[074d3d]: / mne / io / tests / test_raw.py

Download this file

1083 lines (959 with data), 40.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
"""Generic tests that all raw classes should run."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import math
import os
import re
from contextlib import redirect_stdout
from io import StringIO
from os import path as op
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
)
import mne
from mne import Annotations, concatenate_raws, create_info, pick_types
from mne._fiff._digitization import DigPoint, _dig_kind_dict
from mne._fiff.constants import FIFF
from mne._fiff.meas_info import Info, _get_valid_units, _writing_info_hdf5
from mne._fiff.pick import _ELECTRODE_CH_TYPES, _FNIRS_CH_TYPES_SPLIT
from mne._fiff.proj import Projection
from mne._fiff.utils import _mult_cal_one
from mne.io import BaseRaw, RawArray, read_raw_fif
from mne.io.base import _get_scaling
from mne.transforms import Transform
from mne.utils import (
_import_h5io_funcs,
_raw_annot,
_stamp_to_dt,
_TempDir,
catch_logging,
check_version,
object_diff,
sizeof_fmt,
)
raw_fname = op.join(
op.dirname(__file__), "..", "..", "io", "tests", "data", "test_raw.fif"
)
def assert_named_constants(info):
"""Assert that info['chs'] has named constants."""
# for now we just check one
__tracebackhide__ = True
r = repr(info["chs"][0])
for check in (
".*FIFFV_COORD_.*",
".*FIFFV_COIL_.*",
".*FIFF_UNIT_.*",
".*FIFF_UNITM_.*",
):
assert re.match(check, r, re.DOTALL) is not None, (check, r)
def assert_attributes(raw):
"""Assert that the instance keeps all its extra attributes in _raw_extras."""
__tracebackhide__ = True
assert isinstance(raw, BaseRaw)
base_attrs = set(dir(BaseRaw(create_info(1, 1000.0, "eeg"), last_samps=[1])))
base_attrs = base_attrs.union(
[
"_data", # in the case of preloaded data
"__slotnames__", # something about being decorated (?)
]
)
for attr in raw._extra_attributes:
assert attr not in base_attrs
base_attrs.add(attr)
got_attrs = set(dir(raw))
extra = got_attrs.difference(base_attrs)
assert extra == set()
def test_orig_units():
"""Test the error handling for original units."""
# Should work fine
info = create_info(ch_names=["Cz"], sfreq=100, ch_types="eeg")
BaseRaw(info, last_samps=[1], orig_units={"Cz": "nV"})
# Should complain that channel Cz does not have a corresponding original
# unit.
with pytest.raises(ValueError, match="has no associated original unit."):
info = create_info(ch_names=["Cz"], sfreq=100, ch_types="eeg")
BaseRaw(info, last_samps=[1], orig_units={"not_Cz": "nV"})
# Test that a non-dict orig_units argument raises a ValueError
with pytest.raises(ValueError, match="orig_units must be of type dict"):
info = create_info(ch_names=["Cz"], sfreq=100, ch_types="eeg")
BaseRaw(info, last_samps=[1], orig_units=True)
def _test_raw_reader(
reader,
test_preloading=True,
test_kwargs=True,
boundary_decimal=2,
test_scaling=True,
test_rank=True,
**kwargs,
):
"""Test reading, writing and slicing of raw classes.
Parameters
----------
reader : function
Function to test.
test_preloading : bool
Whether not preloading is implemented for the reader. If True, both
cases and memory mapping to file are tested.
test_kwargs : dict
Test _init_kwargs support.
boundary_decimal : int
Number of decimals up to which the boundary should match.
**kwargs :
Arguments for the reader. Note: Do not use preload as kwarg.
Use ``test_preloading`` instead.
Returns
-------
raw : instance of Raw
A preloaded Raw object.
