA does not converge
ica.fit(raw, picks=few_picks)
# check score funcs
for name, func in get_score_funcs().items():
if name in score_funcs_unsuited:
continue
scores = ica.score_sources(
raw, target="EOG 061", score_func=func, start=0, stop=10
)
assert ica.n_components_ == len(scores)
# check univariate stats
scores = ica.score_sources(raw, start=0, stop=50, score_func=stats.skew)
# check exception handling
with pytest.raises(ValueError, match="Sources and target do not have"):
ica.score_sources(raw, target=np.arange(1))
evoked = epochs.average()
evoked_data = evoked.data.copy()
raw_data = raw[:][0].copy()
epochs_data = epochs.get_data(copy=True)
with pytest.warns(RuntimeWarning, match="longer"):
idx, scores = ica.find_bads_ecg(
raw, method="ctps", threshold="auto", start=0, stop=raw.times.size
)
assert_equal(len(scores), ica.n_components_)
with pytest.warns(RuntimeWarning, match="longer"):
idx, scores = ica.find_bads_ecg(raw, method="correlation", threshold="auto")
assert_equal(len(scores), ica.n_components_)
with pytest.warns(RuntimeWarning, match="longer"):
idx, scores = ica.find_bads_eog(raw)
assert_equal(len(scores), ica.n_components_)
with pytest.raises(ValueError, match="integer .* start and stop"):
idx, scores = ica.find_bads_ecg(epochs, start=0, stop=1000)
idx, scores = ica.find_bads_ecg(
epochs,
method="ctps",
threshold="auto",
start=epochs.times[0],
stop=epochs.times[-1],
)
assert_equal(len(scores), ica.n_components_)
with pytest.raises(ValueError, match="only Raw and Epochs input"):
ica.find_bads_ecg(epochs.average(), method="ctps", threshold="auto")
with pytest.raises(ValueError, match="Invalid value"):
ica.find_bads_ecg(raw, method="crazy-coupling")
with pytest.warns(RuntimeWarning, match="longer"):
idx, scores = ica.find_bads_eog(raw)
assert_equal(len(scores), ica.n_components_)
raw.info["chs"][raw.ch_names.index("EOG 061") - 1]["kind"] = 202
with pytest.warns(RuntimeWarning, match="longer"):
idx, scores = ica.find_bads_eog(raw)
assert isinstance(scores, list)
assert_equal(len(scores[0]), ica.n_components_)
idx, scores = ica.find_bads_eog(evoked, ch_name="MEG 1441")
assert_equal(len(scores), ica.n_components_)
with pytest.raises(ValueError, match="integer .* start and stop"):
idx, scores = ica.find_bads_ecg(evoked, start=0, stop=1000)
idx, scores = ica.find_bads_ecg(evoked, method="correlation", threshold="auto")
assert_equal(len(scores), ica.n_components_)
assert_array_equal(raw_data, raw[:][0])
assert_array_equal(epochs_data, epochs.get_data(copy=False))
assert_array_equal(evoked_data, evoked.data)
# check score funcs
for name, func in get_score_funcs().items():
if name in score_funcs_unsuited:
continue
scores = ica.score_sources(epochs_eog, target="EOG 061", score_func=func)
assert ica.n_components_ == len(scores)
# check univariate stats
scores = ica.score_sources(epochs, score_func=stats.skew)
# check exception handling
with pytest.raises(ValueError, match="Sources and target do not have"):
ica.score_sources(epochs, target=np.arange(1))
# ecg functionality
ecg_scores = ica.score_sources(raw, target="MEG 1531", score_func="pearsonr")
with pytest.warns(RuntimeWarning, match="longer"):
ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()])
assert ecg_events.ndim == 2
# eog functionality
eog_scores = ica.score_sources(raw, target="EOG 061", score_func="pearsonr")
with pytest.warns(RuntimeWarning, match="longer"):
eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()])
assert eog_events.ndim == 2
# Test ica fiff export
assert raw.last_samp - raw.first_samp + 1 == raw.n_times
