[074d3d]: / mne / minimum_norm / time_frequency.py

Download this file

1218 lines (1080 with data), 38.1 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from .._fiff.constants import FIFF
from .._fiff.pick import pick_info
from ..baseline import _log_rescale, rescale
from ..epochs import Epochs
from ..event import make_fixed_length_events
from ..evoked import EvokedArray
from ..fixes import _safe_svd
from ..label import BiHemiLabel, Label
from ..parallel import parallel_func
from ..source_estimate import _make_stc
from ..time_frequency.multitaper import (
_compute_mt_params,
_mt_spectra,
_psd_from_mt,
_psd_from_mt_adaptive,
)
from ..time_frequency.tfr import cwt, morlet
from ..utils import ProgressBar, _check_option, _pl, _validate_type, logger, verbose
from .inverse import (
INVERSE_METHODS,
_assemble_kernel,
_check_or_prepare,
_check_ori,
_pick_channels_inverse_operator,
_subject_from_inverse,
combine_xyz,
)
def _restrict_K_to_lbls(labels, K, noise_norm, vertno, pick_ori):
"""Use labels to choose desired sources in the kernel."""
verts_to_use = [[], []]
# create mask for K by compiling original vertices from vertno in labels
for ii in range(len(labels)):
lab = labels[ii]
# handle BiHemi labels; ok so long as no overlap w/ single hemi labels
if lab.hemi == "both":
l_verts = np.intersect1d(vertno[0], lab.lh.vertices)
r_verts = np.intersect1d(vertno[1], lab.rh.vertices) # output sorted
verts_to_use[0] += list(l_verts)
verts_to_use[1] += list(r_verts)
else:
hidx = 0 if lab.hemi == "lh" else 1
verts = np.intersect1d(vertno[hidx], lab.vertices)
verts_to_use[hidx] += list(verts)
# check that we don't have overlapping vertices in our labels
for ii in range(2):
if len(np.unique(verts_to_use[ii])) != len(verts_to_use[ii]):
raise RuntimeError(
"Labels cannot have overlapping vertices. "
"Please select labels with unique vertices "
"and try again."
)
# turn original vertex numbers from vertno into indices for K
K_mask = np.searchsorted(vertno[0], verts_to_use[0])
r_kmask = np.searchsorted(vertno[1], verts_to_use[1]) + len(vertno[0])
K_mask = np.hstack((K_mask, r_kmask))
# record which original vertices are at each index in out_K
hemis = ("lh", "rh")
ki_keys = [
(hemis[hi], verts_to_use[hi][ii])
for hi in range(2)
for ii in range(len(verts_to_use[hi]))
]
ki_vals = list(range(len(K_mask)))
k_idxs = dict(zip(ki_keys, ki_vals))
# mask K, handling the orientation issue
len_allverts = len(vertno[0]) + len(vertno[1])
if len(K) == len_allverts:
assert pick_ori == "normal"
out_K = K[K_mask]
else:
# here, K = [x0, y0, z0, x1, y1, z1 ...]
# we need to drop x, y and z of unused vertices
assert not pick_ori == "normal", pick_ori
assert len(K) == 3 * len_allverts, (len(K), len_allverts)
out_len = len(K_mask) * 3
out_K = K[0:out_len] # get the correct-shaped array
for di in range(3):
K_pick = K[di::3]
out_K[di::3] = K_pick[K_mask] # set correct values for out
out_vertno = verts_to_use
if noise_norm is not None:
out_nn = noise_norm[K_mask]
else:
out_nn = None
return out_K, out_nn, out_vertno, k_idxs
def _prepare_source_params(
inst,
inverse_operator,
label=None,
lambda2=1.0 / 9.0,
method="dSPM",
nave=1,
pca=True,
pick_ori="normal",
prepared=False,
method_params=None,
use_cps=True,
):
"""Prepare inverse operator and params for spectral / TFR analysis."""
inv = _check_or_prepare(
inverse_operator, nave, lambda2, method, method_params, prepared
)
#
# Pick the correct channels from the data
#
sel = _pick_channels_inverse_operator(inst.ch_names, inv)
logger.info("Picked %d channels from the data", len(sel))
logger.info("Computing inverse...")
