[074d3d]: / mne / morph.py

Download this file

1563 lines (1392 with data), 58.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import copy
import os.path as op
import warnings
import numpy as np
from scipy import sparse
from .fixes import _eye_array, _get_img_fdata
from .morph_map import read_morph_map
from .parallel import parallel_func
from .source_estimate import (
_BaseSourceEstimate,
_BaseSurfaceSourceEstimate,
_BaseVolSourceEstimate,
_get_ico_tris,
)
from .source_space._source_space import SourceSpaces, _ensure_src, _grid_interp
from .surface import _compute_nearest, mesh_edges, read_surface
from .utils import (
BunchConst,
ProgressBar,
_check_fname,
_check_option,
_custom_lru_cache,
_ensure_int,
_import_h5io_funcs,
_import_nibabel,
_validate_type,
check_version,
fill_doc,
get_subjects_dir,
logger,
use_log_level,
verbose,
warn,
)
from .utils import (
warn as warn_,
)
@verbose
def compute_source_morph(
src,
subject_from=None,
subject_to="fsaverage",
subjects_dir=None,
zooms="auto",
niter_affine=(100, 100, 10),
niter_sdr=(5, 5, 3),
spacing=5,
smooth=None,
warn=True,
xhemi=False,
sparse=False,
src_to=None,
precompute=False,
verbose=None,
):
"""Create a SourceMorph from one subject to another.
Method is based on spherical morphing by FreeSurfer for surface
cortical estimates :footcite:`GreveEtAl2013` and
Symmetric Diffeomorphic Registration for volumic data
:footcite:`AvantsEtAl2008`.
Parameters
----------
src : instance of SourceSpaces | instance of SourceEstimate
The SourceSpaces of subject_from (can be a
SourceEstimate if only using a surface source space).
subject_from : str | None
Name of the original subject as named in the SUBJECTS_DIR.
If None (default), then ``src[0]['subject_his_id]'`` will be used.
subject_to : str | None
Name of the subject to which to morph as named in the SUBJECTS_DIR.
Default is ``'fsaverage'``. If None, ``src_to[0]['subject_his_id']``
will be used.
.. versionchanged:: 0.20
Support for subject_to=None.
%(subjects_dir)s
zooms : float | tuple | str | None
The voxel size of volume for each spatial dimension in mm.
If spacing is None, MRIs won't be resliced, and both volumes
must have the same number of spatial dimensions.
Can also be ``'auto'`` to use ``5.`` if ``src_to is None`` and
the zooms from ``src_to`` otherwise.
.. versionchanged:: 0.20
Support for 'auto' mode.
niter_affine : tuple of int
Number of levels (``len(niter_affine)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the affine transform.
Default is niter_affine=(100, 100, 10).
niter_sdr : tuple of int
Number of levels (``len(niter_sdr)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the Symmetric Diffeomorphic Registration (sdr)
transform. Default is niter_sdr=(5, 5, 3).
spacing : int | list | None
The resolution of the icosahedral mesh (typically 5).
If None, all vertices will be used (potentially filling the
surface). If a list, then values will be morphed to the set of
vertices specified in in ``spacing[0]`` and ``spacing[1]``.
This will be ignored if ``src_to`` is supplied.
.. versionchanged:: 0.21
src_to, if provided, takes precedence.
smooth : int | str | None
Number of iterations for the smoothing of the surface data.
If None, smooth is automatically defined to fill the surface
with non-zero values. Can also be ``'nearest'`` to use the nearest
vertices on the surface.
.. versionchanged:: 0.20
Added support for 'nearest'.
warn : bool
If True, warn if not all vertices were used. The default is warn=True.
xhemi : bool
Morph across hemisphere. Currently only implemented for
``subject_to == subject_from``. See notes below.
The default is xhemi=False.
sparse : bool
Morph as a sparse source estimate. Works only with (Vector)
SourceEstimate. If True the only parameters used are subject_to and
subject_from, and spacing has to be None. Default is sparse=False.
src_to : instance of SourceSpaces | None
The destination source space.
- For surface-based morphing, this is the preferred over ``spacing``
for providing the vertices.
- For volumetric morphing, this should be passed so that 1) the
resultingmorph volume is properly constrained to the brain volume,
and 2) STCs from multiple subjects morphed to the same destination
subject/source space have the vertices.
- For mixed (surface + volume) morphing, this is required.
.. versionadded:: 0.20
precompute : bool
If True (default False), compute the sparse matrix representation of
the volumetric morph (if present). This takes a long time to
compute, but can make morphs faster when thousands of points are used.
See :meth:`mne.SourceMorph.compute_vol_morph_mat` (which can be called
later if desired) for more information.
.. versionadded:: 0.22
%(verbose)s
Returns
-------
morph : instance of SourceMorph
The :class:`mne.SourceMorph` object.
Notes
-----
This function can be used to morph surface data between hemispheres by
setting ``xhemi=True``. The full cross-hemisphere morph matrix maps left
to right and right to left. A matrix for cross-mapping only one hemisphere
can be constructed by specifying the appropriate vertices, for example, to
map the right hemisphere to the left::
vertices_from=[[], vert_rh], vertices_to=[vert_lh, []]
Cross-hemisphere mapping requires appropriate ``sphere.left_right``
morph-maps in the subject's directory. These morph maps are included
with the ``fsaverage_sym`` FreeSurfer subject, and can be created for other
subjects with the ``mris_left_right_register`` FreeSurfer command. The
``fsaverage_sym`` subject is included with FreeSurfer > 5.1 and can be
obtained as described `here
<https://surfer.nmr.mgh.harvard.edu/fswiki/Xhemi>`_. For statistical
comparisons between hemispheres, use of the symmetric ``fsaverage_sym``
model is recommended to minimize bias :footcite:`GreveEtAl2013`.
.. versionadded:: 0.17.0
.. versionadded:: 0.21.0
Support for morphing mixed source estimates.
References
----------
.. footbibliography::
"""
src_data, kind, src_subject = _get_src_data(src)
subject_from = _check_subject_src(subject_from, src_subject, warn_none=True)
del src
_validate_type(src_to, (SourceSpaces, None), "src_to")
_validate_type(subject_to, (str, None), "subject_to")
if src_to is None and subject_to is None:
raise ValueError("subject_to cannot be None when src_to is None")
subject_to = _check_subject_src(subject_to, src_to, "subject_to")
# Params
warn = False if sparse else warn
if kind not in "surface" and xhemi:
raise ValueError(
"Inter-hemispheric morphing can only be used with surface source estimates."