"""
tempdir = _TempDir()
rng = np.random.RandomState(0)
montage = None
if "montage" in kwargs:
montage = kwargs["montage"]
del kwargs["montage"]
if test_preloading:
raw = reader(preload=True, **kwargs)
rep = repr(raw)
assert rep.count("<") == 1
assert rep.count(">") == 1
if montage is not None:
raw.set_montage(montage)
# don't assume the first is preloaded
buffer_fname = op.join(tempdir, "buffer")
picks = rng.permutation(np.arange(len(raw.ch_names) - 1))[:10]
picks = np.append(picks, len(raw.ch_names) - 1) # test trigger channel
bnd = min(int(round(raw.buffer_size_sec * raw.info["sfreq"])), raw.n_times)
slices = [
slice(0, bnd),
slice(bnd - 1, bnd),
slice(3, bnd),
slice(3, 300),
slice(None),
slice(1, bnd),
]
if raw.n_times >= 2 * bnd: # at least two complete blocks
slices += [slice(bnd, 2 * bnd), slice(bnd, bnd + 1), slice(0, bnd + 100)]
other_raws = [
reader(preload=buffer_fname, **kwargs),
reader(preload=False, **kwargs),
]
for sl_time in slices:
data1, times1 = raw[picks, sl_time]
for other_raw in other_raws:
data2, times2 = other_raw[picks, sl_time]
assert_allclose(data1, data2, err_msg="Data mismatch with preload")
assert_allclose(times1, times2)
# test projection vs cals and data units
other_raw = reader(preload=False, **kwargs)
other_raw.del_proj()
eeg = meg = fnirs = seeg = eyetrack = False
if "eeg" in raw:
eeg, atol = True, 1e-18
elif "grad" in raw:
meg, atol = "grad", 1e-24
elif "mag" in raw:
meg, atol = "mag", 1e-24
elif "hbo" in raw:
fnirs, atol = "hbo", 1e-10
elif "hbr" in raw:
fnirs, atol = "hbr", 1e-10
elif "fnirs_cw_amplitude" in raw:
fnirs, atol = "fnirs_cw_amplitude", 1e-10
elif "eyegaze" in raw:
eyetrack = "eyegaze", 1e-3
else:
# e.g., https://github.com/mne-tools/mne-python/pull/11432/files
assert "seeg" in raw, "New channel type necessary? See gh-11432 for example"
seeg, atol = True, 1e-18
picks = pick_types(
other_raw.info,
meg=meg,
eeg=eeg,
fnirs=fnirs,
seeg=seeg,
eyetrack=eyetrack,
)
col_names = [other_raw.ch_names[pick] for pick in picks]
proj = np.ones((1, len(picks)))
proj /= np.sqrt(proj.shape[1])
proj = Projection(
data=dict(
data=proj, nrow=1, row_names=None, col_names=col_names, ncol=len(picks)
),
active=False,
)
assert len(other_raw.info["projs"]) == 0
other_raw.add_proj(proj)
assert len(other_raw.info["projs"]) == 1
# Orders of projector application, data loading, and reordering
# equivalent:
# 1. load->apply->get
data_load_apply_get = other_raw.copy().load_data().apply_proj().get_data(picks)
# 2. apply->get (and don't allow apply->pick)
apply = other_raw.copy().apply_proj()
data_apply_get = apply.get_data(picks)
data_apply_get_0 = apply.get_data(picks[0])[0]
with pytest.raises(RuntimeError, match="loaded"):
apply.copy().pick(picks[0]).get_data()
# 3. apply->load->get
data_apply_load_get = apply.copy().load_data().get_data(picks)
data_apply_load_get_0, data_apply_load_get_1 = (
apply.copy().load_data().pick(picks[:2]).get_data()
)
# 4. reorder->apply->load->get
all_picks = np.arange(len(other_raw.ch_names))
reord = np.concatenate(
(picks[1::2], picks[0::2], np.setdiff1d(all_picks, picks))
)
rev = np.argsort(reord)
assert_array_equal(reord[rev], all_picks)
assert_array_equal(rev[reord], all_picks)
reorder = other_raw.copy().pick(reord)
assert reorder.ch_names == [other_raw.ch_names[r] for r in reord]
assert reorder.ch_names[0] == other_raw.ch_names[picks[1]]
assert_allclose(reorder.get_data([0]), other_raw.get_data(picks[1]))
reorder_apply = reorder.copy().apply_proj()
assert reorder_apply.ch_names == reorder.ch_names
assert reorder_apply.ch_names[0] == apply.ch_names[picks[1]]
assert_allclose(
reorder_apply.get_data([0]), apply.get_data(picks[1]), atol=1e-18
)
data_reorder_apply_load_get = reorder_apply.load_data().get_data(
rev[: len(picks)]
)
data_reorder_apply_load_get_1 = (
reorder_apply.copy().load_data().pick([0]).get_data()[0]
)
assert reorder_apply.ch_names[0] == apply.ch_names[picks[1]]
assert (
data_load_apply_get.shape
== data_apply_get.shape
== data_apply_load_get.shape
== data_reorder_apply_load_get.shape
)
del apply
# first check that our data are (probably) in the right units
data = data_load_apply_get.copy()
data = data - np.mean(data, axis=1, keepdims=True) # can be offsets
np.abs(data, out=data)
if test_scaling:
maxval = atol * 1e16
assert_array_less(data, maxval)
minval = atol * 1e6
assert_array_less(minval, np.median(data))
else:
atol = 1e-7 * np.median(data) # 1e-7 * MAD
# ranks should all be reduced by 1
if test_rank == "less":
cmp = np.less
elif test_rank is False:
cmp = None
else: # anything else is like True or 'equal'