#
# Simple matrix multiplication followed by combination of the
# three current components
#
# This does all the data transformations to compute the weights for the
# eigenleads
#
# K shape: (3 x n_sources, n_channels) or (n_sources, n_channels)
# noise_norm shape: (n_sources, 1)
# vertno: [lh_verts, rh_verts]
k_idxs = None
if not isinstance(label, Label | BiHemiLabel):
whole_K, whole_noise_norm, whole_vertno, _ = _assemble_kernel(
inv, None, method, pick_ori, use_cps=use_cps
)
if isinstance(label, list):
K, noise_norm, vertno, k_idxs = _restrict_K_to_lbls(
label, whole_K, whole_noise_norm, whole_vertno, pick_ori
)
else:
assert not label
K, noise_norm, vertno = whole_K, whole_noise_norm, whole_vertno
elif isinstance(label, Label | BiHemiLabel):
K, noise_norm, vertno, _ = _assemble_kernel(
inv, label, method, pick_ori, use_cps=use_cps
)
if pca:
U, s, Vh = _safe_svd(K, full_matrices=False)
rank = np.sum(s > 1e-8 * s[0])
K = s[:rank] * U[:, :rank]
Vh = Vh[:rank]
logger.info("Reducing data rank %d -> %d", len(s), rank)
else:
Vh = None
is_free_ori = inverse_operator["source_ori"] == FIFF.FIFFV_MNE_FREE_ORI
return K, sel, Vh, vertno, is_free_ori, noise_norm, k_idxs
@verbose
def source_band_induced_power(
epochs,
inverse_operator,
bands,
label=None,
lambda2=1.0 / 9.0,
method="dSPM",
nave=1,
n_cycles=5,
df=1,
use_fft=False,
decim=1,
baseline=None,
baseline_mode="logratio",
pca=True,
n_jobs=None,
prepared=False,
method_params=None,
use_cps=True,
*,
verbose=None,
):
"""Compute source space induced power in given frequency bands.
Parameters
----------
epochs : instance of Epochs
The epochs.
inverse_operator : instance of InverseOperator
The inverse operator.
bands : dict
Example : bands = dict(alpha=[8, 9]).
label : Label | list of Label
Restricts the source estimates to a given label or list of labels. If
labels are provided in a list, power will be averaged over vertices.
lambda2 : float
The regularization parameter of the minimum norm.
method : "MNE" | "dSPM" | "sLORETA" | "eLORETA"
Use minimum norm, dSPM (default), sLORETA, or eLORETA.
nave : int
The number of averages used to scale the noise covariance matrix.
n_cycles : float | array of float
Number of cycles. Fixed number or one per frequency.
df : float
Delta frequency within bands.
use_fft : bool
Do convolutions in time or frequency domain with FFT.
decim : int
Temporal decimation factor.
baseline : None (default) or tuple, shape (2,)
The time interval to apply baseline correction. If None do not apply
it. If baseline is (a, b) the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used and if b is None then b
is set to the end of the interval. If baseline is equal to (None, None)
all the time interval is used.
baseline_mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio'
Perform baseline correction by
- subtracting the mean of baseline values ('mean')
- dividing by the mean of baseline values ('ratio')
- dividing by the mean of baseline values and taking the log
('logratio')
- subtracting the mean of baseline values followed by dividing by
the mean of baseline values ('percent')
- subtracting the mean of baseline values and dividing by the
standard deviation of baseline values ('zscore')
- dividing by the mean of baseline values, taking the log, and
dividing by the standard deviation of log baseline values
('zlogratio')
pca : bool
If True, the true dimension of data is estimated before running
the time-frequency transforms. It reduces the computation times
e.g. with a dataset that was maxfiltered (true dim is 64).
%(n_jobs)s
prepared : bool
If True, do not call :func:`prepare_inverse_operator`.
method_params : dict | None
Additional options for eLORETA. See Notes of :func:`apply_inverse`.
.. versionadded:: 0.16
%(use_cps_restricted)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
stcs : dict of SourceEstimate (or VolSourceEstimate)
The estimated source space induced power estimates in shape
(n_vertices, n_frequencies, n_samples) if label=None or label=label.
For lists of one or more labels, the induced power estimate has shape
(n_labels, n_frequencies, n_samples).