assert raw.n_times > 100
ica_raw = ica.get_sources(raw, start=100, stop=200)
assert ica_raw.first_samp == raw.first_samp + 100
assert ica_raw.n_times == 100
assert ica_raw.last_samp - ica_raw.first_samp + 1 == 100
assert ica_raw._data.shape[1] == 100
assert_equal(len(ica_raw.filenames), 1) # API consistency
ica_chans = [ch for ch in ica_raw.ch_names if "ICA" in ch]
assert ica.n_components_ == len(ica_chans)
test_ica_fname = Path.cwd() / "test-ica_raw.fif"
ica.n_components = np.int32(ica.n_components)
ica_raw.save(test_ica_fname, overwrite=True)
ica_raw2 = read_raw_fif(test_ica_fname, preload=True)
assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4)
ica_raw2.close()
os.remove(test_ica_fname)
# Test ica epochs export
ica_epochs = ica.get_sources(epochs)
assert ica_epochs.events.shape == epochs.events.shape
ica_chans = [ch for ch in ica_epochs.ch_names if "ICA" in ch]
assert ica.n_components_ == len(ica_chans)
assert ica.n_components_ == ica_epochs.get_data(copy=False).shape[1]
assert ica_epochs._raw is None
assert ica_epochs.preload is True
# test float n pca components
ica.pca_explained_variance_ = np.array([0.2] * 5)
ica.n_components_ = 0
for ncomps, expected in [[0.3, 2], [0.9, 5], [1, 1]]:
ncomps_ = ica._check_n_pca_components(ncomps)
assert ncomps_ == expected
ica = ICA(method=method)
with _record_warnings(): # sometimes does not converge
ica.fit(raw, picks=few_picks)
_assert_ica_attributes(ica, raw.get_data(few_picks))
with pytest.warns(RuntimeWarning, match="longer"):
ica.find_bads_ecg(raw, threshold="auto")
ica.find_bads_eog(epochs, ch_name="MEG 0121")
assert_array_equal(raw_data, raw[:][0])
raw.drop_channels(raw.ch_names[:2])
with pytest.raises(ValueError, match="not present in the info"):
ica.find_bads_eog(raw)
with pytest.raises(ValueError, match="not present in the info"):
with pytest.warns(RuntimeWarning, match="longer"):
ica.find_bads_ecg(raw, threshold="auto")
# test passing picks including the marked bad channels
raw_ = raw.copy()
raw_.pick("eeg")
raw_.info["bads"] = [raw_.ch_names[0]]
picks = pick_types(raw_.info, eeg=True, exclude=[])
ica = ICA(n_components=0.99, max_iter="auto")
ica.fit(raw_, picks=picks, reject_by_annotation=True)
def test_get_explained_variance_ratio(tmp_path, short_raw_epochs):
"""Test ICA.get_explained_variance_ratio()."""
pytest.importorskip("sklearn")
raw, epochs, _ = short_raw_epochs
ica = ICA(max_iter=1)
# Unfitted ICA should raise an exception
with pytest.raises(ValueError, match="ICA must be fitted first"):
ica.get_explained_variance_ratio(epochs)
with _record_warnings(), _baseline_corrected:
ica.fit(epochs)
# components = int, ch_type = None
explained_var_comp_0 = ica.get_explained_variance_ratio(epochs, components=0)
# components = int, ch_type = str
explained_var_comp_0_eeg = ica.get_explained_variance_ratio(
epochs, components=0, ch_type="eeg"
)
# components = int, ch_type = list of str
explained_var_comp_0_eeg_mag = ica.get_explained_variance_ratio(
epochs, components=0, ch_type=["eeg", "mag"]
)
# components = list of int, single element, ch_type = None
explained_var_comp_1 = ica.get_explained_variance_ratio(epochs, components=[1])
# components = list of int, multiple elements, ch_type = None
explained_var_comps_01 = ica.get_explained_variance_ratio(epochs, components=[0, 1])
# components = None, i.e., all components, ch_type = None
explained_var_comps_all = ica.get_explained_variance_ratio(epochs, components=None)
assert "grad" in explained_var_comp_0
assert "mag" in explained_var_comp_0