)
if sparse and kind != "surface":
raise ValueError("Only surface source estimates can compute a sparse morph.")
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
shape = affine = pre_affine = sdr_morph = morph_mat = None
vertices_to_surf, vertices_to_vol = list(), list()
if kind in ("volume", "mixed"):
_check_dep(nibabel="2.1.0", dipy="0.10.1")
nib = _import_nibabel("work with a volume source space")
logger.info("Volume source space(s) present...")
# load moving MRI
mri_subpath = op.join("mri", "brain.mgz")
mri_path_from = op.join(subjects_dir, subject_from, mri_subpath)
logger.info(f' Loading {mri_path_from} as "from" volume')
with warnings.catch_warnings():
mri_from = nib.load(mri_path_from)
# eventually we could let this be some other volume, but for now
# let's KISS and use `brain.mgz`, too
mri_path_to = op.join(subjects_dir, subject_to, mri_subpath)
if not op.isfile(mri_path_to):
raise OSError(f"cannot read file: {mri_path_to}")
logger.info(f' Loading {mri_path_to} as "to" volume')
with warnings.catch_warnings():
mri_to = nib.load(mri_path_to)
# deal with `src_to` subsampling
zooms_src_to = None
if src_to is None:
if kind == "mixed":
raise ValueError(
"src_to must be provided when using a mixed source space"
)
else:
surf_offset = 2 if src_to.kind == "mixed" else 0
# All of our computations are in RAS (like img.affine), so we need
# to get the transformation from RAS to the source space
# subsampling of vox (src), not MRI (FreeSurfer surface RAS) to src
src_ras_t = np.dot(
src_to[-1]["mri_ras_t"]["trans"], src_to[-1]["src_mri_t"]["trans"]
)
src_ras_t[:3] *= 1e3
src_data["to_vox_map"] = (src_to[-1]["shape"], src_ras_t)
vertices_to_vol = [s["vertno"] for s in src_to[surf_offset:]]
zooms_src_to = np.diag(src_to[-1]["src_mri_t"]["trans"])[:3] * 1000
zooms_src_to = tuple(zooms_src_to)
# pre-compute non-linear morph
zooms = _check_zooms(mri_from, zooms, zooms_src_to)
shape, zooms, affine, pre_affine, sdr_morph = _compute_morph_sdr(
mri_from, mri_to, niter_affine, niter_sdr, zooms
)
if kind in ("surface", "mixed"):
logger.info("surface source space present ...")
vertices_from = src_data["vertices_from"]
if sparse:
if spacing is not None:
raise ValueError("spacing must be set to None if sparse=True.")
if xhemi:
raise ValueError("xhemi=True can only be used with sparse=False")
vertices_to_surf, morph_mat = _compute_sparse_morph(
vertices_from, subject_from, subject_to, subjects_dir
)
else:
if src_to is not None:
assert src_to.kind in ("surface", "mixed")
vertices_to_surf = [s["vertno"].copy() for s in src_to[:2]]
else:
vertices_to_surf = grade_to_vertices(
subject_to, spacing, subjects_dir, 1
)
morph_mat = _compute_morph_matrix(
subject_from=subject_from,
subject_to=subject_to,
vertices_from=vertices_from,
vertices_to=vertices_to_surf,
subjects_dir=subjects_dir,
smooth=smooth,
warn=warn,
xhemi=xhemi,
)
n_verts = sum(len(v) for v in vertices_to_surf)
assert morph_mat.shape[0] == n_verts
vertices_to = vertices_to_surf + vertices_to_vol
if src_to is not None:
assert len(vertices_to) == len(src_to)
morph = SourceMorph(
subject_from,
subject_to,
kind,
zooms,
niter_affine,
niter_sdr,
spacing,
smooth,
xhemi,
morph_mat,
vertices_to,
shape,
affine,
pre_affine,
sdr_morph,
src_data,
None,
)
if precompute:
morph.compute_vol_morph_mat()
logger.info("[done]")
return morph
def _compute_sparse_morph(vertices_from, subject_from, subject_to, subjects_dir=None):
"""Get nearest vertices from one subject to another."""
from scipy import sparse
maps = read_morph_map(subject_to, subject_from, subjects_dir)
cnt = 0
vertices = list()
cols = list()
for verts, map_hemi in zip(vertices_from, maps):
vertno_h = _sparse_argmax_nnz_row(map_hemi[verts])
order = np.argsort(vertno_h)
cols.append(cnt + order)
vertices.append(vertno_h[order])
cnt += len(vertno_h)
cols = np.concatenate(cols)
rows = np.arange(len(cols))
data = np.ones(len(cols))
morph_mat = sparse.coo_array(
(data, (rows, cols)), shape=(len(cols), len(cols))
).tocsr()
return vertices, morph_mat
_SOURCE_MORPH_ATTRIBUTES = [ # used in writing
"subject_from",
"subject_to",
"kind",
"zooms",
"niter_affine",
"niter_sdr",
"spacing",
"smooth",
"xhemi",
"morph_mat",
"vertices_to",
"shape",
"affine",
"pre_affine",
"sdr_morph",
"src_data",
"vol_morph_mat",
]
@fill_doc
class SourceMorph:
"""Morph source space data from one subject to another.
.. note::
This class should not be instantiated directly via
``mne.SourceMorph(...)``. Instead, use one of the functions
listed in the See Also section below.
Parameters
----------
subject_from : str | None
Name of the subject from which to morph as named in the SUBJECTS_DIR.
subject_to : str | array | list of array
Name of the subject on which to morph as named in the SUBJECTS_DIR.
The default is 'fsaverage'. If morphing a volume source space,
subject_to can be the path to a MRI volume. Can also be a list of
two arrays if morphing to hemisphere surfaces.
kind : str | None
Kind of source estimate. E.g. ``'volume'`` or ``'surface'``.
zooms : float | tuple
See :func:`mne.compute_source_morph`.
niter_affine : tuple of int
Number of levels (``len(niter_affine)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the affine transform.
niter_sdr : tuple of int
Number of levels (``len(niter_sdr)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the Symmetric Diffeomorphic Registration (sdr)
transform :footcite:`AvantsEtAl2008`.
spacing : int | list | None
See :func:`mne.compute_source_morph`.
smooth : int | str | None
See :func:`mne.compute_source_morph`.
xhemi : bool
Morph across hemisphere.
morph_mat : scipy.sparse.csr_array
The sparse surface morphing matrix for spherical surface
based morphing :footcite:`GreveEtAl2013`.
vertices_to : list of ndarray
The destination surface vertices.
shape : tuple
The volume MRI shape.
affine : ndarray
The volume MRI affine.
pre_affine : instance of dipy.align.AffineMap
The transformation that is applied before the before ``sdr_morph``.
sdr_morph : instance of dipy.align.DiffeomorphicMap
The class that applies the the symmetric diffeomorphic registration
(SDR) morph.
src_data : dict
Additional source data necessary to perform morphing.
vol_morph_mat : scipy.sparse.csr_array | None
The volumetric morph matrix, if :meth:`compute_vol_morph_mat`
was used.