assert test_rank is True or test_rank == "equal", test_rank
cmp = np.equal
rank_load_apply_get = np.linalg.matrix_rank(data_load_apply_get)
rank_apply_get = np.linalg.matrix_rank(data_apply_get)
rank_apply_load_get = np.linalg.matrix_rank(data_apply_load_get)
if cmp is not None:
assert cmp(rank_load_apply_get, len(col_names) - 1)
assert cmp(rank_apply_get, len(col_names) - 1)
assert cmp(rank_apply_load_get, len(col_names) - 1)
# and they should all match
t_kw = dict(atol=atol, err_msg="before != after, likely _mult_cal_one prob")
assert_allclose(data_apply_get[0], data_apply_get_0, **t_kw)
assert_allclose(data_apply_load_get_1, data_reorder_apply_load_get_1, **t_kw)
assert_allclose(data_load_apply_get[0], data_apply_load_get_0, **t_kw)
assert_allclose(data_load_apply_get, data_apply_get, **t_kw)
assert_allclose(data_load_apply_get, data_apply_load_get, **t_kw)
if "eeg" in raw:
other_raw.del_proj()
direct = other_raw.copy().load_data().set_eeg_reference().get_data()
other_raw.set_eeg_reference(projection=True)
assert len(other_raw.info["projs"]) == 1
this_proj = other_raw.info["projs"][0]["data"]
assert this_proj["col_names"] == col_names
assert this_proj["data"].shape == proj["data"]["data"].shape
assert_allclose(np.linalg.norm(proj["data"]["data"]), 1.0, atol=1e-6)
assert_allclose(np.linalg.norm(this_proj["data"]), 1.0, atol=1e-6)
assert_allclose(this_proj["data"], proj["data"]["data"])
proj = other_raw.apply_proj().get_data()
assert_allclose(proj[picks], data_load_apply_get, atol=1e-10)
assert_allclose(proj, direct, atol=1e-10, err_msg=t_kw["err_msg"])
else:
raw = reader(**kwargs)
n_samp = len(raw.times)
assert_named_constants(raw.info)
assert_attributes(raw)
# smoke test for gh #9743
ids = [id(ch["loc"]) for ch in raw.info["chs"]]
assert len(set(ids)) == len(ids)
full_data = raw.get_data()
assert raw.__class__.__name__ in repr(raw) # to test repr
assert raw.info.__class__.__name__ in repr(raw.info)
assert isinstance(raw.info["dig"], type(None) | list)
data_max = np.nanmax(full_data)
data_min = np.nanmin(full_data)
# these limits could be relaxed if we actually find data with
# huge values (in SI units)
assert data_max < 1e5
assert data_min > -1e5
if isinstance(raw.info["dig"], list):
for di, d in enumerate(raw.info["dig"]):
assert isinstance(d, DigPoint), (di, d)
# gh-5604
meas_date = raw.info["meas_date"]
assert meas_date is None or meas_date >= _stamp_to_dt((0, 0))
# test repr_html
assert "Channels" in raw._repr_html_()
# test resetting raw
if test_kwargs:
raw2 = reader(**raw._init_kwargs)
assert set(raw.info.keys()) == set(raw2.info.keys())
assert_array_equal(raw.times, raw2.times)
# Test saving and reading
out_fname = op.join(tempdir, "test_out_raw.fif")
raw = concatenate_raws([raw])
filenames = raw.save(
out_fname, tmax=raw.times[-1], overwrite=True, buffer_size_sec=1
)
for filename in filenames:
assert filename.is_file()
# Test saving with not correct extension
out_fname_h5 = op.join(tempdir, "test_raw.h5")
with pytest.raises(OSError, match="raw must end with .fif or .fif.gz"):
raw.save(out_fname_h5)
raw3 = read_raw_fif(out_fname, allow_maxshield="yes")
assert_named_constants(raw3.info)
assert set(raw.info.keys()) == set(raw3.info.keys())
assert_allclose(
raw3[0:20][0], full_data[0:20], rtol=1e-6, atol=1e-20
) # atol is very small but > 0
assert_allclose(raw.times, raw3.times, atol=1e-6, rtol=1e-6)
assert not math.isnan(raw3.info["highpass"])
assert not math.isnan(raw3.info["lowpass"])
assert not math.isnan(raw.info["highpass"])
assert not math.isnan(raw.info["lowpass"])
assert raw3.info["kit_system_id"] == raw.info["kit_system_id"]
# Make sure concatenation works
first_samp = raw.first_samp
last_samp = raw.last_samp
concat_raw = concatenate_raws([raw.copy(), raw], verbose="debug")
assert concat_raw.n_times == 2 * raw.n_times
assert concat_raw.first_samp == first_samp
assert concat_raw.last_samp - last_samp + first_samp == last_samp + 1
idx = np.where(concat_raw.annotations.description == "BAD boundary")[0]
assert len(idx) == 1
assert len(concat_raw.times) == 2 * n_samp
expected_bad_boundary_onset = raw._last_time
assert_array_almost_equal(
concat_raw.annotations.onset[idx],
[expected_bad_boundary_onset],
decimal=boundary_decimal,
err_msg="BAD boundary onset mismatch",
)
if raw.info["meas_id"] is not None:
for key in ["secs", "usecs", "version"]:
assert raw.info["meas_id"][key] == raw3.info["meas_id"][key]
assert_array_equal(
raw.info["meas_id"]["machid"], raw3.info["meas_id"]["machid"]
)
assert isinstance(raw.annotations, Annotations)
