[074d3d]: / mne / io / kit / kit.py

Download this file

1045 lines (947 with data), 37.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
"""Conversion tool from SQD to FIF.
RawKIT class is adapted from Denis Engemann et al.'s mne_bti2fiff.py.
"""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from collections import OrderedDict, defaultdict
from math import cos, sin
from os import SEEK_CUR, PathLike
from os import path as op
from pathlib import Path
import numpy as np
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import _empty_info
from ..._fiff.pick import pick_types
from ..._fiff.utils import _mult_cal_one
from ...epochs import BaseEpochs
from ...event import read_events
from ...transforms import als_ras_trans, apply_trans
from ...utils import (
_check_fname,
_check_option,
_stamp_to_dt,
fill_doc,
logger,
verbose,
warn,
)
from ..base import BaseRaw
from .constants import KIT, LEGACY_AMP_PARAMS
from .coreg import _set_dig_kit, read_mrk
FLOAT64 = "<f8"
UINT32 = "<u4"
INT32 = "<i4"
def _call_digitization(info, mrk, elp, hsp, kit_info, *, bad_coils=()):
# Use values from kit_info only if all others are None
if mrk is None and elp is None and hsp is None:
mrk = kit_info.get("mrk", None)
elp = kit_info.get("elp", None)
hsp = kit_info.get("hsp", None)
# prepare mrk
if isinstance(mrk, list):
mrk = [
read_mrk(marker) if isinstance(marker, str | Path | PathLike) else marker
for marker in mrk
]
mrk = np.mean(mrk, axis=0)
# setup digitization
if mrk is not None and elp is not None and hsp is not None:
with info._unlock():
info["dig"], info["dev_head_t"], info["hpi_results"] = _set_dig_kit(
mrk,
elp,
hsp,
kit_info["eeg_dig"],
bad_coils=bad_coils,
)
elif mrk is not None or elp is not None or hsp is not None:
raise ValueError(
"mrk, elp and hsp need to be provided as a group (all or none)"
)
return info
class UnsupportedKITFormat(ValueError):
"""Our reader is not guaranteed to work with old files."""
def __init__(self, sqd_version, *args, **kwargs):
self.sqd_version = sqd_version
ValueError.__init__(self, *args, **kwargs)
@fill_doc
class RawKIT(BaseRaw):
r"""Raw object from KIT SQD file.
Parameters
----------
input_fname : path-like
Path to the SQD file.
%(kit_mrk)s
%(kit_elp)s
%(kit_hsp)s
%(kit_stim)s
%(kit_slope)s
%(kit_stimthresh)s
%(preload)s
%(kit_stimcode)s
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(kit_badcoils)s
%(verbose)s
Notes
-----
``elp`` and ``hsp`` are usually the exported text files (*.txt) from the
Polhemus FastScan system. ``hsp`` refers to the headshape surface points.
``elp`` refers to the points in head-space that corresponds to the HPI
points.
If ``mrk``\, ``hsp`` or ``elp`` are :term:`array_like` inputs, then the
numbers in xyz coordinates should be in units of meters.
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
"""
_extra_attributes = ("read_stim_ch",)
@verbose
def __init__(
self,
input_fname,
mrk=None,
elp=None,
hsp=None,
stim=">",
slope="-",
stimthresh=1,
preload=False,
stim_code="binary",
allow_unknown_format=False,
standardize_names=None,
*,
bad_coils=(),
verbose=None,
):
logger.info(f"Extracting SQD Parameters from {input_fname}...")
input_fname = op.abspath(input_fname)
self.preload = False
logger.info("Creating Raw.info structure...")
info, kit_info = get_kit_info(
input_fname, allow_unknown_format, standardize_names
)
kit_info["slope"] = slope
kit_info["stimthresh"] = stimthresh
if kit_info["acq_type"] != KIT.CONTINUOUS:
raise TypeError("SQD file contains epochs, not raw data. Wrong reader.")
logger.info("Creating Info structure...")
last_samps = [kit_info["n_samples"] - 1]
self._raw_extras = [kit_info]
_set_stimchannels(self, info, stim, stim_code)
super().__init__(
info,
preload,
last_samps=last_samps,
filenames=[input_fname],
raw_extras=self._raw_extras,
verbose=verbose,
)
self.info = _call_digitization(
info=self.info,
mrk=mrk,
elp=elp,
hsp=hsp,
kit_info=kit_info,
bad_coils=bad_coils,
)
logger.info("Ready.")
def read_stim_ch(self, buffer_size=1e5):
"""Read events from data.