assert "eeg" in explained_var_comp_0
assert len(explained_var_comp_0_eeg) == 1
assert "eeg" in explained_var_comp_0_eeg
assert "mag" in explained_var_comp_0_eeg_mag
assert "eeg" in explained_var_comp_0_eeg_mag
assert "grad" not in explained_var_comp_0_eeg_mag
assert round(explained_var_comp_0["grad"], 4) == 0.1784
assert round(explained_var_comp_0["mag"], 4) == 0.0259
assert round(explained_var_comp_0["eeg"], 4) == 0.0229
assert np.isclose(explained_var_comp_0["eeg"], explained_var_comp_0_eeg["eeg"])
assert np.isclose(explained_var_comp_0["mag"], explained_var_comp_0_eeg_mag["mag"])
assert np.isclose(explained_var_comp_0["eeg"], explained_var_comp_0_eeg_mag["eeg"])
assert round(explained_var_comp_1["eeg"], 4) == 0.0231
assert round(explained_var_comps_01["eeg"], 4) == 0.0459
assert (
explained_var_comps_all["grad"]
== explained_var_comps_all["mag"]
== explained_var_comps_all["eeg"]
== 1
)
# Test Raw
ica.get_explained_variance_ratio(raw)
# Test Evoked
evoked = epochs.average()
ica.get_explained_variance_ratio(evoked)
# Test Evoked without baseline correction
evoked.baseline = None
ica.get_explained_variance_ratio(evoked)
# Test invalid ch_type
with pytest.raises(ValueError, match="only the following channel types"):
ica.get_explained_variance_ratio(raw, ch_type="foobar")
@pytest.mark.slowtest
@pytest.mark.parametrize(
"method, cov",
[
("picard", None),
("picard", test_cov_name),
("fastica", None),
],
)
def test_ica_cov(method, cov, tmp_path, short_raw_epochs):
"""Test ICA with cov."""
_skip_check_picard(method)
raw, epochs, epochs_eog = short_raw_epochs
if cov is not None:
cov = read_cov(cov)
# test reading and writing
test_ica_fname = tmp_path / "test-ica.fif"
kwargs = dict(n_pca_components=4)
ica = ICA(noise_cov=cov, n_components=2, method=method, max_iter=1)
with _record_warnings(): # ICA does not converge
ica.fit(raw, picks=np.arange(10))
_assert_ica_attributes(ica)
sources = ica.get_sources(epochs).get_data(copy=False)
assert ica.mixing_matrix_.shape == (2, 2)
assert ica.unmixing_matrix_.shape == (2, 2)
assert ica.pca_components_.shape == (10, 10)
assert sources.shape[1] == ica.n_components_
for exclude in [[], [0], np.array([1, 2, 3])]:
ica.exclude = exclude
ica.labels_ = {"foo": [0]}
ica.save(test_ica_fname, overwrite=True)
ica_read = read_ica(test_ica_fname)
assert list(ica.exclude) == ica_read.exclude
assert_equal(ica.labels_, ica_read.labels_)
ica.apply(raw.copy(), **kwargs)
ica.exclude = []
ica.apply(raw.copy(), exclude=[1], **kwargs)
assert ica.exclude == []
ica.exclude = [0, 1]
ica.apply(raw.copy(), exclude=[1], **kwargs)
assert ica.exclude == [0, 1]
ica_raw = ica.get_sources(raw)
assert ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info["bads"]]
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_reject_buffer(method):
"""Test ICA data raw buffer rejection."""
_skip_check_picard(method)
raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
picks = pick_types(
raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
)
raw._data[2, 1000:1005] = 5e-12
ica = ICA(n_components=3, method=method)
with catch_logging() as drop_log:
ica.fit(
raw,
picks[:5],
reject=dict(mag=2.5e-12),
decim=2,
tstep=0.01,
verbose=True,
reject_by_annotation=False,
)
assert raw._data[:5, ::2].shape[1] - 4 == ica.n_samples_
log = [line for line in drop_log.getvalue().split("\n") if "detected" in line]
assert_equal(len(log), 1)
_assert_ica_attributes(ica)
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_twice(method):
"""Test running ICA twice."""
