[074d3d]: / mne / io / fieldtrip / utils.py

Download this file

368 lines (307 with data), 12.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from ..._fiff._digitization import DigPoint, _ensure_fiducials_head
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import create_info
from ..._fiff.pick import pick_info
from ...transforms import rotation3d_align_z_axis
from ...utils import _check_pandas_installed, warn
_supported_megs = ["neuromag306"]
_unit_dict = {
"m": 1,
"cm": 1e-2,
"mm": 1e-3,
"V": 1,
"mV": 1e-3,
"uV": 1e-6,
"T": 1,
"T/m": 1,
"T/cm": 1e2,
}
NOINFO_WARNING = (
"Importing FieldTrip data without an info dict from the "
"original file. Channel locations, orientations and types "
"will be incorrect. The imported data cannot be used for "
"source analysis, channel interpolation etc."
)
def _validate_ft_struct(ft_struct):
"""Run validation checks on the ft_structure."""
if isinstance(ft_struct, list):
raise RuntimeError("Loading of data in cell arrays is not supported")
def _create_info(ft_struct, raw_info):
"""Create MNE info structure from a FieldTrip structure."""
if raw_info is None:
warn(NOINFO_WARNING)
sfreq = _set_sfreq(ft_struct)
ch_names = ft_struct["label"]
if raw_info:
info = raw_info.copy()
missing_channels = set(ch_names) - set(info["ch_names"])
if missing_channels:
warn(
"The following channels are present in the FieldTrip data "
f"but cannot be found in the provided info: {missing_channels}.\n"
"These channels will be removed from the resulting data!"
)
missing_chan_idx = [ch_names.index(ch) for ch in missing_channels]
new_chs = [ch for ch in ch_names if ch not in missing_channels]
ch_names = new_chs
ft_struct["label"] = ch_names
if "trial" in ft_struct:
ft_struct["trial"] = _remove_missing_channels_from_trial(
ft_struct["trial"], missing_chan_idx
)
if "avg" in ft_struct:
if ft_struct["avg"].ndim == 2:
ft_struct["avg"] = np.delete(
ft_struct["avg"], missing_chan_idx, axis=0
)
with info._unlock():
info["sfreq"] = sfreq
ch_idx = [info["ch_names"].index(ch) for ch in ch_names]
pick_info(info, ch_idx, copy=False)
else:
info = create_info(ch_names, sfreq)
chs, dig = _create_info_chs_dig(ft_struct)
with info._unlock(update_redundant=True):
info.update(chs=chs, dig=dig)
return info
def _remove_missing_channels_from_trial(trial, missing_chan_idx):
if isinstance(trial, list):
for idx_trial in range(len(trial)):
trial[idx_trial] = _remove_missing_channels_from_trial(
trial[idx_trial], missing_chan_idx
)
elif isinstance(trial, np.ndarray):
if trial.ndim == 2:
trial = np.delete(trial, missing_chan_idx, axis=0)
else:
raise ValueError(
'"trial" field of the FieldTrip structure has an unknown format.'
)
return trial
def _create_info_chs_dig(ft_struct):
"""Create the chs info field from the FieldTrip structure."""
all_channels = ft_struct["label"]
ch_defaults = dict(
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
cal=1.0,
range=1.0,
unit_mul=FIFF.FIFF_UNITM_NONE,
loc=np.array([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]),
unit=FIFF.FIFF_UNIT_V,
)
try:
elec = ft_struct["elec"]
except KeyError:
elec = None
try:
grad = ft_struct["grad"]
except KeyError:
grad = None
if elec is None and grad is None:
warn(
"The supplied FieldTrip structure does not have an elec or grad "
"field. No channel locations will extracted and the kind of "
"channel might be inaccurate."
)
if "chanpos" not in (elec or grad or {"chanpos": None}):
raise RuntimeError(
"This file was created with an old version of FieldTrip. You can "
"convert the data to the new version by loading it into FieldTrip "
"and applying ft_selectdata with an empty cfg structure on it. "
"Otherwise you can supply the Info field."