""" # noqa: E501
_check_option("method", method, INVERSE_METHODS)
freqs = np.concatenate(
[np.arange(band[0], band[1] + df / 2.0, df) for _, band in bands.items()]
)
powers, _, vertno = _source_induced_power(
epochs,
inverse_operator,
freqs,
label=label,
lambda2=lambda2,
method=method,
nave=nave,
n_cycles=n_cycles,
decim=decim,
use_fft=use_fft,
pca=pca,
n_jobs=n_jobs,
with_plv=False,
prepared=prepared,
method_params=method_params,
use_cps=use_cps,
)
Fs = epochs.info["sfreq"] # sampling in Hz
stcs = dict()
subject = _subject_from_inverse(inverse_operator)
_log_rescale(baseline, baseline_mode) # for early failure
for name, band in bands.items():
idx = [k for k, f in enumerate(freqs) if band[0] <= f <= band[1]]
# average power in band + mean over epochs
power = np.mean(powers[:, idx, :], axis=1)
# Run baseline correction
power = rescale(
power,
epochs.times[::decim],
baseline,
baseline_mode,
copy=False,
verbose=False,
)
tmin = epochs.times[0]
tstep = float(decim) / Fs
stc = _make_stc(
power,
vertices=vertno,
tmin=tmin,
tstep=tstep,
subject=subject,
src_type=inverse_operator["src"].kind,
)
stcs[name] = stc
logger.info("[done]")
return stcs
def _prepare_tfr(data, decim, pick_ori, Ws, K, source_ori):
"""Prepare TFR source localization."""
n_times = data[:, :, ::decim].shape[2]
n_freqs = len(Ws)
n_sources = K.shape[0]
is_free_ori = False
if source_ori == FIFF.FIFFV_MNE_FREE_ORI and pick_ori is None:
is_free_ori = True
n_sources //= 3
shape = (n_sources, n_freqs, n_times)
return shape, is_free_ori
@verbose
def _compute_pow_plv(
data,
K,
sel,
Ws,
source_ori,
use_fft,
Vh,
with_power,
with_plv,
pick_ori,
decim,
noise_norm=None,
verbose=None,
):
"""Aux function for induced power and PLV."""
shape, is_free_ori = _prepare_tfr(data, decim, pick_ori, Ws, K, source_ori)
power = np.zeros(shape, dtype=np.float64) # power or raw TFR
# phase lock
plv = np.zeros(shape, dtype=np.complex128) if with_plv else None
for epoch in data:
epoch = epoch[sel] # keep only selected channels
if Vh is not None:
epoch = np.dot(Vh, epoch) # reducing data rank
power_e, plv_e = _single_epoch_tfr(
data=epoch,
is_free_ori=is_free_ori,
K=K,
Ws=Ws,
use_fft=use_fft,
decim=decim,
shape=shape,
with_plv=with_plv,
with_power=with_power,
)
power += power_e
if with_plv:
plv += plv_e
if noise_norm is not None:
power *= noise_norm[:, :, np.newaxis] ** 2
return power, plv
def _single_epoch_tfr(
data, is_free_ori, K, Ws, use_fft, decim, shape, with_plv, with_power
):
"""Compute single trial TFRs, either ITC, power or raw TFR."""
tfr_e = np.zeros(shape, dtype=np.float64) # power or raw TFR
# phase lock
plv_e = np.zeros(shape, dtype=np.complex128) if with_plv else None
n_sources, _, n_times = shape
for f, w in enumerate(Ws):
tfr_ = cwt(data, [w], use_fft=use_fft, decim=decim)
tfr_ = np.asfortranarray(tfr_.reshape(len(data), -1))
# phase lock and power at freq f
if with_plv:
plv_f = np.zeros((n_sources, n_times), dtype=np.complex128)
tfr_f = np.zeros((n_sources, n_times), dtype=np.float64)
for k, t in enumerate([np.real(tfr_), np.imag(tfr_)]):
sol = np.dot(K, t)
sol_pick_normal = sol
if is_free_ori:
sol_pick_normal = sol[2::3]
if with_plv:
if k == 0: # real
plv_f += sol_pick_normal
else: # imag
plv_f += 1j * sol_pick_normal
if is_free_ori:
logger.debug("combining the current components...")
sol = combine_xyz(sol, square=with_power)
elif with_power:
sol *= sol
tfr_f += sol
del sol
tfr_e[:, f, :] += tfr_f
del tfr_f
if with_plv:
plv_f /= np.abs(plv_f)
plv_e[:, f, :] += plv_f
del plv_f
return tfr_e, plv_e
def _get_label_power(power, labels, vertno, k_idxs):
"""Average power across vertices in labels."""