# Make a "soft" test on units: They have to be valid SI units as in
# mne.io.meas_info.valid_units, but we accept any lower/upper case for now.
valid_units = _get_valid_units()
valid_units_lower = [unit.lower() for unit in valid_units]
if raw._orig_units is not None:
assert isinstance(raw._orig_units, dict)
for ch_name, unit in raw._orig_units.items():
assert unit.lower() in valid_units_lower, ch_name
# Test picking with and without preload
if test_preloading:
preload_kwargs = (dict(preload=True), dict(preload=False))
else:
preload_kwargs = (dict(),)
n_ch = len(raw.ch_names)
picks = rng.permutation(n_ch)
for preload_kwarg in preload_kwargs:
these_kwargs = kwargs.copy()
these_kwargs.update(preload_kwarg)
# don't use the same filename or it could create problems
if isinstance(these_kwargs.get("preload", None), str) and op.isfile(
these_kwargs["preload"]
):
these_kwargs["preload"] += "-1"
whole_raw = reader(**these_kwargs)
print(whole_raw) # __repr__
assert n_ch >= 2
picks_1 = picks[: n_ch // 2]
picks_2 = picks[n_ch // 2 :]
raw_1 = whole_raw.copy().pick(picks_1)
raw_2 = whole_raw.copy().pick(picks_2)
data, times = whole_raw[:]
data_1, times_1 = raw_1[:]
data_2, times_2 = raw_2[:]
assert_array_equal(times, times_1)
assert_array_equal(data[picks_1], data_1)
assert_array_equal(
times,
times_2,
)
assert_array_equal(data[picks_2], data_2)
# Make sure that writing info to h5 format
# (all fields should be compatible)
if check_version("h5io"):
read_hdf5, write_hdf5 = _import_h5io_funcs()
fname_h5 = op.join(tempdir, "info.h5")
with _writing_info_hdf5(raw.info):
write_hdf5(fname_h5, raw.info)
new_info = Info(read_hdf5(fname_h5))
assert object_diff(new_info, raw.info) == ""
# Make sure that changing directory does not break anything
if test_preloading:
these_kwargs = kwargs.copy()
key = None
for key in (
"fname",
"input_fname", # artemis123
"vhdr_fname", # BV
"pdf_fname", # BTi
"directory", # CTF
"filename", # nedf
):
try:
fname = kwargs[key]
except KeyError:
key = None
else:
break
# len(kwargs) == 0 for the fake arange reader
if len(kwargs):
assert key is not None, sorted(kwargs.keys())
this_fname = fname[0] if isinstance(fname, list) else fname
dirname = op.dirname(this_fname)
these_kwargs[key] = op.basename(this_fname)
these_kwargs["preload"] = False
orig_dir = os.getcwd()
try:
os.chdir(dirname)
raw_chdir = reader(**these_kwargs)
finally:
os.chdir(orig_dir)
raw_chdir.load_data()
# make sure that cropping works (with first_samp shift)
if n_samp >= 50: # we crop to this number of samples below
for t_prop in (0.0, 0.5):
_test_raw_crop(reader, t_prop, kwargs)
if test_preloading:
use_kwargs = kwargs.copy()
use_kwargs["preload"] = True
_test_raw_crop(reader, t_prop, use_kwargs)
# make sure electrode-like sensor locations show up as dig points
eeg_dig = [d for d in (raw.info["dig"] or []) if d["kind"] == _dig_kind_dict["eeg"]]
pick_kwargs = dict()
for t in _ELECTRODE_CH_TYPES + ("fnirs",):
pick_kwargs[t] = True
dig_picks = pick_types(raw.info, exclude=(), **pick_kwargs)
dig_types = _ELECTRODE_CH_TYPES + _FNIRS_CH_TYPES_SPLIT
assert (len(dig_picks) > 0) == any(t in raw for t in dig_types)
if len(dig_picks):
eeg_loc = np.array(
[ # eeg_loc a bit of a misnomer to match eeg_dig
raw.info["chs"][pick]["loc"][:3] for pick in dig_picks
]
)
eeg_loc = eeg_loc[np.isfinite(eeg_loc).all(axis=1)]
if len(eeg_loc):
if "fnirs_cw_amplitude" in raw:
assert 2 * len(eeg_dig) >= len(eeg_loc)
else:
assert len(eeg_dig) >= len(eeg_loc) # could have some excluded
# make sure that dig points in head coords implies that fiducials are
# present
if len(raw.info["dig"] or []) > 0:
card_pts = [
d for d in raw.info["dig"] if d["kind"] == _dig_kind_dict["cardinal"]
]
eeg_dig_head = [d for d in eeg_dig if d["coord_frame"] == FIFF.FIFFV_COORD_HEAD]
if len(eeg_dig_head):
assert len(card_pts) == 3, "Cardinal points missing"
if len(card_pts) == 3: # they should all be in head coords then
assert len(eeg_dig_head) == len(eeg_dig)
return raw
def _test_raw_crop(reader, t_prop, kwargs):
raw_1 = reader(**kwargs)
n_samp = 50 # crop to this number of samples (per instance)
crop_t = n_samp / raw_1.info["sfreq"]
t_start = t_prop * crop_t # also crop to some fraction into the first inst
extra = f" t_start={t_start}, preload={kwargs.get('preload', False)}"
stop = (n_samp - 1) / raw_1.info["sfreq"]