_skip_check_picard(method)
raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
raw.pick(raw.ch_names[::10])
picks = pick_types(raw.info, meg="grad", exclude="bads")
n_components = 0.99
n_pca_components = 0.9999
if method == "fastica":
ctx = _record_warnings # convergence, sometimes
else:
ctx = nullcontext
ica1 = ICA(n_components=n_components, method=method)
with ctx():
ica1.fit(raw, picks=picks, decim=3)
raw_new = ica1.apply(raw, n_pca_components=n_pca_components)
ica2 = ICA(n_components=n_components, method=method)
with ctx():
ica2.fit(raw_new, picks=picks, decim=3)
assert_equal(ica1.n_components_, ica2.n_components_)
@pytest.mark.parametrize("method", ["fastica", "picard", "infomax"])
def test_fit_methods(method, tmp_path):
"""Test fit_params for ICA."""
_skip_check_picard(method)
fit_params = {}
# test no side effects
ICA(fit_params=fit_params, method=method)
assert fit_params == {}
# Test I/O roundtrip.
# Only picard and infomax support the "extended" keyword, so limit the
# tests to those.
if method in ["picard", "infomax"]:
output_fname = tmp_path / "test_ica-ica.fif"
raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
n_components = 3
max_iter = 1
fit_params = dict(extended=True)
ica = ICA(
fit_params=fit_params,
n_components=n_components,
max_iter=max_iter,
method=method,
)
fit_params_after_instantiation = ica.fit_params
if method == "infomax":
ica.fit(raw)
else:
with pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw)
ica.save(output_fname)
ica = read_ica(output_fname)
assert ica.fit_params == fit_params_after_instantiation
@pytest.mark.parametrize(
("param_name", "param_val"),
(
("start", 0),
("stop", 500),
("reject", dict(eeg=500e-6)),
("flat", dict(eeg=1e-6)),
),
)
def test_fit_params_epochs_vs_raw(param_name, param_val, tmp_path):
"""Check that we get a warning when passing parameters that get ignored."""
method = "infomax"
n_components = 3
max_iter = 1
raw = read_raw_fif(raw_fname).pick("eeg")
events = read_events(event_name)
reject = param_val if param_name == "reject" else None
epochs = Epochs(raw, events=events, reject=reject)
ica = ICA(n_components=n_components, max_iter=max_iter, method=method)
fit_params = {param_name: param_val}
with (
_record_warnings(),
pytest.warns(RuntimeWarning, match="parameters.*will be ignored"),
):
ica.fit(inst=epochs, **fit_params)
assert ica.reject_ == reject
_assert_ica_attributes(ica)
tmp_fname = tmp_path / "test-ica.fif"
ica.save(tmp_fname)
ica = read_ica(tmp_fname)
assert ica.reject_ == reject
_assert_ica_attributes(ica)
@pytest.mark.parametrize("method", ["fastica", "picard"])
@pytest.mark.parametrize("allow_ref_meg", [True, False])
def test_bad_channels(method, allow_ref_meg):
"""Test exception when unsupported channels are used."""
_skip_check_picard(method)
chs = list(get_channel_type_constants())
info = create_info(len(chs), 500, chs)
rng = np.random.RandomState(0)
data = rng.rand(len(chs), 50)
raw = RawArray(data, info)
data = rng.rand(100, len(chs), 50)
epochs = EpochsArray(data, info)
# fake high-pass filtering
with raw.info._unlock():
raw.info["highpass"] = 1.0
with epochs.info._unlock():
epochs.info["highpass"] = 1.0
n_components = 0.9
data_chs = list(_DATA_CH_TYPES_SPLIT + ("eog",))
if allow_ref_meg:
data_chs.append("ref_meg")
chs_bad = list(set(chs) - set(data_chs))
ica = ICA(n_components=n_components, method=method, allow_ref_meg=allow_ref_meg)
for inst in [raw, epochs]:
for ch in chs_bad:
picks_dict = {("eyetrack" if ch in ("eyegaze", "pupil") else str(ch)): True}
if allow_ref_meg:
# Test case for only bad channels
picks_bad1 = pick_types(
inst.info, meg=False, ref_meg=False, **picks_dict
)
# Test case for good and bad channels
picks_bad2 = pick_types(inst.info, meg=True, ref_meg=True, **picks_dict)
else:
# Test case for only bad channels
picks_bad1 = pick_types(inst.info, meg=False, **picks_dict)
# Test case for good and bad channels
picks_bad2 = pick_types(inst.info, meg=True, **picks_dict)
with pytest.raises(ValueError, match="Invalid channel type"):
ica.fit(inst, picks=picks_bad1)
ica.fit(inst, picks=picks_bad2)
with pytest.raises(ValueError, match="No appropriate channels found"):
ica.fit(inst, picks=[])
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_eog_channel(method):
"""Test that EOG channel is included when performing ICA."""