(_, ps1, ps2) = power.shape
# construct out array with correct shape
out_power = np.zeros(shape=(len(labels), ps1, ps2))
# for each label, compile list of vertices we want
for li in np.arange(len(labels)):
lab = labels[li]
hemis = ("lh", "rh")
all_vnums = [[], []]
if lab.hemi == "both":
all_vnums[0] = np.intersect1d(lab.lh.vertices, vertno[0])
all_vnums[1] = np.intersect1d(lab.rh.vertices, vertno[1])
else:
assert lab.hemi == "lh" or lab.hemi == "rh"
h_id = 0 if lab.hemi == "lh" else 1
all_vnums[h_id] = np.intersect1d(vertno[h_id], lab.vertices)
verts = [(hemis[hi], vn) for hi in range(2) for vn in all_vnums[hi]]
# restrict power to relevant vertices in label
lab_mask = np.array([False] * len(power))
for vert in verts:
lab_mask[k_idxs[vert]] = True # k_idxs[vert] gives power row index
lab_power = power[lab_mask] # only pass through rows we want
assert lab_power.shape == (len(verts), ps1, ps2)
# set correct out values for label
out_power[li, :, :] = np.mean(lab_power, axis=0)
assert out_power.shape == (len(labels), ps1, ps2)
return out_power
@verbose
def _source_induced_power(
epochs,
inverse_operator,
freqs,
label=None,
lambda2=1.0 / 9.0,
method="dSPM",
nave=1,
n_cycles=5,
decim=1,
use_fft=False,
pca=True,
pick_ori="normal",
n_jobs=None,
with_plv=True,
zero_mean=False,
prepared=False,
method_params=None,
use_cps=True,
verbose=None,
):
"""Aux function for source induced power."""
if label:
_validate_type(
label,
types=(Label, BiHemiLabel, list, tuple, None),
type_name=("Label or BiHemiLabel", "list of labels", "None"),
)
if isinstance(label, list | tuple):
for item in label:
_validate_type(
item,
types=(Label, BiHemiLabel),
type_name=("Label or BiHemiLabel"),
)
if len(label) > 1 and with_plv:
raise RuntimeError(
"Phase-locking value cannot be calculated "
"when averaging induced power within "
"labels. Please set `with_plv` to False, pass a "
"single `label=label`, or set `label=None`."
)
epochs_data = epochs.get_data(copy=False)
K, sel, Vh, vertno, is_free_ori, noise_norm, k_id = _prepare_source_params(
inst=epochs,
inverse_operator=inverse_operator,
label=label,
lambda2=lambda2,
method=method,
nave=nave,
pca=pca,
pick_ori=pick_ori,
prepared=prepared,
method_params=method_params,
use_cps=use_cps,
)
inv = inverse_operator
parallel, my_compute_source_tfrs, n_jobs = parallel_func(
_compute_pow_plv, n_jobs, max_jobs=len(epochs_data)
)
Fs = epochs.info["sfreq"] # sampling in Hz
logger.info("Computing source power ...")
Ws = morlet(Fs, freqs, n_cycles=n_cycles, zero_mean=zero_mean)
out = parallel(
my_compute_source_tfrs(
data=data,
K=K,
sel=sel,
Ws=Ws,
source_ori=inv["source_ori"],
use_fft=use_fft,
Vh=Vh,
with_plv=with_plv,
with_power=True,
pick_ori=pick_ori,
decim=decim,
noise_norm=noise_norm,
)
for data in np.array_split(epochs_data, n_jobs)
)
power = sum(o[0] for o in out) # power shape: (n_verts, n_freqs, n_samps)
power /= len(epochs_data) # average power over epochs
if isinstance(label, Label | BiHemiLabel):
logger.info(
f"Outputting power for {len(power)} vertices in label {label.name}."
)
elif isinstance(label, list):
power = _get_label_power(power, label, vertno, k_id)
logger.info(
"Averaging induced power across vertices within labels "
f"for {len(label)} label{_pl(label)}."