%(verbose)s
See Also
--------
compute_source_morph
read_source_morph
Notes
-----
.. versionadded:: 0.17
References
----------
.. footbibliography::
"""
@verbose
def __init__(
self,
subject_from,
subject_to,
kind,
zooms,
niter_affine,
niter_sdr,
spacing,
smooth,
xhemi,
morph_mat,
vertices_to,
shape,
affine,
pre_affine,
sdr_morph,
src_data,
vol_morph_mat,
*,
verbose=None,
):
# universal
self.subject_from = subject_from
self.subject_to = subject_to
self.kind = kind
# vol input
self.zooms = zooms
self.niter_affine = niter_affine
self.niter_sdr = niter_sdr
# surf input
self.spacing = spacing
self.smooth = smooth
self.xhemi = xhemi
# surf computed
self.morph_mat = morph_mat
# vol computed
self.shape = shape
self.affine = affine
self.sdr_morph = sdr_morph
self.pre_affine = pre_affine
# used by both
self.src_data = src_data
self.vol_morph_mat = vol_morph_mat
# compute vertices_to here (partly for backward compat and no src
# provided)
if vertices_to is None or len(vertices_to) == 0 and kind == "volume":
assert src_data["to_vox_map"] is None
vertices_to = self._get_vol_vertices_to_nz()
self.vertices_to = vertices_to
@property
def _vol_vertices_from(self):
assert isinstance(self.src_data["inuse"], list)
vertices_from = [np.where(in_)[0] for in_ in self.src_data["inuse"]]
return vertices_from
@property
def _vol_vertices_to(self):
return self.vertices_to[0 if self.kind == "volume" else 2 :]
def _get_vol_vertices_to_nz(self):
logger.info("Computing nonzero vertices after morph ...")
n_vertices = sum(len(v) for v in self._vol_vertices_from)
ones = np.ones((n_vertices, 1))
with use_log_level(False):
return [np.where(self._morph_vols(ones, "", subselect=False))[0]]
@verbose
def apply(
self, stc_from, output="stc", mri_resolution=False, mri_space=None, verbose=None
):
"""Morph source space data.
Parameters
----------
stc_from : VolSourceEstimate | VolVectorSourceEstimate | SourceEstimate | VectorSourceEstimate
The source estimate to morph.
output : str
Can be ``'stc'`` (default) or possibly ``'nifti1'``, or
``'nifti2'`` when working with a volume source space defined on a
regular grid.
mri_resolution : bool | tuple | int | float
If True the image is saved in MRI resolution. Default False.
.. warning: If you have many time points the file produced can be
huge. The default is ``mri_resolution=False``.
mri_space : bool | None
Whether the image to world registration should be in mri space. The
default (None) is mri_space=mri_resolution.
%(verbose)s
Returns
-------
stc_to : VolSourceEstimate | SourceEstimate | VectorSourceEstimate | Nifti1Image | Nifti2Image
The morphed source estimates.
""" # noqa: E501
_validate_type(output, str, "output")
_validate_type(stc_from, _BaseSourceEstimate, "stc_from", "source estimate")
if isinstance(stc_from, _BaseSurfaceSourceEstimate):
allowed_kinds = ("stc",)
extra = "when stc is a surface source estimate"
else:
allowed_kinds = ("stc", "nifti1", "nifti2")
extra = ""
_check_option("output", output, allowed_kinds, extra)
stc = copy.deepcopy(stc_from)
mri_space = mri_resolution if mri_space is None else mri_space
if stc.subject is None:
stc.subject = self.subject_from
if self.subject_from is None:
self.subject_from = stc.subject
if stc.subject != self.subject_from:
raise ValueError(
"stc_from.subject and "
"morph.subject_from "
f"must match. ({stc.subject} != {self.subject_from})"
)
out = _apply_morph_data(self, stc)
if output != "stc": # convert to volume
out = _morphed_stc_as_volume(
self,
out,
mri_resolution=mri_resolution,
mri_space=mri_space,
output=output,
)
return out
@verbose
def compute_vol_morph_mat(self, *, verbose=None):
"""Compute the sparse matrix representation of the volumetric morph.
Parameters
----------
%(verbose)s
Returns
-------
morph : instance of SourceMorph
The instance (modified in-place).
Notes
-----
For a volumetric morph, this will compute the morph for an identity
source volume, i.e., with one source vertex active at a time, and store
the result as a :class:`sparse <scipy.sparse.csr_array>`
morphing matrix. This takes a long time (minutes) to compute initially,
but drastically speeds up :meth:`apply` for STCs, so it can be
beneficial when many time points or many morphs (i.e., greater than
the number of volumetric ``src_from`` vertices) will be performed.
When calling :meth:`save`, this sparse morphing matrix is saved with
the instance, so this only needs to be called once. This function does
nothing if the morph matrix has already been computed, or if there is
no volume morphing necessary.
.. versionadded:: 0.22
"""
if self.affine is None or self.vol_morph_mat is not None:
return
logger.info("Computing sparse volumetric morph matrix (will take some time...)")