_skip_check_picard(method)
raw = read_raw_fif(raw_fname, preload=True)
events = read_events(event_name)
picks = pick_types(
raw.info, meg=True, stim=True, ecg=False, eog=True, exclude="bads"
)
epochs = Epochs(
raw,
events,
event_id,
tmin,
tmax,
picks=picks,
baseline=None,
preload=True,
proj=False,
)
n_components = 0.9
ica = ICA(n_components=n_components, method=method)
# Test case for MEG and EOG data. Should have EOG channel
for inst in [raw, epochs]:
picks1a = pick_types(
inst.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
)[:4]
picks1b = pick_types(
inst.info, meg=False, stim=False, ecg=False, eog=True, exclude="bads"
)
picks1 = np.append(picks1a, picks1b)
ica.fit(inst, picks=picks1)
assert any("EOG" in ch for ch in ica.ch_names)
_assert_ica_attributes(ica, inst.get_data(picks1), limits=(0.8, 600))
# Test case for MEG data. Should have no EOG channel
for inst in [raw, epochs]:
picks1 = pick_types(
inst.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads"
)[:5]
ica.fit(inst, picks=picks1)
_assert_ica_attributes(ica)
assert not any("EOG" in ch for ch in ica.ch_names)
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_n_components_none(method, tmp_path):
"""Test n_components=None."""
_skip_check_picard(method)
raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
events = read_events(event_name)
picks = pick_types(raw.info, eeg=True, meg=False)[::5]
epochs = Epochs(
raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True
)
n_components = None
random_state = 12345
output_fname = tmp_path / "test_ica-ica.fif"
ica = ICA(method=method, n_components=n_components, random_state=random_state)
with _record_warnings():
ica.fit(epochs)
_assert_ica_attributes(ica)
ica.save(output_fname)
ica = read_ica(output_fname)
_assert_ica_attributes(ica)
assert ica.n_pca_components is None
assert ica.n_components is None
assert ica.n_components_ == len(picks)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_ica_ctf():
"""Test run ICA computation on ctf data with/without compensation."""
method = "fastica"
raw = read_raw_ctf(ctf_fname).crop(0, 3).load_data()
picks = sorted(
set(range(0, len(raw.ch_names), 10)) | set(pick_types(raw.info, ref_meg=True))
)
raw.pick(picks)
events = make_fixed_length_events(raw, 99999)
for comp in [0, 1]:
raw.apply_gradient_compensation(comp)
epochs = Epochs(
raw, events=events, tmin=-0.2, tmax=0.2, baseline=None, preload=True
)
evoked = epochs.average()
# test fit
for inst in [raw, epochs]:
ica = ICA(n_components=2, max_iter=2, method=method)
with _record_warnings(): # convergence sometimes
ica.fit(inst)
_assert_ica_attributes(ica)
# test apply and get_sources
for inst in [raw, epochs, evoked]:
ica.apply(inst.copy())
ica.get_sources(inst)
# test mixed compensation case
raw.apply_gradient_compensation(0)
ica = ICA(n_components=2, max_iter=2, method=method)
with _record_warnings(): # convergence sometimes
ica.fit(raw)
_assert_ica_attributes(ica)
raw.apply_gradient_compensation(1)
epochs = Epochs(
raw, events=events, tmin=-0.2, tmax=0.2, baseline=None, preload=True
)
evoked = epochs.average()
for inst in [raw, epochs, evoked]:
with pytest.raises(RuntimeError, match="Compensation grade of ICA"):
ica.apply(inst.copy())
with pytest.raises(RuntimeError, match="Compensation grade of ICA"):
ica.get_sources(inst)
@testing.requires_testing_data
def test_ica_labels():
"""Test ICA labels."""