)
else:
assert not label
if with_plv:
plv = sum(o[1] for o in out)
plv = np.abs(plv)
plv /= len(epochs_data) # average power over epochs
else:
plv = None
return power, plv, vertno
@verbose
def source_induced_power(
epochs,
inverse_operator,
freqs,
label=None,
lambda2=1.0 / 9.0,
method="dSPM",
nave=1,
n_cycles=5,
decim=1,
use_fft=False,
pick_ori=None,
baseline=None,
baseline_mode="logratio",
pca=True,
n_jobs=None,
*,
return_plv=True,
zero_mean=False,
prepared=False,
method_params=None,
use_cps=True,
verbose=None,
):
"""Compute induced power and phase lock.
Computation can optionally be restricted in a label.
Parameters
----------
epochs : instance of Epochs
The epochs.
inverse_operator : instance of InverseOperator
The inverse operator.
freqs : array
Array of frequencies of interest.
label : Label | list of Label
Restricts the source estimates to a given label or list of labels. If
labels are provided in a list, power will be averaged over vertices within each
label.
lambda2 : float
The regularization parameter of the minimum norm.
method : "MNE" | "dSPM" | "sLORETA" | "eLORETA"
Use minimum norm, dSPM (default), sLORETA, or eLORETA.
nave : int
The number of averages used to scale the noise covariance matrix.
n_cycles : float | array of float
Number of cycles. Fixed number or one per frequency.
decim : int
Temporal decimation factor.
use_fft : bool
Do convolutions in time or frequency domain with FFT.
pick_ori : None | "normal"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
baseline : None (default) or tuple of length 2
The time interval to apply baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal to (None, None) all the time
interval is used.
baseline_mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio'
Perform baseline correction by
- subtracting the mean of baseline values ('mean')
- dividing by the mean of baseline values ('ratio')
- dividing by the mean of baseline values and taking the log
('logratio')
- subtracting the mean of baseline values followed by dividing by
the mean of baseline values ('percent')
- subtracting the mean of baseline values and dividing by the
standard deviation of baseline values ('zscore')
- dividing by the mean of baseline values, taking the log, and
dividing by the standard deviation of log baseline values
('zlogratio')
pca : bool
If True, the true dimension of data is estimated before running
the time-frequency transforms. It reduces the computation times
e.g. with a dataset that was maxfiltered (true dim is 64).
%(n_jobs)s
return_plv : bool
If True, return the phase-locking value array. Else, only return power.
.. versionadded:: 1.6
zero_mean : bool
Make sure the wavelets are zero mean.
prepared : bool
If True, do not call :func:`prepare_inverse_operator`.
method_params : dict | None
Additional options for eLORETA. See Notes of :func:`apply_inverse`.
%(use_cps_restricted)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
power : array
The induced power array with shape (n_sources, n_freqs, n_samples) if
label=None or label=label. For lists of one or more labels, the induced
power estimate has shape (n_labels, n_frequencies, n_samples).
plv : array
The phase-locking value array with shape (n_sources, n_freqs,
n_samples). Only returned if ``return_plv=True``.
""" # noqa: E501
_check_option("method", method, INVERSE_METHODS)
_check_ori(pick_ori, inverse_operator["source_ori"], inverse_operator["src"])
power, plv, vertno = _source_induced_power(
epochs,
inverse_operator,
freqs,
label=label,
lambda2=lambda2,
method=method,
nave=nave,
n_cycles=n_cycles,
decim=decim,
use_fft=use_fft,
pick_ori=pick_ori,
pca=pca,
n_jobs=n_jobs,
with_plv=return_plv,
method_params=method_params,
zero_mean=zero_mean,
prepared=prepared,
use_cps=use_cps,
)
# Run baseline correction
power = rescale(power, epochs.times[::decim], baseline, baseline_mode, copy=False)
outs = (power, plv) if return_plv else power
return outs
@verbose
def compute_source_psd(
raw,
inverse_operator,
lambda2=1.0 / 9.0,
method="dSPM",
tmin=0.0,
tmax=None,
fmin=0.0,
fmax=200.0,
n_fft=2048,
overlap=0.5,
pick_ori=None,
label=None,
nave=1,
pca=True,
prepared=False,
method_params=None,
inv_split=None,
bandwidth="hann",
adaptive=False,
low_bias=False,
n_jobs=None,
return_sensor=False,
dB=False,
*,
verbose=None,
):
"""Compute source power spectral density (PSD).