Parameter
---------
buffer_size : int
The size of chunk to by which the data are scanned.
Returns
-------
events : array, [samples]
The event vector (1 x samples).
"""
buffer_size = int(buffer_size)
start = int(self.first_samp)
stop = int(self.last_samp + 1)
pick = pick_types(self.info, meg=False, ref_meg=False, stim=True, exclude=[])
stim_ch = np.empty((1, stop), dtype=np.int64)
for b_start in range(start, stop, buffer_size):
b_stop = b_start + buffer_size
x = self[pick, b_start:b_stop][0]
stim_ch[:, b_start : b_start + x.shape[1]] = x
return stim_ch
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
sqd = self._raw_extras[fi]
nchan = sqd["nchan"]
data_left = (stop - start) * nchan
conv_factor = sqd["conv_factor"]
n_bytes = sqd["dtype"].itemsize
assert n_bytes in (2, 4)
# Read up to 100 MB of data at a time.
blk_size = min(data_left, (100000000 // n_bytes // nchan) * nchan)
with open(self.filenames[fi], "rb", buffering=0) as fid:
# extract data
pointer = start * nchan * n_bytes
fid.seek(sqd["dirs"][KIT.DIR_INDEX_RAW_DATA]["offset"] + pointer)
stim = sqd["stim"]
for blk_start in np.arange(0, data_left, blk_size) // nchan:
blk_size = min(blk_size, data_left - blk_start * nchan)
block = np.fromfile(fid, dtype=sqd["dtype"], count=blk_size)
block = block.reshape(nchan, -1, order="F").astype(float)
blk_stop = blk_start + block.shape[1]
data_view = data[:, blk_start:blk_stop]
block *= conv_factor
# Create a synthetic stim channel
if stim is not None:
stim_ch = _make_stim_channel(
block[stim, :],
sqd["slope"],
sqd["stimthresh"],
sqd["stim_code"],
stim,
)
block = np.vstack((block, stim_ch))
_mult_cal_one(data_view, block, idx, cals, mult)
# cals are all unity, so can be ignored
def _set_stimchannels(inst, info, stim, stim_code):
"""Specify how the trigger channel is synthesized from analog channels.
Has to be done before loading data. For a RawKIT instance that has been
created with preload=True, this method will raise a
NotImplementedError.
Parameters
----------
%(info_not_none)s
stim : list of int | '<' | '>'
Can be submitted as list of trigger channels.
If a list is not specified, the default triggers extracted from
misc channels will be used with specified directionality.
'<' means that largest values assigned to the first channel
in sequence.
'>' means the largest trigger assigned to the last channel
in sequence.
stim_code : 'binary' | 'channel'
How to decode trigger values from stim channels. 'binary' read stim
channel events as binary code, 'channel' encodes channel number.
"""
if inst.preload:
raise NotImplementedError("Can't change stim channel after loading data")
_check_option("stim_code", stim_code, ["binary", "channel"])
if stim is not None:
if isinstance(stim, str):
picks = _default_stim_chs(info)
if stim == "<":
stim = picks[::-1]
elif stim == ">":
stim = picks
else:
raise ValueError(
f"stim needs to be list of int, '>' or '<', not {str(stim)!r}"
)
else:
stim = np.asarray(stim, int)
if stim.max() >= inst._raw_extras[0]["nchan"]:
raise ValueError(
f"Got stim={stim}, but sqd file only has "
f"{inst._raw_extras[0]['nchan']} channels."