raw_1.crop(0, stop)
assert len(raw_1.times) == 50
first_time = raw_1.first_time
atol = 0.5 / raw_1.info["sfreq"]
assert_allclose(raw_1.times[-1], stop, atol=atol)
raw_2, raw_3 = raw_1.copy(), raw_1.copy()
t_tot = raw_1.times[-1] * 3 + 2.0 / raw_1.info["sfreq"]
raw_concat = concatenate_raws([raw_1, raw_2, raw_3])
assert len(raw_concat.filenames) == 3
assert_allclose(raw_concat.times[-1], t_tot)
assert_allclose(raw_concat.first_time, first_time)
# keep all instances, but crop to t_start at the beginning
raw_concat.crop(t_start, None)
assert len(raw_concat.filenames) == 3
assert_allclose(raw_concat.times[-1], t_tot - t_start, atol=atol)
assert_allclose(
raw_concat.first_time,
first_time + t_start,
atol=atol,
err_msg=f"Base concat, {extra}",
)
# drop the first instance
raw_concat.crop(crop_t, None)
assert len(raw_concat.filenames) == 2
assert_allclose(raw_concat.times[-1], t_tot - t_start - crop_t, atol=atol)
assert_allclose(
raw_concat.first_time,
first_time + t_start + crop_t,
atol=atol,
err_msg=f"Dropping one, {extra}",
)
# drop the second instance, leaving just one
raw_concat.crop(crop_t, None)
assert len(raw_concat.filenames) == 1
assert_allclose(raw_concat.times[-1], t_tot - t_start - 2 * crop_t, atol=atol)
assert_allclose(
raw_concat.first_time,
first_time + t_start + 2 * crop_t,
atol=atol,
err_msg=f"Dropping two, {extra}",
)
def _test_concat(reader, *args):
"""Test concatenation of raw classes that allow not preloading."""
data = None
for preload in (True, False):
raw1 = reader(*args, preload=preload)
raw2 = reader(*args, preload=preload)
raw1.append(raw2)
raw1.load_data()
if data is None:
data = raw1[:, :][0]
assert_allclose(data, raw1[:, :][0])
for first_preload in (True, False):
raw = reader(*args, preload=first_preload)
data = raw[:, :][0]
for preloads in ((True, True), (True, False), (False, False)):
for last_preload in (True, False):
t_crops = raw.times[np.argmin(np.abs(raw.times - 0.5)) + [0, 1]]
raw1 = raw.copy().crop(0, t_crops[0])
if preloads[0]:
raw1.load_data()
raw2 = raw.copy().crop(t_crops[1], None)
if preloads[1]:
raw2.load_data()
raw1.append(raw2)
if last_preload:
raw1.load_data()
assert_allclose(data, raw1[:, :][0])
def test_time_as_index():
"""Test indexing of raw times."""
raw = read_raw_fif(raw_fname)
# Test original (non-rounding) indexing behavior
orig_inds = raw.time_as_index(raw.times)
assert len(set(orig_inds)) != len(orig_inds)
# Test new (rounding) indexing behavior
new_inds = raw.time_as_index(raw.times, use_rounding=True)
assert_array_equal(new_inds, np.arange(len(raw.times)))
@pytest.mark.parametrize("meas_date", [None, "orig"])
@pytest.mark.parametrize("first_samp", [0, 10000])
def test_crop_by_annotations(meas_date, first_samp):
"""Test crop by annotations of raw."""
raw = read_raw_fif(raw_fname)
if meas_date is None:
raw.set_meas_date(None)
raw = mne.io.RawArray(raw.get_data(), raw.info, first_samp=first_samp)
onset = np.array([0, 1.5], float)
if meas_date is not None:
onset += raw.first_time
annot = mne.Annotations(
onset=onset,
duration=[1, 0.5],
description=["a", "b"],
orig_time=raw.info["meas_date"],
)
raw.set_annotations(annot)
raws = raw.crop_by_annotations()
assert len(raws) == 2
assert len(raws[0].annotations) == 1
assert raws[0].times[-1] == pytest.approx(annot[:1].duration[0], rel=1e-3)
assert raws[0].annotations.description[0] == annot.description[0]
assert len(raws[1].annotations) == 1
assert raws[1].times[-1] == pytest.approx(annot[1:2].duration[0], rel=5e-3)
assert raws[1].annotations.description[0] == annot.description[1]
@pytest.mark.parametrize(
"offset, origin",
[
pytest.param(0, None, id="times in s. relative to first_samp (default)"),
pytest.param(0, 2.0, id="times in s. relative to first_samp"),
pytest.param(1, 1.0, id="times in s. relative to meas_date"),
pytest.param(2, 0.0, id="absolute times in s. relative to 0"),
],
)
def test_time_as_index_ref(offset, origin):
"""Test indexing of raw times."""
info = create_info(ch_names=10, sfreq=10.0)
raw = RawArray(data=np.empty((10, 10)), info=info, first_samp=10)
raw.set_meas_date(1)
relative_times = raw.times
inds = raw.time_as_index(relative_times + offset, use_rounding=True, origin=origin)
assert_array_equal(inds, np.arange(raw.n_times))
def test_meas_date_orig_time():
"""Test the relation between meas_time in orig_time."""