)
chs = list()
dig = list()
counter = 0
for idx_chan, cur_channel_label in enumerate(all_channels):
cur_ch = ch_defaults.copy()
cur_ch["ch_name"] = cur_channel_label
cur_ch["logno"] = idx_chan + 1
cur_ch["scanno"] = idx_chan + 1
if elec and cur_channel_label in elec["label"]:
cur_ch = _process_channel_eeg(cur_ch, elec)
assert cur_ch["coord_frame"] == FIFF.FIFFV_COORD_HEAD
# Ref gets ident=0 and we don't have it, so start at 1
counter += 1
d = DigPoint(
r=cur_ch["loc"][:3],
coord_frame=FIFF.FIFFV_COORD_HEAD,
kind=FIFF.FIFFV_POINT_EEG,
ident=counter,
)
dig.append(d)
elif grad and cur_channel_label in grad["label"]:
cur_ch = _process_channel_meg(cur_ch, grad)
else:
if cur_channel_label.startswith("EOG"):
cur_ch["kind"] = FIFF.FIFFV_EOG_CH
cur_ch["coil_type"] = FIFF.FIFFV_COIL_EEG
elif cur_channel_label.startswith("ECG"):
cur_ch["kind"] = FIFF.FIFFV_ECG_CH
cur_ch["coil_type"] = FIFF.FIFFV_COIL_EEG_BIPOLAR
elif cur_channel_label.startswith("STI"):
cur_ch["kind"] = FIFF.FIFFV_STIM_CH
cur_ch["coil_type"] = FIFF.FIFFV_COIL_NONE
else:
warn(
f"Cannot guess the correct type of channel {cur_channel_label}. "
"Making it a MISC channel."
)
cur_ch["kind"] = FIFF.FIFFV_MISC_CH
cur_ch["coil_type"] = FIFF.FIFFV_COIL_NONE
chs.append(cur_ch)
_ensure_fiducials_head(dig)
return chs, dig
def _set_sfreq(ft_struct):
"""Set the sample frequency."""
try:
sfreq = ft_struct["fsample"]
except KeyError:
try:
time = ft_struct["time"]
except KeyError:
raise ValueError("No Source for sfreq found")
else:
t1, t2 = float(time[0]), float(time[1])
sfreq = 1 / (t2 - t1)
try:
sfreq = float(sfreq)
except TypeError:
warn(
"FieldTrip structure contained multiple sample rates, trying the "
f"first of:\n{sfreq} Hz"
)
sfreq = float(sfreq.ravel()[0])
return sfreq
def _set_tmin(ft_struct):
"""Set the start time before the event in evoked data if possible."""
times = ft_struct["time"]
time_check = all(times[i][0] == times[i - 1][0] for i, x in enumerate(times))
if time_check:
tmin = times[0][0]
else:
raise RuntimeError(
"Loading data with non-uniform times per epoch is not supported"
)
return tmin
def _create_events(ft_struct, trialinfo_column):
"""Create an event matrix from the FieldTrip structure."""
if "trialinfo" not in ft_struct:
return None
event_type = ft_struct["trialinfo"]
event_number = range(len(event_type))
if trialinfo_column < 0:
raise ValueError("trialinfo_column must be positive")
available_ti_cols = 1
if event_type.ndim == 2:
available_ti_cols = event_type.shape[1]
if trialinfo_column > (available_ti_cols - 1):
raise ValueError(
"trialinfo_column is higher than the amount of columns in trialinfo."
)
event_trans_val = np.zeros(len(event_type))
if event_type.ndim == 2:
event_type = event_type[:, trialinfo_column]
events = (
np.vstack([np.array(event_number), event_trans_val, event_type]).astype("int").T
)
return events
def _create_event_metadata(ft_struct):
"""Create event metadata from trialinfo."""
pandas = _check_pandas_installed(strict=False)
if not pandas:
warn(
"The Pandas library is not installed. Not returning the original "
"trialinfo matrix as metadata."
)
return None
metadata = pandas.DataFrame(ft_struct["trialinfo"])
return metadata
def _process_channel_eeg(cur_ch, elec):
"""Convert EEG channel from FieldTrip to MNE.