Parameters
----------
raw : instance of Raw
The raw data.
inverse_operator : instance of InverseOperator
The inverse operator.
lambda2 : float
The regularization parameter.
method : "MNE" | "dSPM" | "sLORETA"
Use minimum norm, dSPM (default), sLORETA, or eLORETA.
tmin : float
The beginning of the time interval of interest (in seconds).
Use 0. for the beginning of the file.
tmax : float | None
The end of the time interval of interest (in seconds). If None
stop at the end of the file.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
n_fft : int
Window size for the FFT. Should be a power of 2.
overlap : float
The overlap fraction between windows. Should be between 0 and 1.
0 means no overlap.
pick_ori : None | "normal"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
label : Label
Restricts the source estimates to a given label.
nave : int
The number of averages used to scale the noise covariance matrix.
pca : bool
If True, the true dimension of data is estimated before running
the time-frequency transforms. It reduces the computation times
e.g. with a dataset that was maxfiltered (true dim is 64).
prepared : bool
If True, do not call :func:`prepare_inverse_operator`.
method_params : dict | None
Additional options for eLORETA. See Notes of :func:`apply_inverse`.
.. versionadded:: 0.16
inv_split : int or None
Split inverse operator into inv_split parts in order to save memory.
.. versionadded:: 0.17
bandwidth : float | str
The bandwidth of the multi taper windowing function in Hz.
Can also be a string (e.g., 'hann') to use a single window.
For backward compatibility, the default is 'hann'.
.. versionadded:: 0.17
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
.. versionadded:: 0.17
low_bias : bool
Only use tapers with more than 90%% spectral concentration within
bandwidth.
.. versionadded:: 0.17
%(n_jobs)s
It is only used if adaptive=True.
.. versionadded:: 0.17
return_sensor : bool
If True, return the sensor PSDs as an EvokedArray.
.. versionadded:: 0.17
dB : bool
If True (default False), return output it decibels.
.. versionadded:: 0.17
%(verbose)s
Returns
-------
stc_psd : instance of SourceEstimate | VolSourceEstimate
The PSD of each of the sources.
sensor_psd : instance of EvokedArray
The PSD of each sensor. Only returned if ``return_sensor`` is True.
See Also
--------
compute_source_psd_epochs
Notes
-----
Each window is multiplied by a window before processing, so
using a non-zero overlap is recommended.
This function is different from :func:`compute_source_psd_epochs` in that:
1. ``bandwidth='hann'`` by default, skipping multitaper estimation
2. For convenience it wraps
:func:`mne.make_fixed_length_events` and :class:`mne.Epochs`.
Otherwise the two should produce identical results.
"""
tmin = 0.0 if tmin is None else float(tmin)
overlap = float(overlap)
if not 0 <= overlap < 1:
raise ValueError(f"Overlap must be at least 0 and less than 1, got {overlap}")
n_fft = int(n_fft)
duration = ((1.0 - overlap) * n_fft) / raw.info["sfreq"]
events = make_fixed_length_events(raw, 1, tmin, tmax, duration)
epochs = Epochs(raw, events, 1, 0, (n_fft - 1) / raw.info["sfreq"], baseline=None)
out = compute_source_psd_epochs(
epochs,
inverse_operator,
lambda2,
method,
fmin,
fmax,
pick_ori,
label,
nave,
pca,
inv_split,
bandwidth,
adaptive,
low_bias,
True,
n_jobs,
prepared,
method_params,
return_sensor=True,
)
source_data = 0.0
sensor_data = 0.0
count = 0
for stc, evoked in out:
source_data += stc.data
sensor_data += evoked.data
count += 1
assert count > 0 # should be guaranteed by make_fixed_length_events
sensor_data /= count
source_data /= count
if dB:
np.log10(sensor_data, out=sensor_data)
sensor_data *= 10.0
np.log10(source_data, out=source_data)
source_data *= 10.0
evoked.data = sensor_data
evoked.nave = count
stc.data = source_data
out = stc
if return_sensor:
out = (out, evoked)
return out
def _compute_source_psd_epochs(
epochs,
inverse_operator,
lambda2=1.0 / 9.0,
method="dSPM",
fmin=0.0,
fmax=200.0,
pick_ori=None,
label=None,
nave=1,
pca=True,
inv_split=None,
bandwidth=4.0,
adaptive=False,
low_bias=True,
n_jobs=None,
prepared=False,
method_params=None,
return_sensor=False,
use_cps=True,
):
"""Generate compute_source_psd_epochs."""
