[074d3d]: / mne / preprocessing / ieeg / _volume.py

Download this file

243 lines (209 with data), 8.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from ...channels import DigMontage, make_dig_montage
from ...surface import _voxel_neighbors
from ...transforms import Transform, _frame_to_str, apply_trans
from ...utils import _check_option, _pl, _require_version, _validate_type, verbose, warn
@verbose
def warp_montage(montage, moving, static, reg_affine, sdr_morph, verbose=None):
"""Warp a montage to a template with image volumes using SDR.
.. note:: This is likely only applicable for channels inside the brain
(intracranial electrodes).
Parameters
----------
montage : instance of mne.channels.DigMontage
The montage object containing the channels.
%(moving)s
%(static)s
%(reg_affine)s
%(sdr_morph)s
%(verbose)s
Returns
-------
montage_warped : mne.channels.DigMontage
The modified montage object containing the channels.
"""
_require_version("nibabel", "warp montage", "2.1.0")
_require_version("dipy", "warping points using SDR", "1.6.0")
from dipy.align.imwarp import DiffeomorphicMap
from nibabel import MGHImage
from nibabel.spatialimages import SpatialImage
_validate_type(moving, SpatialImage, "moving")
_validate_type(static, SpatialImage, "static")
_validate_type(reg_affine, np.ndarray, "reg_affine")
_check_option("reg_affine.shape", reg_affine.shape, ((4, 4),))
_validate_type(sdr_morph, (DiffeomorphicMap, None), "sdr_morph")
_validate_type(montage, DigMontage, "montage")
moving_mgh = MGHImage(np.array(moving.dataobj).astype(np.float32), moving.affine)
static_mgh = MGHImage(np.array(static.dataobj).astype(np.float32), static.affine)
del moving, static
# get montage channel coordinates
ch_dict = montage.get_positions()
if ch_dict["coord_frame"] != "mri":
bad_coord_frames = np.unique([d["coord_frame"] for d in montage.dig])
bad_coord_frames = ", ".join(
[
_frame_to_str[cf] if cf in _frame_to_str else str(cf)
for cf in bad_coord_frames
]
)
raise RuntimeError(
f'Coordinate frame not supported, expected "mri", got {bad_coord_frames}'
)
ch_names = list(ch_dict["ch_pos"].keys())
ch_coords = np.array([ch_dict["ch_pos"][name] for name in ch_names])
ch_coords = apply_trans( # convert to moving voxel space
np.linalg.inv(moving_mgh.header.get_vox2ras_tkr()), ch_coords * 1000
)
# next, to moving scanner RAS
ch_coords = apply_trans(moving_mgh.header.get_vox2ras(), ch_coords)
# now, apply reg_affine
ch_coords = apply_trans(
Transform( # to static ras
fro="ras", to="ras", trans=np.linalg.inv(reg_affine)
),
ch_coords,
)
# now, apply SDR morph
if sdr_morph is not None:
ch_coords = sdr_morph.transform_points(
ch_coords,
coord2world=sdr_morph.domain_grid2world,
world2coord=sdr_morph.domain_world2grid,
)
# back to voxels but now for the static image
ch_coords = apply_trans(np.linalg.inv(static_mgh.header.get_vox2ras()), ch_coords)
# finally, back to surface RAS
ch_coords = apply_trans(static_mgh.header.get_vox2ras_tkr(), ch_coords) / 1000
# make warped montage
montage_warped = make_dig_montage(dict(zip(ch_names, ch_coords)), coord_frame="mri")
return montage_warped
def _warn_missing_chs(info, dig_image, after_warp=False):
"""Warn that channels are missing."""
# ensure that each electrode contact was marked in at least one voxel
missing = set(np.arange(1, len(info.ch_names) + 1)).difference(
set(np.unique(np.array(dig_image.dataobj)))
)
missing_ch = [info.ch_names[idx - 1] for idx in missing]
if missing_ch:
warn(
f"Channel{_pl(missing_ch)} "
f"{', '.join(repr(ch) for ch in missing_ch)} not assigned "
"voxels " + (f" after applying {after_warp}" if after_warp else "")
)
@verbose
def make_montage_volume(
montage,
base_image,
thresh=0.5,
max_peak_dist=1,
voxels_max=100,
use_min=False,
verbose=None,
):
"""Make a volume from intracranial electrode contact locations.