self.vol_morph_mat = self._morph_vols(None, "Vertex")
return self
def _morph_vols(self, vols, mesg, subselect=True):
from dipy.align.reslice import reslice
interp = self.src_data["interpolator"].tocsc()[
:, np.concatenate(self._vol_vertices_from)
]
n_vols = interp.shape[1] if vols is None else vols.shape[1]
attrs = ("real", "imag") if np.iscomplexobj(vols) else ("real",)
dtype = np.complex128 if len(attrs) == 2 else np.float64
if vols is None: # sparse -> sparse mode
img_to = (list(), list(), [0]) # data, indices, indptr
assert subselect
else: # dense -> dense mode
img_to = None
if subselect:
vol_verts = np.concatenate(self._vol_vertices_to)
else:
vol_verts = slice(None)
# morph data
from_affine = np.dot(
self.src_data["src_affine_ras"], # mri_ras_t
self.src_data["src_affine_vox"],
) # vox_mri_t
from_affine[:3] *= 1000.0
# equivalent of:
# _resample_from_to(img_real, from_affine,
# (self.pre_affine.codomain_shape,
# (self.pre_affine.codomain_grid2world))
src_shape = self.src_data["src_shape_full"][::-1]
resamp_0 = _grid_interp(
src_shape,
self.pre_affine.codomain_shape,
np.linalg.inv(from_affine) @ self.pre_affine.codomain_grid2world,
)
# reslice to match what was used during the morph
# (brain.mgz and whatever was used to create the source space
# will not necessarily have the same domain/zooms)
# equivalent of:
# pre_affine.transform(img_real)
resamp_1 = _grid_interp(
self.pre_affine.codomain_shape,
self.pre_affine.domain_shape,
np.linalg.inv(self.pre_affine.codomain_grid2world)
@ self.pre_affine.affine
@ self.pre_affine.domain_grid2world,
)
resamp_0_1 = resamp_1 @ resamp_0
resamp_2 = None
for ii in ProgressBar(list(range(n_vols)), mesg=mesg):
for attr in attrs:
# transform from source space to mri_from resolution/space
if vols is None:
img_real = interp[:, [ii]]
else:
img_real = interp @ getattr(vols[:, ii], attr)
_debug_img(img_real, from_affine, "From", src_shape)
img_real = resamp_0_1 @ img_real
if sparse.issparse(img_real):
img_real = img_real.toarray()
img_real = img_real.reshape(self.pre_affine.domain_shape, order="F")
if self.sdr_morph is not None:
img_real = self.sdr_morph.transform(img_real)
_debug_img(img_real, self.affine, "From-reslice-transform")
# subselect the correct cube if src_to is provided
if self.src_data["to_vox_map"] is not None:
affine = self.affine
to_zooms = np.diag(self.src_data["to_vox_map"][1])[:3]
# There might be some sparse equivalent to this but
# not sure...
if not np.allclose(self.zooms, to_zooms, atol=1e-3):
img_real, affine = reslice(
img_real, self.affine, self.zooms, to_zooms
)
_debug_img(img_real, affine, "From-reslice-transform-src")
if resamp_2 is None:
resamp_2 = _grid_interp(
img_real.shape,
self.src_data["to_vox_map"][0],
np.linalg.inv(affine) @ self.src_data["to_vox_map"][1],
)
# Equivalent to:
# _resample_from_to(
# img_real, affine, self.src_data['to_vox_map'])
img_real = resamp_2 @ img_real.ravel(order="F")
_debug_img(
img_real,
self.src_data["to_vox_map"][1],
"From-reslice-transform-src-subselect",
self.src_data["to_vox_map"][0],
)
# This can be used to help debug, but it really should just
# show the brain filling the volume:
# img_want = np.zeros(np.prod(img_real.shape))
# img_want[np.concatenate(self._vol_vertices_to)] = 1.
# img_want = np.reshape(
# img_want, self.src_data['src_shape'][::-1], order='F')
# _debug_img(img_want, self.src_data['to_vox_map'][1],
# 'To mask')
# raise RuntimeError('Check')
# combine real and complex parts
img_real = img_real.ravel(order="F")[vol_verts]
# initialize output
if img_to is None and vols is not None:
img_to = np.zeros((img_real.size, n_vols), dtype=dtype)
if vols is None:
idx = np.where(img_real)[0]
img_to[0].extend(img_real[idx])
img_to[1].extend(idx)
img_to[2].append(img_to[2][-1] + len(idx))
else:
if attr == "real":
img_to[:, ii] = img_to[:, ii] + img_real
else:
img_to[:, ii] = img_to[:, ii] + 1j * img_real
if vols is None:
img_to = sparse.csc_array(img_to, shape=(len(vol_verts), n_vols)).tocsr()
return img_to
def __repr__(self): # noqa: D105
s = f"{self.kind}"
s += f", {self.subject_from} -> {self.subject_to}"
if self.kind == "volume":
s += f", zooms : {self.zooms}"
s += f", niter_affine : {self.niter_affine}"
s += f", niter_sdr : {self.niter_sdr}"
elif self.kind in ("surface", "vector"):
s += f", spacing : {self.spacing}"
s += f", smooth : {self.smooth}"
s += ", xhemi" if self.xhemi else ""
return f"<SourceMorph | {s}>"
@verbose
def save(self, fname, overwrite=False, verbose=None):
"""Save the morph for source estimates to a file.
Parameters
----------
fname : path-like
The path to the file. ``'-morph.h5'`` will be added if fname does
not end with ``'.h5'``.
%(overwrite)s
%(verbose)s
"""
_, write_hdf5 = _import_h5io_funcs()
fname = _check_fname(fname, overwrite=overwrite, must_exist=False)
if fname.suffix != ".h5":
fname = fname.with_name(f"{fname.name}-morph.h5")
out_dict = {k: getattr(self, k) for k in _SOURCE_MORPH_ATTRIBUTES}
for key in ("pre_affine", "sdr_morph"): # classes
if out_dict[key] is not None:
out_dict[key] = out_dict[key].__dict__
write_hdf5(fname, out_dict, overwrite=overwrite)
_slicers = list()
def _debug_img(data, affine, title, shape=None):
# Uncomment these lines for debugging help with volume morph:
#
# import nibabel as nib
# if sparse.issparse(data):
# data = data.toarray()
# data = np.asarray(data)
# if shape is not None:
# data = np.reshape(data, shape, order='F')
# _slicers.append(nib.viewers.OrthoSlicer3D(
# data, affine, axes=None, title=title))
# _slicers[-1].figs[0].suptitle(title, color='r')
return
def _check_zooms(mri_from, zooms, zooms_src_to):
# use voxel size of mri_from
if isinstance(zooms, str) and zooms == "auto":
zooms = zooms_src_to if zooms_src_to is not None else 5.0
if zooms is None:
zooms = mri_from.header.get_zooms()[:3]
zooms = np.atleast_1d(zooms).astype(float)
if zooms.shape == (1,):
zooms = np.repeat(zooms, 3)
if zooms.shape != (3,):
raise ValueError(
"zooms must be None, a singleton, or have shape (3,),"
f" got shape {zooms.shape}"
)
zooms = tuple(zooms)
return zooms
# def _resample_from_to(img, affine, to_vox_map):
# # Wrap to dipy for speed, equivalent to:
# # from nibabel.processing import resample_from_to
# # from nibabel.spatialimages import SpatialImage
# # return _get_img_fdata(
# # resample_from_to(SpatialImage(img, affine), to_vox_map, order=1))
# import dipy.align.imaffine
#
# return dipy.align.imaffine.AffineMap(
# None, to_vox_map[0], to_vox_map[1], img.shape, affine
# ).transform(img, resample_only=True)
###############################################################################
# I/O
def _check_subject_src(
subject, src, name="subject_from", src_name="src", *, warn_none=False
):
if isinstance(src, str):
subject_check = src
elif src is None: # assume it's correct although dangerous but unlikely
subject_check = subject
else:
subject_check = src._subject
warn_none = True
if subject_check is None and warn_none:
warn(
"The source space does not contain the subject name, we "
"recommend regenerating the source space (and forward / "
"inverse if applicable) for better code reliability"
)
if subject is None:
subject = subject_check
elif subject_check is not None and subject != subject_check:
raise ValueError(
f"{name} does not match {src_name} subject ({subject} != {subject_check})"
)
if subject is None:
raise ValueError(
f"{name} could not be inferred from {src_name}, it must be specified"
)
return subject
def read_source_morph(fname):
"""Load the morph for source estimates from a file.