# meas_time is set and orig_time is set:
# clips the annotations based on raw.data and resets the annotation based
# on raw.info['meas_date]
raw = _raw_annot(1, 1.5)
assert raw.annotations.orig_time == _stamp_to_dt((1, 0))
assert raw.annotations.onset[0] == 1
# meas_time is set and orig_time is None:
# Consider annot.orig_time to be raw.frist_sample, clip and reset
# annotations to have the raw.annotations.orig_time == raw.info['meas_date]
raw = _raw_annot(1, None)
assert raw.annotations.orig_time == _stamp_to_dt((1, 0))
assert raw.annotations.onset[0] == 1.5
# meas_time is None and orig_time is set:
# Raise error, it makes no sense to have an annotations object that we know
# when was acquired and set it to a raw object that does not know when was
# it acquired.
with pytest.raises(RuntimeError, match="Ambiguous operation"):
_raw_annot(None, 1.5)
# meas_time is None and orig_time is None:
# Consider annot.orig_time to be raw.first_sample and clip
raw = _raw_annot(None, None)
assert raw.annotations.orig_time is None
assert raw.annotations.onset[0] == 1.5
assert raw.annotations.duration[0] == 0.2
def test_get_data_reject():
"""Test if reject_by_annotation is working correctly."""
fs = 256
ch_names = ["C3", "Cz", "C4"]
info = create_info(ch_names, sfreq=fs)
raw = RawArray(np.zeros((len(ch_names), 10 * fs)), info)
raw.set_annotations(Annotations(onset=[2, 4], duration=[3, 2], description="bad"))
with catch_logging() as log:
data = raw.get_data(reject_by_annotation="omit", verbose=True)
msg = (
"Omitting 1024 of 2560 (40.00%) samples, retaining 1536"
+ " (60.00%) samples."
)
assert log.getvalue().strip() == msg
assert data.shape == (len(ch_names), 1536)
with catch_logging() as log:
data = raw.get_data(reject_by_annotation="nan", verbose=True)
msg = (
"Setting 1024 of 2560 (40.00%) samples to NaN, retaining 1536"
+ " (60.00%) samples."
)
assert log.getvalue().strip() == msg
assert data.shape == (len(ch_names), 2560) # shape doesn't change
assert np.isnan(data).sum() == 3072 # but NaNs are introduced instead
def test_5839():
"""Test concatenating raw objects with annotations."""
# Global Time 0 1 2 3 4
# .
# raw_A |---------XXXXXXXXXX
# annot |--------------AA
# latency . 0 0 1 1 2 2 3
# . 5 0 5 0 5 0
#
# raw_B . |---------YYYYYYYYYY
# annot . |--------------AA
# latency . 0 1
# . 5 0
# .
# output |---------XXXXXXXXXXYYYYYYYYYY
# annot |--------------AA---|----AA
# latency . 0 0 1 1 2 2 3
# . 5 0 5 0 5 0
#
EXPECTED_ONSET = [1.5, 2.0, 2.0, 2.5]
EXPECTED_DURATION = [0.2, 0.0, 0.0, 0.2]
EXPECTED_DESCRIPTION = ["dummy", "BAD boundary", "EDGE boundary", "dummy"]
def raw_factory(meas_date):
raw = RawArray(
data=np.empty((10, 10)),
info=create_info(ch_names=10, sfreq=10.0),
first_samp=10,
)
raw.set_meas_date(meas_date)
raw.set_annotations(
annotations=Annotations(
onset=[0.5], duration=[0.2], description="dummy", orig_time=None
)
)
return raw
raw_A, raw_B = (raw_factory((x, 0)) for x in [0, 2])
raw_A.append(raw_B)
assert_array_equal(raw_A.annotations.onset, EXPECTED_ONSET)
assert_array_equal(raw_A.annotations.duration, EXPECTED_DURATION)
assert_array_equal(raw_A.annotations.description, EXPECTED_DESCRIPTION)
assert raw_A.annotations.orig_time == _stamp_to_dt((0, 0))
def test_duration_property():
"""Test BaseRAW.duration property."""
sfreq = 1000
info = create_info(ch_names=["EEG 001"], sfreq=sfreq)
raw = BaseRaw(info, last_samps=[sfreq * 60 - 1])
assert raw.duration == 60
@pytest.mark.parametrize("sfreq", [1, 10, 100, 1000])
@pytest.mark.parametrize(
"duration, expected",
[
(0.1, "00:00:01"),
(1, "00:00:01"),
(59, "00:00:59"),
(59.1, "00:01:00"),
(60, "00:01:00"),
(60.1, "00:01:01"),
(61, "00:01:01"),
(61.1, "00:01:02"),
],
)
def test_get_duration_string(sfreq, duration, expected):
"""Test BaseRAW_get_duration_string() method."""
info = create_info(ch_names=["EEG 001"], sfreq=sfreq)
raw = BaseRaw(info, last_samps=[sfreq * duration - 1])
assert raw._get_duration_string() == expected
@pytest.mark.parametrize("sfreq", [1, 10, 100, 256, 1000])
def test_repr(sfreq):
"""Test repr of Raw."""
