# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from ..annotations import Annotations, _adjust_onset_meas_date
from ..utils import verbose
from .artifact_detection import _annotations_from_mask
@verbose
def annotate_nan(raw, *, verbose=None):
"""Detect segments with NaN and return a new Annotations instance.
Parameters
----------
raw : instance of Raw
Data to find segments with NaN values.
%(verbose)s
Returns
-------
annot : instance of Annotations
New channel-specific annotations for the data.
"""
data, times = raw.get_data(return_times=True)
onsets, durations, ch_names = list(), list(), list()
for row, ch_name in zip(data, raw.ch_names):
annot = _annotations_from_mask(times, np.isnan(row), "BAD_NAN")
onsets.extend(annot.onset)
durations.extend(annot.duration)
ch_names.extend([[ch_name]] * len(annot))
annot = Annotations(
onsets, durations, "BAD_NAN", ch_names=ch_names, orig_time=raw.info["meas_date"]
)
_adjust_onset_meas_date(annot, raw)
return annot