)
# modify info
nchan = inst._raw_extras[0]["nchan"] + 1
info["chs"].append(
dict(
cal=KIT.CALIB_FACTOR,
logno=nchan,
scanno=nchan,
range=1.0,
unit=FIFF.FIFF_UNIT_NONE,
unit_mul=FIFF.FIFF_UNITM_NONE,
ch_name="STI 014",
coil_type=FIFF.FIFFV_COIL_NONE,
loc=np.full(12, np.nan),
kind=FIFF.FIFFV_STIM_CH,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
)
)
info._update_redundant()
inst._raw_extras[0]["stim"] = stim
inst._raw_extras[0]["stim_code"] = stim_code
def _default_stim_chs(info):
"""Return default stim channels for SQD files."""
return pick_types(info, meg=False, ref_meg=False, misc=True, exclude=[])[:8]
def _make_stim_channel(trigger_chs, slope, threshold, stim_code, trigger_values):
"""Create synthetic stim channel from multiple trigger channels."""
if slope == "+":
trig_chs_bin = trigger_chs > threshold
elif slope == "-":
trig_chs_bin = trigger_chs < threshold
else:
raise ValueError("slope needs to be '+' or '-'")
# trigger value
if stim_code == "binary":
trigger_values = 2 ** np.arange(len(trigger_chs))
elif stim_code != "channel":
raise ValueError(
f"stim_code must be 'binary' or 'channel', got {repr(stim_code)}"
)
trig_chs = trig_chs_bin * trigger_values[:, np.newaxis]
return np.array(trig_chs.sum(axis=0), ndmin=2)
@fill_doc
class EpochsKIT(BaseEpochs):
"""Epochs Array object from KIT SQD file.
Parameters
----------
input_fname : path-like
Path to the sqd file.
events : array of int, shape (n_events, 3) | path-like
The array of :term:`events`. The first column contains the event time
in samples, with :term:`first_samp` included. The third column contains
the event id. If a path, must yield a ``.txt`` file containing the
events.
If some events don't match the events of interest as specified by
``event_id``, they will be marked as ``IGNORED`` in the drop log.
%(event_id)s
tmin : float
Start time before event.
%(baseline_epochs)s
%(reject_epochs)s
%(flat)s
%(epochs_reject_tmin_tmax)s
%(kit_mrk)s
%(kit_elp)s
%(kit_hsp)s
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(verbose)s
Notes
-----
``elp`` and ``hsp`` are usually the exported text files (*.txt) from the
Polhemus FastScan system. hsp refers to the headshape surface points. elp
refers to the points in head-space that corresponds to the HPI points.
Currently, '*.elp' and '*.hsp' files are NOT supported.
See Also
--------
mne.Epochs : Documentation of attributes and methods.
"""
@verbose
def __init__(
self,
input_fname,
events,
event_id=None,
tmin=0,
baseline=None,
reject=None,
flat=None,
reject_tmin=None,
reject_tmax=None,
mrk=None,
elp=None,
hsp=None,
allow_unknown_format=False,
standardize_names=None,
verbose=None,
):
if isinstance(events, str | PathLike | Path):
events = read_events(events)
input_fname = str(
_check_fname(fname=input_fname, must_exist=True, overwrite="read")
)
logger.info(f"Extracting KIT Parameters from {input_fname}...")
self.info, kit_info = get_kit_info(
input_fname, allow_unknown_format, standardize_names
)
kit_info.update(input_fname=input_fname)
self._raw_extras = [kit_info]
self.filenames = []
if len(events) != self._raw_extras[0]["n_epochs"]:
raise ValueError("Event list does not match number of epochs.")
if self._raw_extras[0]["acq_type"] == KIT.EPOCHS:
self._raw_extras[0]["data_length"] = KIT.INT
else:
raise TypeError(
"SQD file contains raw data, not epochs or average. Wrong reader."
)
if event_id is None: # convert to int to make typing-checks happy
event_id = {str(e): int(e) for e in np.unique(events[:, 2])}
for key, val in event_id.items():
if val not in events[:, 2]:
raise ValueError(f"No matching events found for {key} (event id {val})")
data = self._read_kit_data()
assert data.shape == (
self._raw_extras[0]["n_epochs"],
self.info["nchan"],
self._raw_extras[0]["frame_length"],
)
tmax = ((data.shape[2] - 1) / self.info["sfreq"]) + tmin
super().__init__(
self.info,
data,
events,
event_id,
tmin,
tmax,
baseline,
reject=reject,
flat=flat,
reject_tmin=reject_tmin,
reject_tmax=reject_tmax,
filename=input_fname,
verbose=verbose,
)
self.info = _call_digitization(
info=self.info, mrk=mrk, elp=elp, hsp=hsp, kit_info=kit_info
)
logger.info("Ready.")
def _read_kit_data(self):
"""Read epochs data.