logger.info(f"Considering frequencies {fmin} ... {fmax} Hz")
if label:
# TODO: add multi-label support
# since `_prepare_source_params` can handle a list of labels now,
# multi-label support should be within reach for psd calc as well
_validate_type(
label,
types=(Label, BiHemiLabel, None),
type_name=("Label or BiHemiLabel", "None"),
)
K, sel, Vh, vertno, is_free_ori, noise_norm, _ = _prepare_source_params(
inst=epochs,
inverse_operator=inverse_operator,
label=label,
lambda2=lambda2,
method=method,
nave=nave,
pca=pca,
pick_ori=pick_ori,
prepared=prepared,
method_params=method_params,
use_cps=use_cps,
)
# Simplify code with a tiny (rel. to other computations) penalty for eye
# mult
Vh = np.eye(K.shape[1]) if Vh is None else Vh
# split the inverse operator
if inv_split is not None:
K_split = np.array_split(K, inv_split)
else:
K_split = [K]
# compute DPSS windows
n_times = len(epochs.times)
sfreq = epochs.info["sfreq"]
dpss, eigvals, adaptive = _compute_mt_params(
n_times, sfreq, bandwidth, low_bias, adaptive, verbose=False
)
n_tapers = len(dpss)
try:
n_epochs = len(epochs)
except RuntimeError:
n_epochs = len(epochs.events)
extra = f"on at most {n_epochs} epochs"
else:
extra = f"on {n_epochs} epochs"
if isinstance(bandwidth, str):
bandwidth = f"{bandwidth} windowing"
else:
bandwidth = f"{n_tapers} tapers with bandwidth {bandwidth:0.1f} Hz"
logger.info(f"Using {bandwidth} {extra}")
if adaptive:
parallel, my_psd_from_mt_adaptive, n_jobs = parallel_func(
_psd_from_mt_adaptive, n_jobs
)
else:
weights = np.sqrt(eigvals)[np.newaxis, :, np.newaxis]
subject = _subject_from_inverse(inverse_operator)
iter_epochs = ProgressBar(epochs, max_value=n_epochs)
evoked_info = pick_info(epochs.info, sel, verbose=False)
for k, e in enumerate(iter_epochs):
data = np.dot(Vh, e[sel]) # reducing data rank
# compute tapered spectra in sensor space
x_mt, freqs = _mt_spectra(data, dpss, sfreq)
if k == 0:
freq_mask = (freqs >= fmin) & (freqs <= fmax)
fstep = np.mean(np.diff(freqs))
with evoked_info._unlock():
evoked_info["sfreq"] = 1.0 / fstep
freqs = freqs[freq_mask]
# sensor space PSD
x_mt_sensor = np.empty(
(len(sel), x_mt.shape[1], x_mt.shape[2]), dtype=x_mt.dtype
)
for i in range(n_tapers):
x_mt_sensor[:, i, :] = np.dot(Vh.T, x_mt[:, i, :])
if adaptive:
out = parallel(
my_psd_from_mt_adaptive(x, eigvals, freq_mask)
for x in np.array_split(x_mt_sensor, min(n_jobs, len(x_mt_sensor)))
)
sensor_psd = np.concatenate(out)
else:
x_mt_sensor = x_mt_sensor[:, :, freq_mask]
sensor_psd = _psd_from_mt(x_mt_sensor, weights)
# allocate space for output
psd = np.empty((K.shape[0], np.sum(freq_mask)))