# The CTF data are uniquely well suited to testing the ICA.find_bads_
# methods
raw = read_raw_ctf(ctf_fname, preload=True)
raw.pick(raw.ch_names[:300:10] + raw.ch_names[300:])
# set the appropriate EEG channels to EOG and ECG
rename = {"EEG057": "eog", "EEG058": "eog", "EEG059": "ecg"}
for key in rename:
assert key in raw.ch_names
raw.set_channel_types(rename)
ica = ICA(n_components=4, max_iter=2, method="fastica", allow_ref_meg=True)
with _record_warnings(), pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw)
_assert_ica_attributes(ica)
ica.find_bads_eog(raw, l_freq=None, h_freq=None)
picks = list(pick_types(raw.info, meg=False, eog=True))
for idx, ch in enumerate(picks):
assert "{}/{}/{}".format("eog", idx, raw.ch_names[ch]) in ica.labels_
assert "eog" in ica.labels_
for key in ("ecg", "ref_meg", "ecg/ECG-MAG"):
assert key not in ica.labels_
ica.find_bads_ecg(
raw, l_freq=None, h_freq=None, method="correlation", threshold="auto"
)
picks = list(pick_types(raw.info, meg=False, ecg=True))
for idx, ch in enumerate(picks):
assert "{}/{}/{}".format("ecg", idx, raw.ch_names[ch]) in ica.labels_
for key in ("ecg", "eog"):
assert key in ica.labels_
for key in ("ref_meg", "ecg/ECG-MAG"):
assert key not in ica.labels_
# derive reference ICA components and append them to raw
ica_rf = ICA(n_components=2, max_iter=2, allow_ref_meg=True)
with _record_warnings(): # high pass and/or no convergence
ica_rf.fit(raw.copy().pick("ref_meg"))
icacomps = ica_rf.get_sources(raw)
# rename components so they are auto-detected by find_bads_ref
icacomps.rename_channels({c: "REF_" + c for c in icacomps.ch_names})
# and add them to raw
raw.add_channels([icacomps])
ica.find_bads_ref(raw, l_freq=None, h_freq=None, method="separate")
picks = pick_channels_regexp(raw.ch_names, "REF_ICA*")
for idx, ch in enumerate(picks):
assert "{}/{}/{}".format("ref_meg", idx, raw.ch_names[ch]) in ica.labels_
ica.find_bads_ref(raw, l_freq=None, h_freq=None, method="together")
assert "ref_meg" in ica.labels_
for key in ("ecg", "eog", "ref_meg"):
assert key in ica.labels_
assert "ecg/ECG-MAG" not in ica.labels_
ica.find_bads_ecg(raw, l_freq=None, h_freq=None, threshold="auto")
for key in ("ecg", "eog", "ref_meg", "ecg/ECG-MAG"):
assert key in ica.labels_
labels, scores = ica.find_bads_muscle(raw, threshold=0.4)
assert "muscle" in ica.labels_
assert labels == [0]
assert_allclose(scores, [0.5, 0.01, 0.02, 0.002], atol=0.001, rtol=0.1)
events = np.array([[6000, 0, 0], [8000, 0, 0]])
epochs = Epochs(raw, events=events, baseline=None, preload=True)
# move up threhsold more noise because less data
scores = ica.find_bads_muscle(epochs, threshold=0.8)[1]
assert "muscle" in ica.labels_
assert ica.labels_["muscle"] == [0]
assert_allclose(scores, [0.81, 0.14, 0.37, 0.05], atol=0.03)
ica = ICA(n_components=4, max_iter=2, method="fastica", allow_ref_meg=True)
with _record_warnings(), pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw, picks="eeg")
ica.find_bads_muscle(raw)
assert "muscle" in ica.labels_
# Try without sensor locations
raw.set_montage(None)
with pytest.warns(RuntimeWarning, match="based on the 'slope' criterion"):
labels, scores = ica.find_bads_muscle(raw, threshold=0.35)
assert "muscle" in ica.labels_
assert labels == [3]
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname, grade",
[
(fif_fname, None),
pytest.param(eeglab_fname, None, marks=pymatreader_mark),
(ctf_fname2, 0),
(ctf_fname2, 1),
],
)
def test_ica_eeg(fname, grade):
"""Test ICA on EEG."""