Parameters
----------
fname : path-like
Path to the file containing the morph source estimates.
Returns
-------
source_morph : instance of SourceMorph
The loaded morph.
"""
read_hdf5, _ = _import_h5io_funcs()
vals = read_hdf5(fname)
if vals["pre_affine"] is not None: # reconstruct
from dipy.align.imaffine import AffineMap
affine = vals["pre_affine"]
vals["pre_affine"] = AffineMap(None)
vals["pre_affine"].__dict__ = affine
if vals["sdr_morph"] is not None:
from dipy.align.imwarp import DiffeomorphicMap
morph = vals["sdr_morph"]
vals["sdr_morph"] = DiffeomorphicMap(None, [])
vals["sdr_morph"].__dict__ = morph
# Backward compat with when it used to be a list
if isinstance(vals["vertices_to"], np.ndarray):
vals["vertices_to"] = [vals["vertices_to"]]
# Backward compat with when it used to be a single array
if isinstance(vals["src_data"].get("inuse", None), np.ndarray):
vals["src_data"]["inuse"] = [vals["src_data"]["inuse"]]
# added with compute_vol_morph_mat in 0.22:
vals["vol_morph_mat"] = vals.get("vol_morph_mat", None)
return SourceMorph(**vals)
###############################################################################
# Helper functions for SourceMorph methods
def _check_dep(nibabel="2.1.0", dipy="0.10.1"):
"""Check dependencies."""
for lib, ver in zip(["nibabel", "dipy"], [nibabel, dipy]):
passed = True if not ver else check_version(lib, ver)
if not passed:
raise ImportError(
f"{lib} {ver} or higher must be correctly "
"installed and accessible from Python"
)
def _morphed_stc_as_volume(morph, stc, mri_resolution, mri_space, output):
"""Return volume source space as Nifti1Image and/or save to disk."""
assert isinstance(stc, _BaseVolSourceEstimate) # should be guaranteed
if stc._data_ndim == 3:
stc = stc.magnitude()
_check_dep(nibabel="2.1.0", dipy=False)
NiftiImage, NiftiHeader = _triage_output(output)
# if MRI resolution is set manually as a single value, convert to tuple
if isinstance(mri_resolution, int | float):
# use iso voxel size
new_zooms = (float(mri_resolution),) * 3
elif isinstance(mri_resolution, tuple):
new_zooms = mri_resolution
# if full MRI resolution, compute zooms from shape and MRI zooms
if isinstance(mri_resolution, bool):
new_zooms = _get_zooms_orig(morph) if mri_resolution else None
# create header
hdr = NiftiHeader()
hdr.set_xyzt_units("mm", "msec")
hdr["pixdim"][4] = 1e3 * stc.tstep
# setup empty volume
if morph.src_data["to_vox_map"] is not None:
shape = morph.src_data["to_vox_map"][0]
affine = morph.src_data["to_vox_map"][1]
else:
shape = morph.shape
affine = morph.affine
assert stc.data.ndim == 2
n_times = stc.data.shape[1]
img = np.zeros((np.prod(shape), n_times))
img[stc.vertices[0], :] = stc.data
img = img.reshape(shape + (n_times,), order="F") # match order='F' above
del shape
# make nifti from data
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, affine, header=hdr)
# reslice in case of manually defined voxel size
zooms = morph.zooms[:3]
if new_zooms is not None:
from dipy.align.reslice import reslice
new_zooms = new_zooms[:3]
img, affine = reslice(
_get_img_fdata(img),
img.affine, # MRI to world registration
zooms, # old voxel size in mm
new_zooms,
) # new voxel size in mm
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, affine)
zooms = new_zooms
# set zooms in header
img.header.set_zooms(tuple(zooms) + (1,))
return img
def _get_src_data(src, mri_resolution=True):
# copy data to avoid conflicts
_validate_type(
src,
(_BaseSurfaceSourceEstimate, "path-like", SourceSpaces),
"src",
"source space or surface source estimate",
)
if isinstance(src, _BaseSurfaceSourceEstimate):
src_t = [dict(vertno=src.vertices[0]), dict(vertno=src.vertices[1])]
src_kind = "surface"
src_subject = src.subject
else:
src_t = _ensure_src(src).copy()
src_kind = src_t.kind
src_subject = src_t._subject
del src
_check_option("src kind", src_kind, ("surface", "volume", "mixed"))
# extract all relevant data for volume operations
src_data = dict()
if src_kind in ("volume", "mixed"):
use_src = src_t[-1]
shape = use_src["shape"]
start = 0 if src_kind == "volume" else 2
for si, s in enumerate(src_t[start:], start):
if s.get("interpolator", None) is None:
if mri_resolution:
raise RuntimeError(
f"MRI interpolator not present in src[{si}], "
"cannot use mri_resolution=True"
)
interpolator = None
break
else:
interpolator = sum((s["interpolator"] for s in src_t[start:]), 0.0)
inuses = [s["inuse"] for s in src_t[start:]]
src_data.update(
{
"src_shape": (shape[2], shape[1], shape[0]), # SAR
"src_affine_vox": use_src["vox_mri_t"]["trans"],
"src_affine_src": use_src["src_mri_t"]["trans"],
"src_affine_ras": use_src["mri_ras_t"]["trans"],
"src_shape_full": ( # SAR
use_src["mri_height"],
use_src["mri_depth"],
use_src["mri_width"],
),
"interpolator": interpolator,
"inuse": inuses,
"to_vox_map": None,
}
)
if src_kind in ("surface", "mixed"):
src_data.update(vertices_from=[s["vertno"].copy() for s in src_t[:2]])
# delete copy
return src_data, src_kind, src_subject
def _triage_output(output):
_check_option("output", output, ["nifti", "nifti1", "nifti2"])
if output in ("nifti", "nifti1"):
from nibabel import Nifti1Header as NiftiHeader
from nibabel import Nifti1Image as NiftiImage
else:
assert output == "nifti2"
from nibabel import Nifti2Header as NiftiHeader
from nibabel import Nifti2Image as NiftiImage
return NiftiImage, NiftiHeader
def _interpolate_data(stc, morph, mri_resolution, mri_space, output):
"""Interpolate source estimate data to MRI."""