# Optionally, we split the inverse operator into parts to save memory.
# Without splitting the tapered spectra in source space have size
# (n_vertices x n_tapers x n_times / 2)
pos = 0
for K_part in K_split:
# allocate space for tapered spectra in source space
x_mt_src = np.empty(
(K_part.shape[0], x_mt.shape[1], x_mt.shape[2]), dtype=x_mt.dtype
)
# apply inverse to each taper (faster than equiv einsum)
for i in range(n_tapers):
x_mt_src[:, i, :] = np.dot(K_part, x_mt[:, i, :])
# compute the psd
if adaptive:
out = parallel(
my_psd_from_mt_adaptive(x, eigvals, freq_mask)
for x in np.array_split(x_mt_src, min(n_jobs, len(x_mt_src)))
)
this_psd = np.concatenate(out)
else:
x_mt_src = x_mt_src[:, :, freq_mask]
this_psd = _psd_from_mt(x_mt_src, weights)
psd[pos : pos + K_part.shape[0], :] = this_psd
pos += K_part.shape[0]
# combine orientations
if is_free_ori and pick_ori is None:
psd = combine_xyz(psd, square=False)
if noise_norm is not None:
psd *= noise_norm**2
out = _make_stc(
psd,
tmin=freqs[0],
tstep=fstep,
vertices=vertno,
subject=subject,
src_type=inverse_operator["src"].kind,
)
if return_sensor:
comment = f"Epoch {k} PSD"
out = (
out,
EvokedArray(sensor_psd, evoked_info.copy(), freqs[0], comment, nave),
)
# we return a generator object for "stream processing"
yield out
iter_epochs.update(n_epochs) # in case some were skipped
@verbose
def compute_source_psd_epochs(
epochs,
inverse_operator,
lambda2=1.0 / 9.0,
method="dSPM",
fmin=0.0,
fmax=200.0,
pick_ori=None,
label=None,
nave=1,
pca=True,
inv_split=None,
bandwidth=4.0,
adaptive=False,
low_bias=True,
return_generator=False,
n_jobs=None,
prepared=False,
method_params=None,
return_sensor=False,
use_cps=True,
verbose=None,
):
"""Compute source power spectral density (PSD) from Epochs.
This uses the multi-taper method to compute the PSD for each epoch.
Parameters
----------
epochs : instance of Epochs
The raw data.
inverse_operator : instance of InverseOperator
The inverse operator.
lambda2 : float
The regularization parameter.
method : "MNE" | "dSPM" | "sLORETA" | "eLORETA"
Use minimum norm, dSPM (default), sLORETA, or eLORETA.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
pick_ori : None | "normal"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
label : Label
Restricts the source estimates to a given label.
nave : int
The number of averages used to scale the noise covariance matrix.
pca : bool
If True, the true dimension of data is estimated before running
the time-frequency transforms. It reduces the computation times
e.g. with a dataset that was maxfiltered (true dim is 64).
inv_split : int or None
Split inverse operator into inv_split parts in order to save memory.
bandwidth : float | str
The bandwidth of the multi taper windowing function in Hz.
Can also be a string (e.g., 'hann') to use a single window.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90%% spectral concentration within
bandwidth.
return_generator : bool
Return a generator object instead of a list. This allows iterating
over the stcs without having to keep them all in memory.
%(n_jobs)s
It is only used if adaptive=True.
prepared : bool
If True, do not call :func:`prepare_inverse_operator`.
method_params : dict | None
Additional options for eLORETA. See Notes of :func:`apply_inverse`.
.. versionadded:: 0.16
return_sensor : bool
If True, also return the sensor PSD for each epoch as an EvokedArray.
.. versionadded:: 0.17
%(use_cps_restricted)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
out : list (or generator object)
A list (or generator) for the source space PSD (and optionally the
sensor PSD) for each epoch.
See Also
--------
compute_source_psd
"""
# use an auxiliary function so we can either return a generator or a list
stcs_gen = _compute_source_psd_epochs(
epochs,
inverse_operator,
lambda2=lambda2,
method=method,
fmin=fmin,
fmax=fmax,
pick_ori=pick_ori,
label=label,
nave=nave,
pca=pca,
inv_split=inv_split,
bandwidth=bandwidth,
adaptive=adaptive,
low_bias=low_bias,
n_jobs=n_jobs,
prepared=prepared,
method_params=method_params,
return_sensor=return_sensor,
use_cps=use_cps,
)
if return_generator:
# return generator object
return stcs_gen
else:
# return a list
stcs = list()
for stc in stcs_gen:
stcs.append(stc)
return stcs