method = "fastica"
if fname.suffix == ".fif":
raw = read_raw_fif(fif_fname)
raw.pick(raw.ch_names[::5]).load_data()
raw.info.normalize_proj()
elif fname.suffix == ".set":
raw = read_raw_eeglab(input_fname=eeglab_fname, preload=True)
else:
with pytest.warns(RuntimeWarning, match="MISC channel"):
raw = read_raw_ctf(ctf_fname2)
raw.pick(raw.ch_names[:30] + raw.ch_names[30::10]).load_data()
if grade is not None:
raw.apply_gradient_compensation(grade)
events = make_fixed_length_events(raw, 99999, start=0, stop=0.3, duration=0.1)
picks_meg = pick_types(raw.info, meg=True, eeg=False, ref_meg=False)[:2]
picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
picks_all = []
picks_all.extend(picks_meg)
picks_all.extend(picks_eeg)
epochs = Epochs(
raw, events=events, tmin=-0.1, tmax=0.1, baseline=None, preload=True, proj=False
)
evoked = epochs.average()
for picks in [picks_meg, picks_eeg, picks_all]:
if len(picks) == 0:
continue
# test fit
for inst in [raw, epochs]:
ica = ICA(n_components=2, max_iter=2, method=method)
with _record_warnings():
ica.fit(inst, picks=picks, verbose=True)
_assert_ica_attributes(ica)
# test apply and get_sources
for inst in [raw, epochs, evoked]:
ica.apply(inst)
ica.get_sources(inst)
@pymatreader_mark
@testing.requires_testing_data
def test_read_ica_eeglab():
"""Test read_ica_eeglab function."""
fname = test_base_dir / "EEGLAB" / "test_raw.set"
fname_cleaned_matlab = test_base_dir / "EEGLAB" / "test_raw.cleaned.set"
raw = read_raw_eeglab(fname, preload=True)
raw_eeg = _check_load_mat(fname, None)
raw_cleaned_matlab = read_raw_eeglab(fname_cleaned_matlab, preload=True)
mark_to_remove = ["manual"]
comp_info = raw_eeg.marks["comp_info"]
if len(comp_info["flags"].shape) > 1:
ind_comp_to_drop = [
np.where(flags)[0]
for flags, label in zip(comp_info["flags"], comp_info["label"])
if label in mark_to_remove
]
ind_comp_to_drop = np.unique(np.concatenate(ind_comp_to_drop))
else:
ind_comp_to_drop = np.where(comp_info["flags"])[0]
ica = read_ica_eeglab(fname)
_assert_ica_attributes(ica)
raw_cleaned = ica.apply(raw.copy(), exclude=ind_comp_to_drop)
assert_allclose(
raw_cleaned_matlab.get_data(), raw_cleaned.get_data(), rtol=1e-05, atol=1e-08
)
@pymatreader_mark
@testing.requires_testing_data
def test_read_ica_eeglab_mismatch(tmp_path):
"""Test read_ica_eeglab function when there is a mismatch."""
fname_orig = test_base_dir / "EEGLAB" / "test_raw.set"
base = fname_orig.stem + "."
