# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from .._fiff.meas_info import create_info
from .._fiff.pick import _picks_to_idx, pick_channels, pick_types
from ..annotations import _annotations_starts_stops
from ..epochs import BaseEpochs, Epochs
from ..evoked import Evoked
from ..filter import filter_data
from ..io import BaseRaw, RawArray
from ..utils import int_like, logger, sum_squared, verbose, warn
@verbose
def qrs_detector(
sfreq,
ecg,
thresh_value=0.6,
levels=2.5,
n_thresh=3,
l_freq=5,
h_freq=35,
tstart=0,
filter_length="10s",
verbose=None,
):
"""Detect QRS component in ECG channels.
QRS is the main wave on the heart beat.
Parameters
----------
sfreq : float
Sampling rate
ecg : array
ECG signal
thresh_value : float | str
qrs detection threshold. Can also be "auto" for automatic
selection of threshold.
levels : float
number of std from mean to include for detection
n_thresh : int
max number of crossings
l_freq : float
Low pass frequency
h_freq : float
High pass frequency
%(tstart_ecg)s
%(filter_length_ecg)s
%(verbose)s
Returns
-------
events : array
Indices of ECG peaks.
"""
win_size = int(round((60.0 * sfreq) / 120.0))
filtecg = filter_data(
ecg,
sfreq,
l_freq,
h_freq,
None,
filter_length,
0.5,
0.5,
phase="zero-double",
fir_window="hann",
fir_design="firwin2",
)
ecg_abs = np.abs(filtecg)
init = int(sfreq)
n_samples_start = int(sfreq * tstart)
ecg_abs = ecg_abs[n_samples_start:]
n_points = len(ecg_abs)
maxpt = np.empty(3)
maxpt[0] = np.max(ecg_abs[:init])
maxpt[1] = np.max(ecg_abs[init : init * 2])
maxpt[2] = np.max(ecg_abs[init * 2 : init * 3])
init_max = np.mean(maxpt)
if thresh_value == "auto":
thresh_runs = np.arange(0.3, 1.1, 0.05)
elif isinstance(thresh_value, str):
raise ValueError('threshold value must be "auto" or a float')
else:
thresh_runs = [thresh_value]
# Try a few thresholds (or just one)
clean_events = list()
for thresh_value in thresh_runs:
thresh1 = init_max * thresh_value
numcross = list()
time = list()
rms = list()
ii = 0
while ii < (n_points - win_size):
window = ecg_abs[ii : ii + win_size]
if window[0] > thresh1:
max_time = np.argmax(window)
time.append(ii + max_time)
nx = np.sum(
np.diff(((window > thresh1).astype(np.int64) == 1).astype(int))
)
numcross.append(nx)
rms.append(np.sqrt(sum_squared(window) / window.size))
ii += win_size
else:
ii += 1
if len(rms) == 0:
rms.append(0.0)
time.append(0.0)
time = np.array(time)
rms_mean = np.mean(rms)
rms_std = np.std(rms)
rms_thresh = rms_mean + (rms_std * levels)
b = np.where(rms < rms_thresh)[0]
a = np.array(numcross)[b]
ce = time[b[a < n_thresh]]
ce += n_samples_start
if ce.size > 0: # We actually found an event
clean_events.append(ce)
if clean_events:
# pick the best threshold; first get effective heart rates
rates = np.array(
[60.0 * len(cev) / (len(ecg) / float(sfreq)) for cev in clean_events]
)
# now find heart rates that seem reasonable (infant through adult
# athlete)
idx = np.where(np.logical_and(rates <= 160.0, rates >= 40.0))[0]
if idx.size > 0:
ideal_rate = np.median(rates[idx]) # get close to the median
else:
ideal_rate = 80.0 # get close to a reasonable default
idx = np.argmin(np.abs(rates - ideal_rate))
clean_events = clean_events[idx]
else:
clean_events = np.array([])
return clean_events
@verbose
def find_ecg_events(
raw,
event_id=999,
ch_name=None,
tstart=0.0,
l_freq=5,
h_freq=35,
qrs_threshold="auto",
filter_length="10s",
return_ecg=False,
reject_by_annotation=True,
verbose=None,
):
"""Find ECG events by localizing the R wave peaks.
Parameters
----------
raw : instance of Raw
The raw data.
%(event_id_ecg)s
%(ch_name_ecg)s
%(tstart_ecg)s
%(l_freq_ecg_filter)s
qrs_threshold : float | str
Between 0 and 1. qrs detection threshold. Can also be "auto" to
automatically choose the threshold that generates a reasonable
number of heartbeats (40-160 beats / min).