_check_dep(nibabel="2.1.0", dipy=False)
NiftiImage, NiftiHeader = _triage_output(output)
_validate_type(stc, _BaseVolSourceEstimate, "stc", "volume source estimate")
assert morph.kind in ("volume", "mixed")
voxel_size_defined = False
if isinstance(mri_resolution, int | float) and not isinstance(mri_resolution, bool):
# use iso voxel size
mri_resolution = (float(mri_resolution),) * 3
if isinstance(mri_resolution, tuple):
_check_dep(nibabel=False, dipy="0.10.1") # nibabel was already checked
from dipy.align.reslice import reslice
voxel_size = mri_resolution
voxel_size_defined = True
mri_resolution = True
# if data wasn't morphed yet - necessary for call of
# stc_unmorphed.as_volume. Since only the shape of src is known, it cannot
# be resliced to a given voxel size without knowing the original.
if isinstance(morph, SourceSpaces):
assert morph.kind in ("volume", "mixed")
offset = 2 if morph.kind == "mixed" else 0
if voxel_size_defined:
raise ValueError(
"Cannot infer original voxel size for reslicing... "
"set mri_resolution to boolean value or apply morph first."
)
# Now deal with the fact that we may have multiple sub-volumes
inuse = [s["inuse"] for s in morph[offset:]]
src_shape = [s["shape"] for s in morph[offset:]]
assert len(set(map(tuple, src_shape))) == 1
src_subject = morph._subject
morph = BunchConst(src_data=_get_src_data(morph, mri_resolution)[0])
else:
# Make a list as we may have many inuse when using multiple sub-volumes
inuse = morph.src_data["inuse"]
src_subject = morph.subject_from
assert isinstance(inuse, list)
if stc.subject is not None:
_check_subject_src(stc.subject, src_subject, "stc.subject")
n_times = stc.data.shape[1]
shape = morph.src_data["src_shape"][::-1] + (n_times,) # SAR->RAST
dtype = np.complex128 if np.iscomplexobj(stc.data) else np.float64
# order='F' so that F-order flattening is faster
vols = np.zeros((np.prod(shape[:3]), shape[3]), dtype=dtype, order="F")
n_vertices_seen = 0
for this_inuse in inuse:
this_inuse = this_inuse.astype(bool)
n_vertices = np.sum(this_inuse)
stc_slice = slice(n_vertices_seen, n_vertices_seen + n_vertices)
vols[this_inuse] = stc.data[stc_slice]
n_vertices_seen += n_vertices
# use mri resolution as represented in src
if mri_resolution:
if morph.src_data["interpolator"] is None:
raise RuntimeError(
"Cannot morph with mri_resolution when add_interpolator=False "
"was used with setup_volume_source_space"
)
shape = morph.src_data["src_shape_full"][::-1] + (n_times,)
vols = morph.src_data["interpolator"] @ vols
# reshape back to proper shape
vols = np.reshape(vols, shape, order="F")
# set correct space
if mri_resolution:
affine = morph.src_data["src_affine_vox"]
else:
affine = morph.src_data["src_affine_src"]
if mri_space:
affine = np.dot(morph.src_data["src_affine_ras"], affine)
affine[:3] *= 1e3
# pre-define header
header = NiftiHeader()
header.set_xyzt_units("mm", "msec")
header["pixdim"][4] = 1e3 * stc.tstep
# if a specific voxel size was targeted (only possible after morphing)
if voxel_size_defined:
# reslice mri
vols, affine = reslice(vols, affine, _get_zooms_orig(morph), voxel_size)
with warnings.catch_warnings(): # nibabel<->numpy warning
vols = NiftiImage(vols, affine, header=header)
return vols
###############################################################################
# Morph for VolSourceEstimate
def _compute_morph_sdr(mri_from, mri_to, niter_affine, niter_sdr, zooms):
"""Get a matrix that morphs data from one subject to another."""
from dipy.align.imaffine import AffineMap
from .transforms import _compute_volume_registration
pipeline = "all" if niter_sdr else "affines"
niter = dict(
translation=niter_affine,
rigid=niter_affine,
affine=niter_affine,
sdr=niter_sdr if niter_sdr else (1,),
)
(
pre_affine,
sdr_morph,
to_shape,
to_affine,
from_shape,
from_affine,
) = _compute_volume_registration(
mri_from, mri_to, zooms=zooms, niter=niter, pipeline=pipeline
)
pre_affine = AffineMap(
pre_affine,
domain_grid_shape=to_shape,
domain_grid2world=to_affine,
codomain_grid_shape=from_shape,
codomain_grid2world=from_affine,
)
return to_shape, zooms, to_affine, pre_affine, sdr_morph
def _compute_morph_matrix(
subject_from,
subject_to,
vertices_from,
vertices_to,
smooth=None,
subjects_dir=None,
warn=True,
xhemi=False,
):
"""Compute morph matrix."""
logger.info("Computing morph matrix...")
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
tris = _get_subject_sphere_tris(subject_from, subjects_dir)
maps = read_morph_map(subject_from, subject_to, subjects_dir, xhemi)
# morph the data
morpher = []
for hemi_to in range(2): # iterate over to / block-rows of CSR matrix
hemi_from = (1 - hemi_to) if xhemi else hemi_to
morpher.append(
_hemi_morph(
tris[hemi_from],
vertices_to[hemi_to],
vertices_from[hemi_from],
smooth,
maps[hemi_from],
warn,
)
)
shape = (sum(len(v) for v in vertices_to), sum(len(v) for v in vertices_from))
data = [m.data for m in morpher]
indices = [m.indices.copy() for m in morpher]
indptr = [m.indptr.copy() for m in morpher]
# column indices need to be adjusted
indices[0 if xhemi else 1] += len(vertices_from[0])
indices = np.concatenate(indices)
# row index pointers need to be adjusted
indptr[1] = indptr[1][1:] + len(data[0])
indptr = np.concatenate(indptr)
# data does not need to be adjusted
data = np.concatenate(data)
# this is equivalent to morpher = sparse_block_diag(morpher).tocsr(),
# but works for xhemi mode
morpher = sparse.csr_array((data, indices, indptr), shape=shape)
logger.info("[done]")
return morpher
def _hemi_morph(tris, vertices_to, vertices_from, smooth, maps, warn):
_validate_type(smooth, (str, None, "int-like"), "smoothing steps")
if len(vertices_from) == 0:
return sparse.csr_array((len(vertices_to), 0))
e = mesh_edges(tris)
e.data[e.data == 2] = 1
n_vertices = e.shape[0]
e += _eye_array(n_vertices, format="csr")
if isinstance(smooth, str):
_check_option("smooth", smooth, ("nearest",), extra=" when used as a string.")
