[074d3d]: / mne / preprocessing / tests / test_csd.py

Download this file

230 lines (192 with data), 8.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
"""Test the current source density and related functions.
For each supported file format, implement a test.
"""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy import linalg
from scipy.io import loadmat
from mne import Epochs, EvokedArray, create_info, find_events, pick_types, read_epochs
from mne._fiff.constants import FIFF
from mne.channels import make_dig_montage
from mne.datasets import testing
from mne.io import RawArray, read_raw_fif
from mne.preprocessing import compute_bridged_electrodes, compute_current_source_density
from mne.utils import object_diff
data_path = testing.data_path(download=False) / "preprocessing"
eeg_fname = data_path / "test_eeg.mat"
coords_fname = data_path / "test_eeg_pos.mat"
csd_fname = data_path / "test_eeg_csd.mat"
io_path = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = io_path / "test_raw.fif"
@pytest.fixture(scope="function", params=[testing._pytest_param()])
def evoked_csd_sphere():
"""Get the MATLAB EEG data."""
data = loadmat(eeg_fname)["data"]
coords = loadmat(coords_fname)["coords"] * 1e-3
csd = loadmat(csd_fname)["csd"]
sphere = np.array((0, 0, 0, 0.08500060886258405)) # meters
sfreq = 256 # sampling rate
# swap coordinates' shape
pos = np.rollaxis(coords, 1)
# swap coordinates' positions
pos[:, [0]], pos[:, [1]] = pos[:, [1]], pos[:, [0]]
# invert first coordinate
pos[:, [0]] *= -1
dists = np.linalg.norm(pos, axis=-1)
assert_allclose(dists, sphere[-1], rtol=1e-2) # close to spherical, meters
# assign channel names to coordinates
ch_names = [str(ii) for ii in range(len(pos))]
dig_ch_pos = dict(zip(ch_names, pos))
montage = make_dig_montage(ch_pos=dig_ch_pos, coord_frame="head")
# create info
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types="eeg")
# make Evoked object
evoked = EvokedArray(data=data, info=info, tmin=-1)
evoked.set_montage(montage)
return evoked, csd, sphere
def test_csd_matlab(evoked_csd_sphere):
"""Test replication of the CSD MATLAB toolbox."""
evoked, csd, sphere = evoked_csd_sphere
evoked_csd = compute_current_source_density(evoked, sphere=sphere)
assert_allclose(linalg.norm(csd), 0.00177, atol=1e-5)
# If we don't project onto the sphere, we get 1e-12 accuracy here,
# but it's a bad assumption for real data!
# Also, we divide by (radius ** 2) to get to units of V/m², unclear
# why this isn't done in the upstream implementation
evoked_csd_data = evoked_csd.data * sphere[-1] ** 2
assert_allclose(evoked_csd_data, csd, atol=2e-7)
with pytest.raises(
ValueError, match=("CSD already applied, should not be reapplied")
):
compute_current_source_density(evoked_csd, sphere=sphere)
# 1e-5 here if we don't project...
assert_allclose(evoked_csd_data.sum(), 0.02455, atol=2e-3)
def test_csd_degenerate(evoked_csd_sphere):
"""Test degenerate conditions."""
evoked, csd, sphere = evoked_csd_sphere
warn_evoked = evoked.copy()
warn_evoked.info["bads"].append(warn_evoked.ch_names[3])
with pytest.raises(ValueError, match="Either drop.*or interpolate"):
compute_current_source_density(warn_evoked)
with pytest.raises(TypeError, match="must be an instance of"):
compute_current_source_density(None)
fail_evoked = evoked.copy()
with pytest.raises(ValueError, match="Zero or infinite position"):
for ch in fail_evoked.info["chs"]:
ch["loc"][:3] = np.array([0, 0, 0])
compute_current_source_density(fail_evoked, sphere=sphere)
with pytest.raises(ValueError, match="Zero or infinite position"):
fail_evoked.info["chs"][3]["loc"][:3] = np.inf
compute_current_source_density(fail_evoked, sphere=sphere)
with pytest.raises(ValueError, match="No EEG channels found."):
fail_evoked = evoked.copy()
fail_evoked.set_channel_types(
{ch_name: "ecog" for ch_name in fail_evoked.ch_names}
)
compute_current_source_density(fail_evoked, sphere=sphere)
with pytest.raises(TypeError, match="lambda2"):
compute_current_source_density(evoked, lambda2="0", sphere=sphere)