Returns
-------
data : array, [channels x samples]
the data matrix (channels x samples).
times : array, [samples]
returns the time values corresponding to the samples.
"""
info = self._raw_extras[0]
epoch_length = info["frame_length"]
n_epochs = info["n_epochs"]
n_samples = info["n_samples"]
input_fname = info["input_fname"]
dtype = info["dtype"]
nchan = info["nchan"]
with open(input_fname, "rb", buffering=0) as fid:
fid.seek(info["dirs"][KIT.DIR_INDEX_RAW_DATA]["offset"])
count = n_samples * nchan
data = np.fromfile(fid, dtype=dtype, count=count)
data = data.reshape((n_samples, nchan)).T
data = data * info["conv_factor"]
data = data.reshape((nchan, n_epochs, epoch_length))
data = data.transpose((1, 0, 2))
return data
def _read_dir(fid):
return dict(
offset=np.fromfile(fid, UINT32, 1)[0],
size=np.fromfile(fid, INT32, 1)[0],
max_count=np.fromfile(fid, INT32, 1)[0],
count=np.fromfile(fid, INT32, 1)[0],
)
@verbose
def _read_dirs(fid, verbose=None):
dirs = list()
dirs.append(_read_dir(fid))
for ii in range(dirs[0]["count"] - 1):
logger.debug(f" KIT dir entry {ii} @ {fid.tell()}")
dirs.append(_read_dir(fid))
assert len(dirs) == dirs[KIT.DIR_INDEX_DIR]["count"]
return dirs
@verbose
def get_kit_info(rawfile, allow_unknown_format, standardize_names=None, verbose=None):
"""Extract all the information from the sqd/con file.
Parameters
----------
rawfile : path-like
KIT file to be read.
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(verbose)s
Returns
-------
%(info_not_none)s
sqd : dict
A dict containing all the sqd parameter settings.
"""
sqd = dict()
sqd["rawfile"] = rawfile
unsupported_format = False
with open(rawfile, "rb", buffering=0) as fid: # buffering=0 for np bug
#
# directories (0)
#
sqd["dirs"] = dirs = _read_dirs(fid)
#
# system (1)
#
fid.seek(dirs[KIT.DIR_INDEX_SYSTEM]["offset"])
# check file format version
version, revision = np.fromfile(fid, INT32, 2)
if version < 2 or (version == 2 and revision < 3):
version_string = f"V{version}R{revision:03d}"
if allow_unknown_format:
unsupported_format = True
warn(f"Force loading KIT format {version_string}")
else:
raise UnsupportedKITFormat(
version_string,
f"SQD file format {version_string} is not officially supported. "
"Set allow_unknown_format=True to load it anyways.",
)
sysid = np.fromfile(fid, INT32, 1)[0]
# basic info
system_name = _read_name(fid, n=128)
# model name
model_name = _read_name(fid, n=128)
# channels
sqd["nchan"] = channel_count = int(np.fromfile(fid, INT32, 1)[0])
comment = _read_name(fid, n=256)
create_time, last_modified_time = np.fromfile(fid, INT32, 2)
del last_modified_time
fid.seek(KIT.INT * 3, SEEK_CUR) # reserved
dewar_style = np.fromfile(fid, INT32, 1)[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
fll_type = np.fromfile(fid, INT32, 1)[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
trigger_type = np.fromfile(fid, INT32, 1)[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
adboard_type = np.fromfile(fid, INT32, 1)[0]
fid.seek(KIT.INT * 29, SEEK_CUR) # reserved
if version < 2 or (version == 2 and revision <= 3):
adc_range = float(np.fromfile(fid, INT32, 1)[0])
else:
adc_range = np.fromfile(fid, FLOAT64, 1)[0]
adc_polarity, adc_allocated, adc_stored = np.fromfile(fid, INT32, 3)
del adc_polarity
system_name = system_name.replace("\x00", "")
system_name = system_name.strip().replace("\n", "/")
model_name = model_name.replace("\x00", "")
model_name = model_name.strip().replace("\n", "/")
full_version = f"V{version:d}R{revision:03d}"
logger.debug("SQD file basic information:")
logger.debug("Meg160 version = %s", full_version)