info = create_info(3, sfreq)
sample_count = 10 * sfreq
raw = RawArray(np.zeros((3, sample_count)), info)
r = repr(raw)
size_str = sizeof_fmt(raw._size)
assert r == f"<RawArray | 3 x {sample_count} (10.0 s), ~{size_str}, data loaded>"
assert raw._repr_html_()
# A class that sets channel data to np.arange, for testing _test_raw_reader
class _RawArange(BaseRaw):
def __init__(self, preload=False, verbose=None):
info = create_info(list(str(x) for x in range(1, 9)), 1000.0, "eeg")
super().__init__(info, preload, last_samps=(999,), verbose=verbose)
assert len(self.times) == 1000
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
one = np.full((8, stop - start), np.nan)
one[idx] = np.arange(1, 9)[idx, np.newaxis]
_mult_cal_one(data, one, idx, cals, mult)
def _read_raw_arange(preload=False, verbose=None):
return _RawArange(preload, verbose)
def test_test_raw_reader():
"""Test _test_raw_reader."""
_test_raw_reader(_read_raw_arange, test_scaling=False, test_rank="less")
@pytest.mark.slowtest
def test_describe_print():
"""Test print output of describe method."""
fname = Path(__file__).parent / "data" / "test_raw.fif"
raw = read_raw_fif(fname)
# test print output
f = StringIO()
with redirect_stdout(f):
raw.describe()
s = f.getvalue().strip().split("\n")
assert len(s) == 378
# Can be 3.1, 3.3, etc.
assert (
re.match(
r"<Raw | test_raw.fif, 376 x 14400 (24\.0 s), "
r"~3\.. MB, data not loaded>",
s[0],
)
is not None
), s[0]
assert (
s[1]
== " ch name type unit min Q1 median Q3 max" # noqa: E501
)
assert (
s[2]
== " 0 MEG 0113 GRAD fT/cm -221.80 -38.57 -9.64 19.29 414.67" # noqa: E501
)
assert (
s[-1]
== "375 EOG 061 EOG µV -231.41 271.28 277.16 285.66 334.69" # noqa: E501
)
@pytest.mark.slowtest
def test_describe_df():
"""Test returned data frame of describe method."""
pytest.importorskip("pandas")
fname = Path(__file__).parent / "data" / "test_raw.fif"
raw = read_raw_fif(fname)
df = raw.describe(data_frame=True)
assert df.shape == (376, 8)
assert df.columns.tolist() == [
"name",
"type",
"unit",
"min",
"Q1",
"median",
"Q3",
"max",
]
assert df.index.name == "ch"
assert_allclose(
df.iloc[0, 3:].astype(float),
np.array(
[
-2.218017605790535e-11,
-3.857421923113974e-12,
-9.643554807784935e-13,
1.928710961556987e-12,
4.146728567347522e-11,
]
),
)
def test_get_data_units():
"""Test the "units" argument of get_data method."""
# Test the unit conversion function
assert _get_scaling("eeg", "uV") == 1e6
assert _get_scaling("eeg", "dV") == 1e1
assert _get_scaling("eeg", "pV") == 1e12
assert _get_scaling("mag", "fT") == 1e15
assert _get_scaling("grad", "T/m") == 1
assert _get_scaling("grad", "T/mm") == 1e-3
assert _get_scaling("grad", "fT/m") == 1e15
assert _get_scaling("grad", "fT/cm") == 1e13
assert _get_scaling("csd", "uV/cm²") == 1e2
fname = Path(__file__).parent / "data" / "test_raw.fif"
raw = read_raw_fif(fname)
last = np.array([4.63803098e-05, 7.66563736e-05, 2.71933595e-04])
last_eeg = np.array([7.12207023e-05, 4.63803098e-05, 7.66563736e-05])
last_grad = np.array([-3.85742192e-12, 9.64355481e-13, -1.06079103e-11])
# None
data_none = raw.get_data()
assert data_none.shape == (376, 14400)
assert_array_almost_equal(data_none[-3:, -1], last)
# str: unit no conversion
data_str_noconv = raw.get_data(picks=["eeg"], units="V")
assert data_str_noconv.shape == (60, 14400)
assert_array_almost_equal(data_str_noconv[-3:, -1], last_eeg)
# str: simple unit
data_str_simple = raw.get_data(picks=["eeg"], units="uV")
assert data_str_simple.shape == (60, 14400)
assert_array_almost_equal(data_str_simple[-3:, -1], last_eeg * 1e6)
# str: fraction unit
data_str_fraction = raw.get_data(picks=["grad"], units="fT/cm")
assert data_str_fraction.shape == (204, 14400)
assert_array_almost_equal(data_str_fraction[-3:, -1], last_grad * (1e15 / 1e2))
# str: more than one channel type but one with unit
data_str_simplestim = raw.get_data(picks=["eeg", "stim"], units="V")
assert data_str_simplestim.shape == (69, 14400)
assert_array_almost_equal(data_str_simplestim[-3:, -1], last_eeg)
