"""Coordinate Point Extractor for KIT system."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re
from collections import OrderedDict
from os import SEEK_CUR, PathLike
from pathlib import Path
import numpy as np
from ..._fiff._digitization import _make_dig_points
from ...channels.montage import (
_check_dig_shape,
read_custom_montage,
read_dig_polhemus_isotrak,
read_polhemus_fastscan,
)
from ...transforms import (
Transform,
als_ras_trans,
apply_trans,
get_ras_to_neuromag_trans,
)
from ...utils import _check_fname, _check_option, warn
from .constants import FIFF, KIT
INT32 = "<i4"
FLOAT64 = "<f8"
def read_mrk(fname):
r"""Marker Point Extraction in MEG space directly from sqd.
Parameters
----------
fname : path-like
Absolute path to Marker file.
File formats allowed: \*.sqd, \*.mrk, \*.txt.
Returns
-------
mrk_points : ndarray, shape (n_points, 3)
Marker points in MEG space [m].
"""
from .kit import _read_dirs
fname = Path(_check_fname(fname, "read", must_exist=True, name="mrk file"))
_check_option("file extension", fname.suffix, (".sqd", ".mrk", ".txt"))
if fname.suffix in (".sqd", ".mrk"):
with open(fname, "rb", buffering=0) as fid:
dirs = _read_dirs(fid)
fid.seek(dirs[KIT.DIR_INDEX_COREG]["offset"])
# skips match_done, meg_to_mri and mri_to_meg
fid.seek(KIT.INT + (2 * KIT.DOUBLE * 16), SEEK_CUR)
mrk_count = np.fromfile(fid, INT32, 1)[0]
pts = []
for _ in range(mrk_count):
# mri_type, meg_type, mri_done, meg_done
_, _, _, meg_done = np.fromfile(fid, INT32, 4)
_, meg_pts = np.fromfile(fid, FLOAT64, 6).reshape(2, 3)
if meg_done:
pts.append(meg_pts)
mrk_points = np.array(pts)
else:
assert fname.suffix == ".txt"
mrk_points = _read_dig_kit(fname, unit="m")
# check output
mrk_points = np.asarray(mrk_points)
if mrk_points.shape != (5, 3):
err = f"{repr(fname)} is no marker file, shape is {mrk_points.shape}"
raise ValueError(err)
return mrk_points
def read_sns(fname):
"""Sensor coordinate extraction in MEG space.
Parameters
----------
fname : path-like
Absolute path to sensor definition file.
Returns
-------
locs : numpy.array, shape = (n_points, 3)
Sensor coil location.
"""
p = re.compile(
r"\d,[A-Za-z]*,([\.\-0-9]+),"
+ r"([\.\-0-9]+),([\.\-0-9]+),"
+ r"([\.\-0-9]+),([\.\-0-9]+)"
)
with open(fname) as fid:
locs = np.array(p.findall(fid.read()), dtype=float)
return locs
def _set_dig_kit(mrk, elp, hsp, eeg, *, bad_coils=()):
"""Add landmark points and head shape data to the KIT instance.
Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
ALS coordinate system. This is converted to [m].
Parameters
----------
mrk : path-like | array_like, shape (5, 3) | None
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
elp : path-like | array_like, shape (8, 3) | None
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : path-like | array, shape (n_points, 3) | None
Digitizer head shape points, or path to head shape file. If more
than 10`000 points are in the head shape, they are automatically
decimated.
bad_coils : list
Indices of bad marker coils (up to two). Bad coils will be excluded
when computing the device-head transformation.
eeg : dict
Ordered dict of EEG dig points.
Returns
-------
dig_points : list
List of digitizer points for info['dig'].
dev_head_t : Transform
A dictionary describing the device-head transformation.
hpi_results : list
The hpi results.
"""
from ...coreg import _decimate_points, fit_matched_points
if isinstance(hsp, str | Path | PathLike):
hsp = _read_dig_kit(hsp)
n_pts = len(hsp)
if n_pts > KIT.DIG_POINTS:
hsp = _decimate_points(hsp, res=0.005)
n_new = len(hsp)
warn(
f"The selected head shape contained {n_pts} points, which is more than "
f"recommended ({KIT.DIG_POINTS}), and was automatically downsampled to "
f"{n_new} points. The preferred way to downsample is using FastScan."
)
if isinstance(elp, str | Path | PathLike):
elp_points = _read_dig_kit(elp)
if len(elp_points) != 8:
raise ValueError(
f"File {repr(elp)} should contain 8 points; got shape "
f"{elp_points.shape}."
)
elp = elp_points
if len(bad_coils) > 0:
elp = np.delete(elp, np.array(bad_coils) + 3, 0)
# check we have at least 3 marker coils (whether read from file or
# passed in directly)
if len(elp) not in (6, 7, 8):
raise ValueError(f"ELP should contain 6 ~ 8 points; got shape {elp.shape}.")
if isinstance(mrk, str | Path | PathLike):
mrk = read_mrk(mrk)
if len(bad_coils) > 0:
mrk = np.delete(mrk, bad_coils, 0)
if len(mrk) not in (3, 4, 5):
raise ValueError(f"MRK should contain 3 ~ 5 points; got shape {mrk.shape}.")
mrk = apply_trans(als_ras_trans, mrk)
nasion, lpa, rpa = elp[:3]
nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
elp = apply_trans(nmtrans, elp)
hsp = apply_trans(nmtrans, hsp)
eeg = OrderedDict((k, apply_trans(nmtrans, p)) for k, p in eeg.items())
# device head transform
trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out="trans")
nasion, lpa, rpa = elp[:3]
elp = elp[3:]
dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp, dig_ch_pos=eeg)
dev_head_t = Transform("meg", "head", trans)
hpi_results = [
dict(
dig_points=[
dict(
ident=ci,
r=r,
kind=FIFF.FIFFV_POINT_HPI,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
)
for ci, r in enumerate(mrk)
],
coord_trans=dev_head_t,
)
]
return dig_points, dev_head_t, hpi_results
def _read_dig_kit(fname, unit="auto"):
# Read dig points from a file and return ndarray, using FastSCAN for .txt
fname = _check_fname(fname, "read", must_exist=True, name="hsp or elp file")
assert unit in ("auto", "m", "mm")
_check_option("file extension", fname.suffix, (".hsp", ".elp", ".mat", ".txt"))
if fname.suffix == ".txt":
unit = "mm" if unit == "auto" else unit
out = read_polhemus_fastscan(fname, unit=unit, on_header_missing="ignore")
elif fname.suffix in (".hsp", ".elp"):
unit = "m" if unit == "auto" else unit
mon = read_dig_polhemus_isotrak(fname, unit=unit)
if fname.suffix == ".hsp":
dig = [d["r"] for d in mon.dig if d["kind"] != FIFF.FIFFV_POINT_CARDINAL]
else:
dig = [d["r"] for d in mon.dig]
if (
dig
and mon.dig[0]["kind"] == FIFF.FIFFV_POINT_CARDINAL
and mon.dig[0]["ident"] == FIFF.FIFFV_POINT_LPA
):
# LPA, Nasion, RPA -> NLR
dig[:3] = [dig[1], dig[0], dig[2]]
out = np.array(dig, float)
else:
assert fname.suffix == ".mat"
out = np.array([d["r"] for d in read_custom_montage(fname).dig])
_check_dig_shape(out)
return out