logger.debug("System ID = %i", sysid)
logger.debug("System name = %s", system_name)
logger.debug("Model name = %s", model_name)
logger.debug("Channel count = %i", channel_count)
logger.debug("Comment = %s", comment)
logger.debug("Dewar style = %i", dewar_style)
logger.debug("FLL type = %i", fll_type)
logger.debug("Trigger type = %i", trigger_type)
logger.debug("A/D board type = %i", adboard_type)
logger.debug("ADC range = +/-%s[V]", adc_range / 2.0)
logger.debug("ADC allocate = %i[bit]", adc_allocated)
logger.debug("ADC bit = %i[bit]", adc_stored)
# MGH description: 'acquisition (megacq) VectorView system at NMR-MGH'
description = f"{system_name} ({sysid}) {full_version} {model_name}"
assert adc_allocated % 8 == 0
sqd["dtype"] = np.dtype(f"<i{adc_allocated // 8}")
# check that we can read this file
if fll_type not in KIT.FLL_SETTINGS:
fll_types = sorted(KIT.FLL_SETTINGS.keys())
use_fll_type = fll_types[np.searchsorted(fll_types, fll_type) - 1]
warn(
"Unknown site filter settings (FLL) for system "
f'"{system_name}" model "{model_name}" (ID {sysid}), will assume FLL '
f"{fll_type}->{use_fll_type}, check your data for correctness, "
"including channel scales and filter settings!"
)
fll_type = use_fll_type
#
# channel information (4)
#
chan_dir = dirs[KIT.DIR_INDEX_CHANNELS]
chan_offset, chan_size = chan_dir["offset"], chan_dir["size"]
sqd["channels"] = channels = []
exg_gains = list()
for i in range(channel_count):
fid.seek(chan_offset + chan_size * i)
(channel_type,) = np.fromfile(fid, INT32, 1)
# System 52 mislabeled reference channels as NULL. This was fixed
# in system 53; not sure about 51...
if sysid == 52 and i < 160 and channel_type == KIT.CHANNEL_NULL:
channel_type = KIT.CHANNEL_MAGNETOMETER_REFERENCE
if channel_type in KIT.CHANNELS_MEG:
if channel_type not in KIT.CH_TO_FIFF_COIL:
raise NotImplementedError(
"KIT channel type {channel_type} can not be read. Please "
"contact the mne-python developers."
)
channels.append(
{
"type": channel_type,
# (x, y, z, theta, phi) for all MEG channels. Some channel
# types have additional information which we're not using.
"loc": np.fromfile(fid, dtype=FLOAT64, count=5),
}
)
if channel_type in KIT.CHANNEL_NAME_NCHAR:
fid.seek(16, SEEK_CUR) # misc fields
channels[-1]["name"] = _read_name(fid, channel_type)
elif channel_type in KIT.CHANNELS_MISC:
(channel_no,) = np.fromfile(fid, INT32, 1)
fid.seek(4, SEEK_CUR)
name = _read_name(fid, channel_type)
channels.append(
{
"type": channel_type,
"no": channel_no,
"name": name,
}
)
if channel_type in (KIT.CHANNEL_EEG, KIT.CHANNEL_ECG):
offset = 6 if channel_type == KIT.CHANNEL_EEG else 8
fid.seek(offset, SEEK_CUR)
exg_gains.append(np.fromfile(fid, FLOAT64, 1)[0])
elif channel_type == KIT.CHANNEL_NULL:
channels.append({"type": channel_type})
else:
raise OSError("Unknown KIT channel type: {channel_type}")
exg_gains = np.array(exg_gains)
#
# Channel sensitivity information: (5)
#
# only sensor channels requires gain. the additional misc channels
# (trigger channels, audio and voice channels) are passed
# through unaffected
fid.seek(dirs[KIT.DIR_INDEX_CALIBRATION]["offset"])
# (offset [Volt], gain [Tesla/Volt]) for each channel
sensitivity = np.fromfile(fid, dtype=FLOAT64, count=channel_count * 2)
sensitivity.shape = (channel_count, 2)
channel_offset, channel_gain = sensitivity.T
assert (channel_offset == 0).all() # otherwise we have a problem
#
# amplifier gain (7)
#
fid.seek(dirs[KIT.DIR_INDEX_AMP_FILTER]["offset"])
amp_data = np.fromfile(fid, INT32, 1)[0]
if fll_type >= 100: # Kapper Type
# gain: mask bit
gain1 = (amp_data & 0x00007000) >> 12
gain2 = (amp_data & 0x70000000) >> 28