shutil.copyfile(
fname_orig.with_suffix(".fdt"),
tmp_path / fname_orig.with_suffix(".fdt").name,
)
fname = tmp_path / base
data = loadmat(fname_orig)
w = data["EEG"]["icaweights"][0][0]
w[:] = np.random.RandomState(0).randn(*w.shape)
savemat(fname, data, appendmat=False)
assert fname.is_file()
with pytest.warns(RuntimeWarning, match="Mismatch.*removal.*icawinv.*"):
ica = read_ica_eeglab(fname)
_assert_ica_attributes(ica)
ica_correct = read_ica_eeglab(fname_orig)
attrs = [
attr
for attr in dir(ica_correct)
if attr.endswith("_") and not attr.startswith("_")
]
assert "mixing_matrix_" in attrs
assert "unmixing_matrix_" in attrs
assert ica.labels_ == ica_correct.labels_ == {}
attrs.pop(attrs.index("labels_"))
attrs.pop(attrs.index("reject_"))
for attr in attrs:
a, b = getattr(ica, attr), getattr(ica_correct, attr)
assert_allclose(a, b, rtol=1e-12, atol=1e-12, err_msg=attr)
def _assert_ica_attributes(ica, data=None, limits=(1.0, 70)):
"""Assert some attributes of ICA objects."""
__tracebackhide__ = True
# This tests properties, but also serves as documentation of
# the shapes these arrays can obtain and how they obtain them
# Pre-whitener
n_ch = len(ica.ch_names)
assert ica.pre_whitener_.shape == (n_ch, n_ch if ica.noise_cov is not None else 1)
# PCA
n_pca = ica.pca_components_.shape[0]
assert ica.pca_components_.shape == (n_pca, n_ch), "PCA shape"
assert_allclose(
np.dot(ica.pca_components_, ica.pca_components_.T),
np.eye(n_pca),
atol=1e-6,
err_msg="PCA orthogonality",
)
assert ica.pca_mean_.shape == (n_ch,)
# Mixing/unmixing
assert ica.unmixing_matrix_.shape == (ica.n_components_,) * 2, "Unmixing shape"
assert ica.mixing_matrix_.shape == (ica.n_components_,) * 2, "Mixing shape"
mix_unmix = np.dot(ica.mixing_matrix_, ica.unmixing_matrix_)
s = linalg.svdvals(ica.unmixing_matrix_)
nz = len(s) - (s > s[0] * 1e-12).sum()
want = np.eye(ica.n_components_)
want[:nz] = 0
assert_allclose(mix_unmix, want, atol=1e-6, err_msg="Mixing as pinv")
assert ica.pca_explained_variance_.shape[0] >= ica.unmixing_matrix_.shape[1]
# our PCA components should be unit vectors (the variances get put into
# the unmixing_matrix_ to make it a whitener)
norms = np.linalg.norm(ica.pca_components_, axis=1)
assert_allclose(norms, 1.0)
# let's check the whitening
if data is not None:
if data.ndim == 3:
data = data.transpose(1, 0, 2).reshape(data.shape[1], -1)
data = ica._transform_raw(RawArray(data, ica.info), 0, None)
norms = np.linalg.norm(data, axis=1)
# at least close to normal
assert norms.min() > limits[0], "Not roughly unity"
assert norms.max() < limits[1], "Not roughly unity"
assert hasattr(ica, "reject_")
@pytest.mark.parametrize("ch_type", ["dbs", "seeg"])
def test_ica_ch_types(ch_type):
"""Test ica with different channel types."""
# gh-8739
data = np.random.RandomState(0).randn(10, 1000)
info = create_info(10, 1000.0, ch_type)
raw = RawArray(data, info)
events = make_fixed_length_events(raw, 99999, start=0, stop=0.3, duration=0.1)
epochs = Epochs(
raw, events=events, tmin=-0.1, tmax=0.1, baseline=None, preload=True, proj=False
)
evoked = epochs.average()
# test fit
method = "infomax"
for inst in [raw, epochs]:
ica = ICA(n_components=2, max_iter=2, method=method)
with _record_warnings():
ica.fit(inst, verbose=True)
_assert_ica_attributes(ica)
# test apply and get_sources
for inst in [raw, epochs, evoked]:
ica.apply(inst)
ica.get_sources(inst)