%(filter_length_ecg)s
return_ecg : bool
Return the ECG data. This is especially useful if no ECG channel
is present in the input data, so one will be synthesized (only works if MEG
channels are present in the data). Defaults to ``False``.
%(reject_by_annotation_all)s
.. versionadded:: 0.18
%(verbose)s
Returns
-------
ecg_events : array
The events corresponding to the peaks of the R waves.
ch_ecg : int | None
Index of channel used.
average_pulse : float
The estimated average pulse. If no ECG events could be found, this will
be zero.
ecg : array | None
The ECG data of the synthesized ECG channel, if any. This will only
be returned if ``return_ecg=True`` was passed.
See Also
--------
create_ecg_epochs
compute_proj_ecg
"""
skip_by_annotation = ("edge", "bad") if reject_by_annotation else ()
del reject_by_annotation
idx_ecg = _get_ecg_channel_index(ch_name, raw)
if idx_ecg is not None:
logger.info(f"Using channel {raw.ch_names[idx_ecg]} to identify heart beats.")
ecg = raw.get_data(picks=idx_ecg)
else:
ecg, _ = _make_ecg(raw, start=None, stop=None)
assert ecg.ndim == 2 and ecg.shape[0] == 1
ecg = ecg[0]
# Deal with filtering the same way we do in raw, i.e. filter each good
# segment
onsets, ends = _annotations_starts_stops(
raw, skip_by_annotation, "reject_by_annotation", invert=True
)
ecgs = list()
max_idx = (ends - onsets).argmax()
for si, (start, stop) in enumerate(zip(onsets, ends)):
# Only output filter params once (for info level), and only warn
# once about the length criterion (longest segment is too short)
use_verbose = verbose if si == max_idx else "error"
ecgs.append(
filter_data(
ecg[start:stop],
raw.info["sfreq"],
l_freq,
h_freq,
[0],
filter_length,
0.5,
0.5,
1,
"fir",
None,
copy=False,
phase="zero-double",
fir_window="hann",
fir_design="firwin2",
verbose=use_verbose,
)
)
ecg = np.concatenate(ecgs)
# detecting QRS and generating events. Since not user-controlled, don't
# output filter params here (hardcode verbose=False)
ecg_events = qrs_detector(
raw.info["sfreq"],
ecg,
tstart=tstart,
thresh_value=qrs_threshold,
l_freq=None,
h_freq=None,
verbose=False,
)
# map ECG events back to original times
remap = np.empty(len(ecg), int)
offset = 0
for start, stop in zip(onsets, ends):
this_len = stop - start
assert this_len >= 0
remap[offset : offset + this_len] = np.arange(start, stop)
offset += this_len
assert offset == len(ecg)
if ecg_events.size > 0:
ecg_events = remap[ecg_events]
else:
ecg_events = np.array([])
n_events = len(ecg_events)
duration_sec = len(ecg) / raw.info["sfreq"] - tstart
duration_min = duration_sec / 60.0
average_pulse = n_events / duration_min
logger.info(
f"Number of ECG events detected : {n_events} "
f"(average pulse {average_pulse} / min.)"
)
ecg_events = np.array(
[
ecg_events + raw.first_samp,
np.zeros(n_events, int),
event_id * np.ones(n_events, int),
]
).T
out = (ecg_events, idx_ecg, average_pulse)
ecg = ecg[np.newaxis] # backward compat output 2D
if return_ecg:
out += (ecg,)
return out
def _get_ecg_channel_index(ch_name, inst):
"""Get ECG channel index, if no channel found returns None."""
if ch_name is None:
ecg_idx = pick_types(
inst.info,
meg=False,
eeg=False,
stim=False,
eog=False,
ecg=True,
emg=False,
ref_meg=False,
exclude="bads",
)
else:
if ch_name not in inst.ch_names:
raise ValueError(f"{ch_name} not in channel list ({inst.ch_names})")
ecg_idx = pick_channels(inst.ch_names, include=[ch_name])
if len(ecg_idx) == 0:
return None
if len(ecg_idx) > 1:
warn(
f"More than one ECG channel found. Using only {inst.ch_names[ecg_idx[0]]}."
)
return ecg_idx[0]
@verbose
def create_ecg_epochs(
raw,
ch_name=None,
event_id=999,
picks=None,
tmin=-0.5,
tmax=0.5,
l_freq=8,
h_freq=16,
reject=None,
flat=None,
baseline=None,
preload=True,
keep_ecg=False,
reject_by_annotation=True,
decim=1,
verbose=None,
):
"""Conveniently generate epochs around ECG artifact events.
%(create_ecg_epochs)s
.. note:: Filtering is only applied to the ECG channel while finding
events. The resulting ``ecg_epochs`` will have no filtering
applied (i.e., have the same filter properties as the input
``raw`` instance).