mm = _surf_nearest(vertices_from, e).tocsr()
elif smooth == 0:
mm = sparse.csc_array(
(
np.ones(len(vertices_from)), # data, indices, indptr
vertices_from,
np.arange(len(vertices_from) + 1),
),
shape=(e.shape[0], len(vertices_from)),
).tocsr()
else:
mm, n_missing, n_iter = _surf_upsampling_mat(vertices_from, e, smooth)
if n_missing and warn:
warn_(
f"{n_missing}/{e.shape[0]} vertices not included in "
"smoothing, consider increasing the number of steps"
)
logger.info(f" {n_iter} smooth iterations done.")
assert mm.shape == (n_vertices, len(vertices_from))
if maps is not None:
mm = maps[vertices_to] @ mm
else: # to == from
mm = mm[vertices_to]
assert mm.shape == (len(vertices_to), len(vertices_from))
return mm
@verbose
def grade_to_vertices(subject, grade, subjects_dir=None, n_jobs=None, verbose=None):
"""Convert a grade to source space vertices for a given subject.
Parameters
----------
subject : str
Name of the subject.
grade : int | list
Resolution of the icosahedral mesh (typically 5). If None, all
vertices will be used (potentially filling the surface). If a list,
then values will be morphed to the set of vertices specified in
in grade[0] and grade[1]. Note that specifying the vertices (e.g.,
grade=[np.arange(10242), np.arange(10242)] for fsaverage on a
standard grade 5 source space) can be substantially faster than
computing vertex locations. Note that if subject='fsaverage'
and 'grade=5', this set of vertices will automatically be used
(instead of computed) for speed, since this is a common morph.
%(subjects_dir)s
%(n_jobs)s
%(verbose)s
Returns
-------
vertices : list of array of int
Vertex numbers for LH and RH.
"""
_validate_type(grade, (list, "int-like", None), "grade")
# add special case for fsaverage for speed
if subject == "fsaverage" and isinstance(grade, int) and grade == 5:
return [np.arange(10242), np.arange(10242)]
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
spheres_to = [
subjects_dir / subject / "surf" / (xh + ".sphere.reg") for xh in ["lh", "rh"]
]
lhs, rhs = (read_surface(s)[0] for s in spheres_to)
if grade is not None: # fill a subset of vertices
if isinstance(grade, list):
if not len(grade) == 2:
raise ValueError(
"grade as a list must have two elements (arrays of output vertices)"
)
vertices = grade
else:
grade = _ensure_int(grade)
# find which vertices to use in "to mesh"
ico = _get_ico_tris(grade, return_surf=True)
lhs /= np.sqrt(np.sum(lhs**2, axis=1))[:, None]
rhs /= np.sqrt(np.sum(rhs**2, axis=1))[:, None]
# Compute nearest vertices in high dim mesh
parallel, my_compute_nearest, _ = parallel_func(_compute_nearest, n_jobs)
lhs, rhs, rr = (a.astype(np.float32) for a in [lhs, rhs, ico["rr"]])
vertices = parallel(my_compute_nearest(xhs, rr) for xhs in [lhs, rhs])
# Make sure the vertices are ordered
vertices = [np.sort(verts) for verts in vertices]
for verts in vertices:
if (np.diff(verts) == 0).any():
raise ValueError(
f"Cannot use icosahedral grade {grade} with subject "
f"{subject}, mapping {len(verts)} vertices onto the "
"high-resolution mesh "
"yields repeated vertices, use a lower grade or a "
"list of vertices from an existing source space"
)
else: # potentially fill the surface
vertices = [np.arange(lhs.shape[0]), np.arange(rhs.shape[0])]
return vertices
# Takes ~20 ms to hash, ~100 ms to compute (5x speedup)
@_custom_lru_cache(20)
def _surf_nearest(vertices, adj_mat):
# Vertices can be out of order, so sort them to start ...
order = np.argsort(vertices)
vertices = vertices[order]
# work around https://github.com/scipy/scipy/issues/20904
adj_mat = sparse.csr_array(
(
adj_mat.data,
adj_mat.indices.astype(np.int32),
adj_mat.indptr.astype(np.int32),
),
shape=adj_mat.shape,
)
_, _, sources = sparse.csgraph.dijkstra(
adj_mat, False, indices=vertices, min_only=True, return_predecessors=True
)
col = np.searchsorted(vertices, sources)
# ... then get things back to the correct configuration.
col = order[col]
row = np.arange(len(col))
data = np.ones(len(col))
mat = sparse.coo_array((data, (row, col)))
assert mat.shape == (adj_mat.shape[0], len(vertices)), mat.shape
return mat
def _csr_row_norm(data, row_norm):
assert row_norm.shape == (data.shape[0],)
data.data /= np.where(row_norm, row_norm, 1).repeat(np.diff(data.indptr))
# upsamplers are generally not very big (< 1 MB), and users might have a lot
# For 5 smoothing steps for example:
# smoothing_steps=5 takes ~20 ms to hash, ~100 ms to compute (5x speedup)
# smoothing_steps=None takes ~20 ms to hash, ~400 ms to compute (20x speedup)
@_custom_lru_cache(20)
def _surf_upsampling_mat(idx_from, e, smooth):
"""Upsample data on a subject's surface given mesh edges."""