Parameters
----------
cur_ch: dict
Channel specific dictionary to populate.
elec: dict
elec dict as loaded from the FieldTrip structure
Returns
-------
cur_ch: dict
The original dict (cur_ch) with the added information
"""
all_labels = np.asanyarray(elec["label"])
chan_idx_in_elec = np.where(all_labels == cur_ch["ch_name"])[0][0]
position = np.squeeze(elec["chanpos"][chan_idx_in_elec, :])
# chanunit = elec['chanunit'][chan_idx_in_elec] # not used/needed yet
position_unit = elec["unit"]
position = position * _unit_dict[position_unit]
cur_ch["loc"] = np.hstack((position, np.zeros((9,))))
cur_ch["unit"] = FIFF.FIFF_UNIT_V
cur_ch["kind"] = FIFF.FIFFV_EEG_CH
cur_ch["coil_type"] = FIFF.FIFFV_COIL_EEG
cur_ch["coord_frame"] = FIFF.FIFFV_COORD_HEAD
return cur_ch
def _process_channel_meg(cur_ch, grad):
"""Convert MEG channel from FieldTrip to MNE.
Parameters
----------
cur_ch: dict
Channel specific dictionary to populate.
grad: dict
grad dict as loaded from the FieldTrip structure
Returns
-------
dict: The original dict (cur_ch) with the added information
"""
all_labels = np.asanyarray(grad["label"])
chan_idx_in_grad = np.where(all_labels == cur_ch["ch_name"])[0][0]
gradtype = grad["type"]
chantype = grad["chantype"][chan_idx_in_grad]
position_unit = grad["unit"]
position = np.squeeze(grad["chanpos"][chan_idx_in_grad, :])
position = position * _unit_dict[position_unit]
if gradtype == "neuromag306" and "tra" in grad and "coilpos" in grad:
# Try to regenerate original channel pos.
idx_in_coilpos = np.where(grad["tra"][chan_idx_in_grad, :] != 0)[0]
cur_coilpos = grad["coilpos"][idx_in_coilpos, :]
cur_coilpos = cur_coilpos * _unit_dict[position_unit]
cur_coilori = grad["coilori"][idx_in_coilpos, :]
if chantype == "megmag":
position = cur_coilpos[0] - 0.0003 * cur_coilori[0]
if chantype == "megplanar":
tmp_pos = cur_coilpos - 0.0003 * cur_coilori
position = np.average(tmp_pos, axis=0)
original_orientation = np.squeeze(grad["chanori"][chan_idx_in_grad, :])
try:
orientation = rotation3d_align_z_axis(original_orientation).T
except AssertionError:
orientation = np.eye(3)
assert orientation.shape == (3, 3)
orientation = orientation.flatten()
# chanunit = grad['chanunit'][chan_idx_in_grad] # not used/needed yet
cur_ch["loc"] = np.hstack((position, orientation))
cur_ch["kind"] = FIFF.FIFFV_MEG_CH
if chantype == "megmag":
cur_ch["coil_type"] = FIFF.FIFFV_COIL_POINT_MAGNETOMETER
cur_ch["unit"] = FIFF.FIFF_UNIT_T
elif chantype == "megplanar":
cur_ch["coil_type"] = FIFF.FIFFV_COIL_VV_PLANAR_T1
cur_ch["unit"] = FIFF.FIFF_UNIT_T_M
elif chantype == "refmag":
cur_ch["coil_type"] = FIFF.FIFFV_COIL_MAGNES_REF_MAG
cur_ch["unit"] = FIFF.FIFF_UNIT_T
elif chantype == "refgrad":
cur_ch["coil_type"] = FIFF.FIFFV_COIL_MAGNES_REF_GRAD
cur_ch["unit"] = FIFF.FIFF_UNIT_T
elif chantype == "meggrad":
cur_ch["coil_type"] = FIFF.FIFFV_COIL_AXIAL_GRAD_5CM
cur_ch["unit"] = FIFF.FIFF_UNIT_T
else:
raise RuntimeError(f"Unexpected coil type: {chantype}.")
cur_ch["coord_frame"] = FIFF.FIFFV_COORD_HEAD
return cur_ch