Parameters
----------
raw : instance of Raw
The raw data.
%(ch_name_ecg)s
%(event_id_ecg)s
%(picks_all)s
tmin : float
Start time before event.
tmax : float
End time after event.
%(l_freq_ecg_filter)s
%(reject_epochs)s
%(flat)s
%(baseline_epochs)s
preload : bool
Preload epochs or not (default True). Must be True if
keep_ecg is True.
keep_ecg : bool
When ECG is synthetically created (after picking), should it be added
to the epochs? Must be False when synthetic channel is not used.
Defaults to False.
%(reject_by_annotation_epochs)s
.. versionadded:: 0.14.0
%(decim)s
.. versionadded:: 0.21.0
%(verbose)s
Returns
-------
ecg_epochs : instance of Epochs
Data epoched around ECG R wave peaks.
See Also
--------
find_ecg_events
compute_proj_ecg
Notes
-----
If you already have a list of R-peak times, or want to compute R-peaks
outside MNE-Python using a different algorithm, the recommended approach is
to call the :class:`~mne.Epochs` constructor directly, with your R-peaks
formatted as an :term:`events` array (here we also demonstrate the relevant
default values)::
mne.Epochs(raw, r_peak_events_array, tmin=-0.5, tmax=0.5,
baseline=None, preload=True, proj=False) # doctest: +SKIP
"""
has_ecg = "ecg" in raw or ch_name is not None
if keep_ecg and (has_ecg or not preload):
raise ValueError(
"keep_ecg can be True only if the ECG channel is "
"created synthetically and preload=True."
)
events, _, _, ecg = find_ecg_events(
raw,
ch_name=ch_name,
event_id=event_id,
l_freq=l_freq,
h_freq=h_freq,
return_ecg=True,
reject_by_annotation=reject_by_annotation,
)
picks = _picks_to_idx(raw.info, picks, "all", exclude=())
# create epochs around ECG events and baseline (important)
ecg_epochs = Epochs(
raw,
events=events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=False,
flat=flat,
picks=picks,
reject=reject,
baseline=baseline,
reject_by_annotation=reject_by_annotation,
preload=preload,
decim=decim,
)
if keep_ecg:
# We know we have created a synthetic channel and epochs are preloaded
ecg_raw = RawArray(
ecg,
create_info(
ch_names=["ECG-SYN"], sfreq=raw.info["sfreq"], ch_types=["ecg"]
),
first_samp=raw.first_samp,
)
with ecg_raw.info._unlock():
ignore = ["ch_names", "chs", "nchan", "bads"]
for k, v in raw.info.items():
if k not in ignore:
ecg_raw.info[k] = v
syn_epochs = Epochs(
ecg_raw,
events=ecg_epochs.events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=False,
picks=[0],
baseline=baseline,
decim=decim,
preload=True,
)
ecg_epochs = ecg_epochs.add_channels([syn_epochs])
return ecg_epochs
@verbose
def _make_ecg(inst, start, stop, reject_by_annotation=False, verbose=None):
"""Create ECG signal from cross channel average."""
if not any(c in inst for c in ["mag", "grad"]):
raise ValueError(
"Generating an artificial ECG channel can only be done for MEG data."
)
for ch in ["mag", "grad"]:
if ch in inst:
break
logger.info(
"Reconstructing ECG signal from {}".format(
{"mag": "Magnetometers", "grad": "Gradiometers"}[ch]
)
)
picks = pick_types(inst.info, meg=ch, eeg=False, ref_meg=False)
# Handle start/stop
msg = (
"integer arguments for the start and stop parameters are "
"not supported for Epochs and Evoked objects. Please "
"consider using float arguments specifying start and stop "
"time in seconds."
)
begin_param_name = "tmin"
if isinstance(start, int_like):
if isinstance(inst, BaseRaw):
# Raw has start param, can just use int
begin_param_name = "start"
else:
raise ValueError(msg)
end_param_name = "tmax"
if isinstance(start, int_like):
if isinstance(inst, BaseRaw):
# Raw has stop param, can just use int
end_param_name = "stop"
else:
raise ValueError(msg)
kwargs = {begin_param_name: start, end_param_name: stop}
if isinstance(inst, BaseRaw):
reject_by_annotation = "omit" if reject_by_annotation else None
ecg, times = inst.get_data(
picks,
return_times=True,
**kwargs,
reject_by_annotation=reject_by_annotation,
)
elif isinstance(inst, BaseEpochs):
ecg = np.hstack(inst.copy().get_data(picks, **kwargs))
times = inst.times
elif isinstance(inst, Evoked):
ecg = inst.get_data(picks, **kwargs)
times = inst.times
return ecg.mean(0, keepdims=True), times