Find areas of the input volume with intensity greater than
a threshold surrounding local extrema near the channel location.
Monotonicity from the peak is enforced to prevent channels
bleeding into each other.
Parameters
----------
montage : instance of mne.channels.DigMontage
The montage object containing the channels.
base_image : path-like | nibabel.spatialimages.SpatialImage
Path to a volumetric scan (e.g. CT) of the subject. Can be in any
format readable by nibabel. Can also be a nibabel image object.
Local extrema (max or min) should be nearby montage channel locations.
thresh : float
The threshold relative to the peak to determine the size
of the sensors on the volume.
max_peak_dist : int
The number of voxels away from the channel location to
look in the ``image``. This will depend on the accuracy of
the channel locations, the default (one voxel in all directions)
will work only with localizations that are that accurate.
voxels_max : int
The maximum number of voxels for each channel.
use_min : bool
Whether to hypointensities in the volume as channel locations.
Default False uses hyperintensities.
%(verbose)s
Returns
-------
elec_image : nibabel.spatialimages.SpatialImage
An image in Freesurfer surface RAS space with voxel values
corresponding to the index of the channel. The background
is 0s and this index starts at 1.
"""
_require_version("nibabel", "montage volume", "2.1.0")
import nibabel as nib
_validate_type(montage, DigMontage, "montage")
_validate_type(base_image, nib.spatialimages.SpatialImage, "base_image")
_validate_type(thresh, float, "thresh")
if thresh < 0 or thresh >= 1:
raise ValueError(f"`thresh` must be between 0 and 1, got {thresh}")
_validate_type(max_peak_dist, int, "max_peak_dist")
_validate_type(voxels_max, int, "voxels_max")
_validate_type(use_min, bool, "use_min")
# load image and make sure it's in surface RAS
if not isinstance(base_image, nib.spatialimages.SpatialImage):
base_image = nib.load(base_image)
base_image_mgh = nib.MGHImage(
np.array(base_image.dataobj).astype(np.float32), base_image.affine
)
del base_image
# get montage channel coordinates
ch_dict = montage.get_positions()
if ch_dict["coord_frame"] != "mri":
bad_coord_frames = np.unique([d["coord_frame"] for d in montage.dig])
bad_coord_frames = ", ".join(
[
_frame_to_str[cf] if cf in _frame_to_str else str(cf)
for cf in bad_coord_frames
]
)
raise RuntimeError(
f'Coordinate frame not supported, expected "mri", got {bad_coord_frames}'
)
ch_names = list(ch_dict["ch_pos"].keys())
ch_coords = np.array([ch_dict["ch_pos"][name] for name in ch_names])
# convert to voxel space
ch_coords = apply_trans(
np.linalg.inv(base_image_mgh.header.get_vox2ras_tkr()), ch_coords * 1000
)
# take channel coordinates and use the image to transform them
# into a volume where all the voxels over a threshold nearby
# are labeled with an index
image_data = np.array(base_image_mgh.dataobj)
if use_min:
image_data *= -1
elec_image = np.zeros(base_image_mgh.shape, dtype=int)
for i, ch_coord in enumerate(ch_coords):
if np.isnan(ch_coord).any():
continue
# this looks up to a voxel away, it may be marked imperfectly
volume = _voxel_neighbors(
ch_coord,
image_data,
thresh=thresh,
max_peak_dist=max_peak_dist,
voxels_max=voxels_max,
)
for voxel in volume:
if elec_image[voxel] != 0:
# some voxels ambiguous because the contacts are bridged on
# the image so assign the voxel to the nearest contact location
dist_old = np.sqrt(
(ch_coords[elec_image[voxel] - 1] - voxel) ** 2
).sum()
dist_new = np.sqrt((ch_coord - voxel) ** 2).sum()
if dist_new < dist_old:
elec_image[voxel] = i + 1
else:
elec_image[voxel] = i + 1
# assemble the volume
elec_image = nib.spatialimages.SpatialImage(elec_image, base_image_mgh.affine)
_warn_missing_chs(montage, elec_image, after_warp=False)
return elec_image