# we're in CSR format and it's to==from
assert isinstance(e, sparse.csr_array)
n_tot = e.shape[0]
assert e.shape == (n_tot, n_tot)
# our output matrix starts out as a smaller matrix, and will gradually
# increase in size
data = _eye_array(len(idx_from), format="csr")
_validate_type(smooth, ("int-like", str, None), "smoothing steps")
if smooth is not None: # number of steps
smooth = _ensure_int(smooth, "smoothing steps")
if smooth <= 0: # == 0 is handled in a shortcut above
raise ValueError(
f"The number of smoothing operations has to be at least 0, got {smooth}"
)
smooth = smooth - 1
# idx will gradually expand from idx_from -> np.arange(n_tot)
idx = idx_from
recompute_idx_sum = True # always compute at least once
mult = np.zeros(n_tot)
for k in range(100): # the maximum allowed
# on first iteration it's already restricted, so we need to re-restrict
if k != 0 and len(idx) < n_tot:
data = data[idx]
# smoothing multiplication
use_e = e[:, idx] if len(idx) < n_tot else e
data = use_e @ data
del use_e
# compute row sums + output indices
if recompute_idx_sum:
if len(idx) == n_tot:
row_sum = np.asarray(e.sum(-1))
idx = np.arange(n_tot)
recompute_idx_sum = False
else:
mult[idx] = 1
row_sum = e @ mult
idx = np.where(row_sum)[0]
# do row normalization
_csr_row_norm(data, row_sum)
if k == smooth or (smooth is None and len(idx) == n_tot):
break # last iteration / done
assert data.shape == (n_tot, len(idx_from))
n_missing = n_tot - len(idx)
n_iter = k + 1
return data, n_missing, n_iter
def _sparse_argmax_nnz_row(csr_mat):
"""Return index of the maximum non-zero index in each row."""
n_rows = csr_mat.shape[0]
idx = np.empty(n_rows, dtype=np.int64)
for k in range(n_rows):
row = csr_mat[[k]].tocoo()
idx[k] = row.col[np.argmax(row.data)]
return idx
def _get_subject_sphere_tris(subject, subjects_dir):
spheres = [
subjects_dir / subject / "surf" / (xh + ".sphere.reg") for xh in ["lh", "rh"]
]
tris = [read_surface(s)[1] for s in spheres]
return tris
###############################################################################
# Apply morph to source estimate
def _get_zooms_orig(morph):
"""Compute src zooms from morph zooms, morph shape and src shape."""
# zooms_to = zooms_from / shape_to * shape_from for each spatial dimension
return [
mz / ss * ms
for mz, ms, ss in zip(
morph.zooms, morph.shape, morph.src_data["src_shape_full"][::-1]
)
]
def _check_vertices_match(v1, v2, name):
if not np.array_equal(v1, v2):
ext = ""
if np.isin(v2, v1).all():
ext = " Vertices were likely excluded during forward computation."
raise ValueError(
f"vertices do not match between morph ({len(v1)}) and stc ({len(v2)}) "
'for {name}:\n{v1}\n{v2}\nPerhaps src_to=fwd["src"] needs to be passed '
f"when calling compute_source_morph.{ext}"
)
_VOL_MAT_CHECK_RATIO = 1.0
def _apply_morph_data(morph, stc_from):
"""Morph a source estimate from one subject to another."""
if stc_from.subject is not None and stc_from.subject != morph.subject_from:
raise ValueError(
f"stc.subject ({stc_from.subject}) != morph.subject_from "
f"({morph.subject_from})"
)
_check_option("morph.kind", morph.kind, ("surface", "volume", "mixed"))
if morph.kind == "surface":
_validate_type(
stc_from,
_BaseSurfaceSourceEstimate,
"stc_from",
"volume source estimate when using a surface morph",
)
elif morph.kind == "volume":
_validate_type(
stc_from,
_BaseVolSourceEstimate,
"stc_from",
"surface source estimate when using a volume morph",
)
else:
assert morph.kind == "mixed" # can handle any
_validate_type(
stc_from,
_BaseSourceEstimate,
"stc_from",
"source estimate when using a mixed source morph",
)
# figure out what to actually morph
do_vol = not isinstance(stc_from, _BaseSurfaceSourceEstimate)
do_surf = not isinstance(stc_from, _BaseVolSourceEstimate)
vol_src_offset = 2 if do_surf else 0
from_surf_stop = sum(len(v) for v in stc_from.vertices[:vol_src_offset])
to_surf_stop = sum(len(v) for v in morph.vertices_to[:vol_src_offset])
from_vol_stop = stc_from.data.shape[0]
vertices_to = morph.vertices_to
if morph.kind == "mixed":
vertices_to = vertices_to[0 if do_surf else 2 : None if do_vol else 2]
to_vol_stop = sum(len(v) for v in vertices_to)
mesg = "Ori × Time" if stc_from.data.ndim == 3 else "Time"
data_from = np.reshape(stc_from.data, (stc_from.data.shape[0], -1))
n_times = data_from.shape[1] # oris treated as times
data = np.empty((to_vol_stop, n_times), stc_from.data.dtype)
to_used = np.zeros(data.shape[0], bool)
from_used = np.zeros(data_from.shape[0], bool)
if do_vol:
stc_from_vertices = stc_from.vertices[vol_src_offset:]
vertices_from = morph._vol_vertices_from
for ii, (v1, v2) in enumerate(zip(vertices_from, stc_from_vertices)):
_check_vertices_match(v1, v2, f"volume[{ii}]")
from_sl = slice(from_surf_stop, from_vol_stop)
assert not from_used[from_sl].any()
from_used[from_sl] = True
to_sl = slice(to_surf_stop, to_vol_stop)
assert not to_used[to_sl].any()
to_used[to_sl] = True
# Loop over time points to save memory
if morph.vol_morph_mat is None and n_times >= _VOL_MAT_CHECK_RATIO * (
to_vol_stop - to_surf_stop
):
warn(
"Computing a sparse volume morph matrix will save time over "
"directly morphing, calling morph.compute_vol_morph_mat(). "
"Consider (re-)saving your instance to disk to avoid "
"subsequent recomputation."
)
morph.compute_vol_morph_mat()
if morph.vol_morph_mat is None:
logger.debug("Using individual volume morph")
data[to_sl, :] = morph._morph_vols(data_from[from_sl], mesg)
else:
logger.debug("Using sparse volume morph matrix")
data[to_sl, :] = morph.vol_morph_mat @ data_from[from_sl]
if do_surf:
for hemi, v1, v2 in zip(
("left", "right"), morph.src_data["vertices_from"], stc_from.vertices[:2]
):
_check_vertices_match(v1, v2, f"{hemi} hemisphere")
from_sl = slice(0, from_surf_stop)
assert not from_used[from_sl].any()
from_used[from_sl] = True
to_sl = slice(0, to_surf_stop)
assert not to_used[to_sl].any()
to_used[to_sl] = True
data[to_sl] = morph.morph_mat @ data_from[from_sl]
assert to_used.all()
assert from_used.all()
data.shape = (data.shape[0],) + stc_from.data.shape[1:]
klass = stc_from.__class__
stc_to = klass(data, vertices_to, stc_from.tmin, stc_from.tstep, morph.subject_to)
return stc_to