# str: too many channels
with pytest.raises(ValueError, match="more than one channel"):
raw.get_data(units="uV")
# str: invalid unit
with pytest.raises(ValueError, match="is not a valid unit"):
raw.get_data(picks=["eeg"], units="fV/cm")
# dict: combination of simple and fraction units
data_dict = raw.get_data(units=dict(grad="fT/cm", mag="fT", eeg="uV"))
assert data_dict.shape == (376, 14400)
assert_array_almost_equal(data_dict[0, -1], -3.857421923113974e-12 * (1e15 / 1e2))
assert_array_almost_equal(data_dict[2, -1], -2.1478272253525944e-13 * 1e15)
assert_array_almost_equal(data_dict[-2, -1], 7.665637356879529e-05 * 1e6)
# dict: channel type not in instance
data_dict_notin = raw.get_data(units=dict(hbo="uM"))
assert data_dict_notin.shape == (376, 14400)
assert_array_almost_equal(data_dict_notin[-3:, -1], last)
# dict: one invalid unit
with pytest.raises(ValueError, match="is not a valid unit"):
raw.get_data(units=dict(grad="fT/cV", mag="fT", eeg="uV"))
# dict: one invalid channel type
with pytest.raises(KeyError, match="is not a channel type"):
raw.get_data(units=dict(bad_type="fT/cV", mag="fT", eeg="uV"))
# not the good type
with pytest.raises(TypeError, match="instance of None, str, or dict"):
raw.get_data(units=["fT/cm", "fT", "uV"])
def test_repr_dig_point():
"""Test printing of DigPoint."""
dp = DigPoint(
r=np.arange(3),
coord_frame=FIFF.FIFFV_COORD_HEAD,
kind=FIFF.FIFFV_POINT_EEG,
ident=0,
)
assert "mm" in repr(dp)
dp = DigPoint(
r=np.arange(3),
coord_frame=FIFF.FIFFV_MNE_COORD_MRI_VOXEL,
kind=FIFF.FIFFV_POINT_CARDINAL,
ident=0,
)
assert "mm" not in repr(dp)
assert "voxel" in repr(dp)
def test_get_data_tmin_tmax():
"""Test tmin and tmax parameters of get_data method."""
fname = Path(__file__).parent / "data" / "test_raw.fif"
raw = read_raw_fif(fname)
# tmin and tmax just use time_as_index under the hood
tmin, tmax = (1, 9)
d1 = raw.get_data()
d2 = raw.get_data(tmin=tmin, tmax=tmax)
idxs = raw.time_as_index([tmin, tmax])
assert_allclose(d1[:, idxs[0] : idxs[1]], d2)
# specifying a too low tmin truncates to idx 0
d3 = raw.get_data(tmin=-5)
assert_allclose(d3, d1)
# specifying a too high tmax truncates to idx n_times
d4 = raw.get_data(tmax=1e6)
assert_allclose(d4, d1)
# when start/stop are passed, tmin/tmax are ignored
d5 = raw.get_data(start=1, stop=2, tmin=tmin, tmax=tmax)
assert d5.shape[1] == 1
# validate inputs are properly raised
with pytest.raises(TypeError, match="start must be .* int"):
raw.get_data(start=None)
with pytest.raises(TypeError, match="stop must be .* int"):
raw.get_data(stop=2.3)
with pytest.raises(TypeError, match="tmin must be .* float"):
raw.get_data(tmin=[1, 2])
with pytest.raises(TypeError, match="tmax must be .* float"):
raw.get_data(tmax=[1, 2])
def test_resamp_noop():
"""Tests resampling doesn't affect data if sfreq is identical."""
raw = read_raw_fif(raw_fname)
data_before = raw.get_data()
data_after = raw.resample(sfreq=raw.info["sfreq"]).get_data()
assert_array_equal(data_before, data_after)
def test_concatenate_raw_dev_head_t():
"""Test concatenating raws with dev-head-t including nans."""
data = np.random.randn(3, 10)
info = create_info(3, 1000.0, ["mag", "grad", "grad"])
raw = RawArray(data, info)
raw.info["dev_head_t"] = Transform("meg", "head", np.eye(4))
raw.info["dev_head_t"]["trans"][0, 0] = np.nan
raw2 = raw.copy()
concatenate_raws([raw, raw2])
def test_last_samp():
"""Test that getting the last sample works."""
raw = read_raw_fif(raw_fname).crop(0, 0.1).load_data()
last_data = raw._data[:, [-1]]
assert_array_equal(raw[:, -1][0], last_data)
def test_rescale():
"""Test rescaling channels."""
raw = read_raw_fif(raw_fname, preload=True) # multiple channel types
with pytest.raises(ValueError, match="If scalings is a scalar, all channels"):
raw.rescale(2) # need to use dict
orig = raw.get_data(picks="eeg")
raw.rescale({"eeg": 2}) # need to use dict
assert_allclose(raw.get_data(picks="eeg"), orig * 2)
raw.pick("mag") # only a single channel type "mag"
orig = raw.get_data()
raw.rescale(4) # a scalar works
assert_allclose(raw.get_data(), orig * 4)