gain3 = (amp_data & 0x07000000) >> 24
amp_gain = KIT.GAINS[gain1] * KIT.GAINS[gain2] * KIT.GAINS[gain3]
# filter settings
hpf = (amp_data & 0x00000700) >> 8
lpf = (amp_data & 0x00070000) >> 16
bef = (amp_data & 0x00000003) >> 0
else: # Hanger Type
# gain
input_gain = (amp_data & 0x1800) >> 11
output_gain = (amp_data & 0x0007) >> 0
amp_gain = KIT.GAINS[input_gain] * KIT.GAINS[output_gain]
# filter settings
hpf = (amp_data & 0x007) >> 4
lpf = (amp_data & 0x0700) >> 8
bef = (amp_data & 0xC000) >> 14
hpf_options, lpf_options, bef_options = KIT.FLL_SETTINGS[fll_type]
sqd["highpass"] = KIT.HPFS[hpf_options][hpf]
sqd["lowpass"] = KIT.LPFS[lpf_options][lpf]
sqd["notch"] = KIT.BEFS[bef_options][bef]
#
# Acquisition Parameters (8)
#
fid.seek(dirs[KIT.DIR_INDEX_ACQ_COND]["offset"])
(sqd["acq_type"],) = (acq_type,) = np.fromfile(fid, INT32, 1)
(sqd["sfreq"],) = np.fromfile(fid, FLOAT64, 1)
if acq_type == KIT.CONTINUOUS:
# samples_count, = np.fromfile(fid, INT32, 1)
fid.seek(KIT.INT, SEEK_CUR)
(sqd["n_samples"],) = np.fromfile(fid, INT32, 1)
elif acq_type == KIT.EVOKED or acq_type == KIT.EPOCHS:
(sqd["frame_length"],) = np.fromfile(fid, INT32, 1)
(sqd["pretrigger_length"],) = np.fromfile(fid, INT32, 1)
(sqd["average_count"],) = np.fromfile(fid, INT32, 1)
(sqd["n_epochs"],) = np.fromfile(fid, INT32, 1)
if acq_type == KIT.EVOKED:
sqd["n_samples"] = sqd["frame_length"]
else:
sqd["n_samples"] = sqd["frame_length"] * sqd["n_epochs"]
else:
raise OSError(
f"Invalid acquisition type: {acq_type}. Your file is neither "
"continuous nor epoched data."
)
#
# digitization information (12 and 26)
#
dig_dir = dirs[KIT.DIR_INDEX_DIG_POINTS]
cor_dir = dirs[KIT.DIR_INDEX_COREG]
dig = dict()
hsp = list()
if dig_dir["count"] > 0 and cor_dir["count"] > 0:
# directories (0)
fid.seek(dig_dir["offset"])
for _ in range(dig_dir["count"]):
name = _read_name(fid, n=8).strip()
# Sometimes there are mismatches (e.g., AFz vs AFZ) between
# the channel name and its digitized, name, so let's be case
# insensitive. It will also prevent collisions with HSP
name = name.lower()
rr = np.fromfile(fid, FLOAT64, 3)
if name:
assert name not in dig
dig[name] = rr
else:
hsp.append(rr)
# nasion, lpa, rpa, HPI in native space
elp = []
for key in (
"fidnz",
"fidt9",
"fidt10",
"hpi_1",
"hpi_2",
"hpi_3",
"hpi_4",
"hpi_5",
):
if key in dig and np.isfinite(dig[key]).all():
elp.append(dig.pop(key))
elp = np.array(elp)
hsp = np.array(hsp, float).reshape(-1, 3)
if elp.shape not in ((6, 3), (7, 3), (8, 3)):
raise RuntimeError(f"Fewer than 3 HPI coils found, got {len(elp) - 3}")
# coregistration
fid.seek(cor_dir["offset"])
mrk = np.zeros((elp.shape[0] - 3, 3))
meg_done = [True] * 5
for _ in range(cor_dir["count"]):
done = np.fromfile(fid, INT32, 1)[0]
fid.seek(
16 * KIT.DOUBLE + 16 * KIT.DOUBLE, # meg_to_mri # mri_to_meg
SEEK_CUR,
)
marker_count = np.fromfile(fid, INT32, 1)[0]
if not done:
continue
assert marker_count >= len(mrk)
for mi in range(len(mrk)):
mri_type, meg_type, mri_done, this_meg_done = np.fromfile(
fid, INT32, 4
)
del mri_type, meg_type, mri_done
meg_done[mi] = bool(this_meg_done)
fid.seek(3 * KIT.DOUBLE, SEEK_CUR) # mri_pos
mrk[mi] = np.fromfile(fid, FLOAT64, 3)
fid.seek(256, SEEK_CUR) # marker_file (char)
if not all(meg_done):
logger.info(
f"Keeping {sum(meg_done)}/{len(meg_done)} HPI "
"coils that were digitized"
)
elp = elp[[True] * 3 + meg_done]
mrk = mrk[meg_done]
sqd.update(hsp=hsp, elp=elp, mrk=mrk)
# precompute conversion factor for reading data
if unsupported_format:
if sysid not in LEGACY_AMP_PARAMS:
raise OSError(f"Legacy parameters for system ID {sysid} unavailable.")