with pytest.raises(ValueError, match="lambda2 must be between 0 and 1"):
compute_current_source_density(evoked, lambda2=2, sphere=sphere)
with pytest.raises(TypeError, match="stiffness must be"):
compute_current_source_density(evoked, stiffness="0", sphere=sphere)
with pytest.raises(ValueError, match="stiffness must be non-negative"):
compute_current_source_density(evoked, stiffness=-2, sphere=sphere)
with pytest.raises(TypeError, match="n_legendre_terms must be"):
compute_current_source_density(evoked, n_legendre_terms=0.1, sphere=sphere)
with pytest.raises(ValueError, match=("n_legendre_terms must be greater than 0")):
compute_current_source_density(evoked, n_legendre_terms=0, sphere=sphere)
with pytest.raises(ValueError, match="sphere must be"):
compute_current_source_density(evoked, sphere=-0.1)
with pytest.raises(ValueError, match=("sphere radius must be greater than 0")):
compute_current_source_density(evoked, sphere=(-0.1, 0.0, 0.0, -1.0))
with pytest.raises(TypeError):
compute_current_source_density(evoked, copy=2, sphere=sphere)
# gh-7859
raw = RawArray(evoked.data, evoked.info)
epochs = Epochs(
raw,
[[0, 0, 1]],
tmin=0,
tmax=evoked.times[-1] - evoked.times[0],
baseline=None,
preload=False,
proj=False,
)
epochs.drop_bad()
assert len(epochs) == 1
assert_allclose(epochs.get_data(item=[0])[0], evoked.data)
with pytest.raises(RuntimeError, match="Computing CSD requires.*preload"):
compute_current_source_density(epochs)
epochs.load_data()
raw = compute_current_source_density(raw)
assert not np.allclose(raw.get_data(), evoked.data)
evoked = compute_current_source_density(evoked)
assert_allclose(raw.get_data(), evoked.data)
epochs = compute_current_source_density(epochs)
assert_allclose(epochs.get_data(item=[0])[0], evoked.data)
def test_csd_fif():
"""Test applying CSD to FIF data."""
raw = read_raw_fif(raw_fname).load_data()
raw.info["bads"] = []
picks = pick_types(raw.info, meg=False, eeg=True)
assert "csd" not in raw
orig_eeg = raw.get_data("eeg")
assert len(orig_eeg) == 60
raw_csd = compute_current_source_density(raw)
assert "eeg" not in raw_csd
new_eeg = raw_csd.get_data("csd")
assert not (orig_eeg == new_eeg).any()
# reset the only things that should change, and assert objects are the same
assert raw_csd.info["custom_ref_applied"] == FIFF.FIFFV_MNE_CUSTOM_REF_CSD
with raw_csd.info._unlock():
raw_csd.info["custom_ref_applied"] = 0
for pick in picks:
ch = raw_csd.info["chs"][pick]
assert ch["coil_type"] == FIFF.FIFFV_COIL_EEG_CSD
assert ch["unit"] == FIFF.FIFF_UNIT_V_M2
ch.update(coil_type=FIFF.FIFFV_COIL_EEG, unit=FIFF.FIFF_UNIT_V)
raw_csd._data[pick] = raw._data[pick]
assert object_diff(raw.info, raw_csd.info) == ""
def test_csd_epochs(tmp_path):
"""Test making epochs, saving to disk and loading."""
raw = read_raw_fif(raw_fname)
raw.pick(picks=["eeg", "stim"]).load_data()
events = find_events(raw)
epochs = Epochs(raw, events, reject=dict(eeg=1e-4), preload=True)
epochs = compute_current_source_density(epochs)
epo_fname = tmp_path / "test_csd_epo.fif"
epochs.save(epo_fname)
epochs2 = read_epochs(epo_fname, preload=True)
assert_allclose(epochs._data, epochs2._data)
def test_compute_bridged_electrodes():
"""Test computing bridged electrodes."""
# test I/O
raw = read_raw_fif(raw_fname).load_data()
raw.pick(picks="meg")
with pytest.raises(RuntimeError, match="No EEG channels found"):
bridged_idx, ed_matrix = compute_bridged_electrodes(raw)
# test output
epoch_duration = 3
raw = read_raw_fif(raw_fname).load_data()
idx0 = raw.ch_names.index("EEG 001")
idx1 = raw.ch_names.index("EEG 002")
raw._data[idx1] = raw._data[idx0]
bridged_idx, ed_matrix = compute_bridged_electrodes(
raw, epoch_duration=epoch_duration
)
assert bridged_idx == [(idx0, idx1)]
picks = pick_types(raw.info, meg=False, eeg=True)
assert ed_matrix.shape == (
raw.times.size // (epoch_duration * raw.info["sfreq"]),
picks.size,
picks.size,
)
picks = list(picks)
assert np.all(ed_matrix[:, picks.index(idx0), picks.index(idx1)] == 0)
assert np.all(np.isnan(ed_matrix[0][np.tril_indices(len(picks), -1)]))