adc_range, adc_stored = LEGACY_AMP_PARAMS[sysid]
is_meg = np.array([ch["type"] in KIT.CHANNELS_MEG for ch in channels])
ad_to_volt = adc_range / (2.0**adc_stored)
ad_to_tesla = ad_to_volt / amp_gain * channel_gain
conv_factor = np.where(is_meg, ad_to_tesla, ad_to_volt)
# XXX this is a bit of a hack. Should probably do this more cleanly at
# some point... the 2 ** (adc_stored - 14) was empirically determined using
# the test files with known amplitudes. The conv_factors need to be
# replaced by these values otherwise we're off by a factor off 5000.0
# for the EEG data.
is_exg = [ch["type"] in (KIT.CHANNEL_EEG, KIT.CHANNEL_ECG) for ch in channels]
exg_gains /= 2.0 ** (adc_stored - 14)
exg_gains[exg_gains == 0] = ad_to_volt
conv_factor[is_exg] = exg_gains
sqd["conv_factor"] = conv_factor[:, np.newaxis]
# Create raw.info dict for raw fif object with SQD data
info = _empty_info(float(sqd["sfreq"]))
info.update(
meas_date=_stamp_to_dt((create_time, 0)),
lowpass=sqd["lowpass"],
highpass=sqd["highpass"],
kit_system_id=sysid,
description=description,
)
# Creates a list of dicts of meg channels for raw.info
logger.info("Setting channel info structure...")
info["chs"] = fiff_channels = []
channel_index = defaultdict(lambda: 0)
sqd["eeg_dig"] = OrderedDict()
for idx, ch in enumerate(channels, 1):
if ch["type"] in KIT.CHANNELS_MEG:
ch_name = ch.get("name", "")
if ch_name == "" or standardize_names:
ch_name = f"MEG {idx:03d}"
# create three orthogonal vector
# ch_angles[0]: theta, ch_angles[1]: phi
theta, phi = np.radians(ch["loc"][3:])
x = sin(theta) * cos(phi)
y = sin(theta) * sin(phi)
z = cos(theta)
vec_z = np.array([x, y, z])
vec_z /= np.linalg.norm(vec_z)
vec_x = np.zeros(vec_z.size, dtype=np.float64)
if vec_z[1] < vec_z[2]:
if vec_z[0] < vec_z[1]:
vec_x[0] = 1.0
else:
vec_x[1] = 1.0
elif vec_z[0] < vec_z[2]:
vec_x[0] = 1.0
else:
vec_x[2] = 1.0
vec_x -= np.sum(vec_x * vec_z) * vec_z
vec_x /= np.linalg.norm(vec_x)
vec_y = np.cross(vec_z, vec_x)
# transform to Neuromag like coordinate space
vecs = np.vstack((ch["loc"][:3], vec_x, vec_y, vec_z))
vecs = apply_trans(als_ras_trans, vecs)
unit = FIFF.FIFF_UNIT_T
loc = vecs.ravel()
else:
ch_type_label = KIT.CH_LABEL[ch["type"]]
channel_index[ch_type_label] += 1
ch_type_index = channel_index[ch_type_label]
ch_name = ch.get("name", "")
eeg_name = ch_name.lower()
# some files have all EEG labeled as EEG
if ch_name in ("", "EEG") or standardize_names:
ch_name = f"{ch_type_label} {ch_type_index:03d}"
unit = FIFF.FIFF_UNIT_V
loc = np.zeros(12)
if eeg_name and eeg_name in dig:
loc[:3] = sqd["eeg_dig"][eeg_name] = dig[eeg_name]
fiff_channels.append(
dict(
cal=KIT.CALIB_FACTOR,
logno=idx,
scanno=idx,
range=KIT.RANGE,
unit=unit,
unit_mul=KIT.UNIT_MUL,
ch_name=ch_name,
coord_frame=FIFF.FIFFV_COORD_DEVICE,
coil_type=KIT.CH_TO_FIFF_COIL[ch["type"]],
kind=KIT.CH_TO_FIFF_KIND[ch["type"]],
loc=loc,
)
)
info._unlocked = False
info._update_redundant()
return info, sqd
def _read_name(fid, ch_type=None, n=None):
n = n if ch_type is None else KIT.CHANNEL_NAME_NCHAR[ch_type]
return fid.read(n).split(b"\x00")[0].decode("utf-8")
@fill_doc
def read_raw_kit(
input_fname,
mrk=None,
elp=None,
hsp=None,
stim=">",
slope="-",
stimthresh=1,
preload=False,
stim_code="binary",
allow_unknown_format=False,
standardize_names=False,
*,
bad_coils=(),
verbose=None,
) -> RawKIT:
r"""Reader function for Ricoh/KIT conversion to FIF.
Parameters
----------
input_fname : path-like
Path to the SQD file.
%(kit_mrk)s
%(kit_elp)s
%(kit_hsp)s
%(kit_stim)s
%(kit_slope)s
%(kit_stimthresh)s
%(preload)s
%(kit_stimcode)s
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(kit_badcoils)s
%(verbose)s
Returns
-------
raw : instance of RawKIT
A Raw object containing KIT data.
See :class:`mne.io.Raw` for documentation of attributes and methods.
See Also
--------
mne.io.Raw : Documentation of attributes and methods of RawKIT.
Notes
-----
``elp`` and ``hsp`` are usually the exported text files (\*.txt) from the
Polhemus FastScan system. ``hsp`` refers to the headshape surface points.
``elp`` refers to the points in head-space that corresponds to the HPI
points.
If ``mrk``\, ``hsp`` or ``elp`` are :term:`array_like` inputs, then the
numbers in xyz coordinates should be in units of meters.
"""
return RawKIT(
input_fname=input_fname,
mrk=mrk,
elp=elp,
hsp=hsp,
stim=stim,
slope=slope,
stimthresh=stimthresh,
preload=preload,
stim_code=stim_code,
allow_unknown_format=allow_unknown_format,
standardize_names=standardize_names,
bad_coils=bad_coils,
verbose=verbose,
)
@fill_doc
def read_epochs_kit(
input_fname,
events,
event_id=None,
mrk=None,
elp=None,
hsp=None,
allow_unknown_format=False,
standardize_names=False,
verbose=None,
) -> EpochsKIT:
"""Reader function for Ricoh/KIT epochs files.
Parameters
----------
input_fname : path-like
Path to the SQD file.
events : array of int, shape (n_events, 3) | path-like
The array of :term:`events`. The first column contains the event time
in samples, with :term:`first_samp` included. The third column contains
the event id. If a path, must yield a ``.txt`` file containing the
events.
If some events don't match the events of interest as specified by
``event_id``, they will be marked as ``IGNORED`` in the drop log.
%(event_id)s
%(kit_mrk)s
%(kit_elp)s
%(kit_hsp)s
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(verbose)s
Returns
-------
EpochsKIT : instance of BaseEpochs
The epochs.
See Also
--------
mne.Epochs : Documentation of attributes and methods.
Notes
-----
.. versionadded:: 0.9.0
"""
epochs = EpochsKIT(
input_fname=input_fname,
events=events,
event_id=event_id,
mrk=mrk,
elp=elp,
hsp=hsp,
allow_unknown_format=allow_unknown_format,
standardize_names=standardize_names,
verbose=verbose,
)
return epochs